Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео
Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.
Основы подключения к 220 В
В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:
То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.
В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.
Способы подключения светодиода к сети 220 В
Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.
Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.
Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).
Рассмотрим схему подключения более подробно.
В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.
Такой вариант подключения наглядно показан в этом ролике:
Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.
Шунтирование светодиода обычным диодом.
Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.
Встречно-параллельное подключение двух светодиодов:
Схема подключения выглядит следующим образом:
Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.
Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.
Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.
Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:
9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.
То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.
Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.
Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.
В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.
Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.
Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.
Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.
Емкость конденсатора рассчитывается по эмпирической формуле:
где U – амплитудное напряжение сети (310 В),
I – ток, проходящий через светодиод (в миллиамперах),
Uд – падение напряжения на led в прямом направлении.
Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:
Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.
Нюансы подключения к сети 220 В
При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:
Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.
Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:
При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.
Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:
В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.
Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.
Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:
Здесь показано, почему нельзя:
- включать светодиод напрямую;
- последовательно соединять светодиоды, рассчитанные на разный ток;
- включать led без защиты от обратного напряжения.
Безопасность при подключении
При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.
В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.
Заключение
Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.
ledno.ru
Как запитать светодиод от сети 220 В.
Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт!
Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.Еще один вариант подключения светодиода к электросети 220в:
Или же поставить два светодиода встречно-параллельно.
Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.
Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).
Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.
Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.
На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.
Наиболее распространённые ошибки при подключении светодиодов
1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.
2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).
3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.
4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.
5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.
6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.
Мигающие светодиоды
Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.
Отличительные качества мигающих сеетодиодое:
- • Малые размеры
- • Компактное устройство световой сигнализации
- • Широкий диапазон питающего напряжения (вплоть до 14 вольт)
- • Различный цвет излучения.
В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.
Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.
Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.
Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.
Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.
Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.
Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.
Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.
Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.
В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).
Чтобы ваше устройство защитить от случайного замыкания или перегрузки следует ставить предохранители.
tehnika.mirtesen.ru
Как подключить светодиод к 220В
Светодиод – полупроводниковый прибор, преобразующий электрический ток в видимый свет. Различают осветительные и индикаторные устройства. Они обладают разной мощностью, допустимой силой тока, напряжением, яркостью. Можно подключить светодиод к 220В, к 110В, к 1,5В, но только через устройство, ограничивающее электрический ток.
Особенности подключения светодиодного светильника к 220В
Принцип работы светодиодного светильника заметно отличается от всех остальных приборов такого рода устройств. Свет в данном случае генерирует полупроводниковый кристалл. Тело накаливания, как в других лампах, здесь попросту отсутствует, так как в полупроводнике электрический ток непосредственно преображается в световое излучение. Такое устройство не нагревается, генерирует световое излучение точно указанной световой температуры и отличается долговечностью.
Однако светодиод 220 Вольт или другой мощности работает только при пропускании тока в прямом направлении. То есть для такого светильника требуется постоянный ток с напряжением в 4–12 Вольт. Соответственно, непосредственно в бытовую электрическую сеть включить светодиод в 220В нельзя.
Важно! Большинство современных осветительных приборов оборудуются драйверами, позволяющими работать от сети с напряжением в 110–220 Вольт. В противном случае при подключении требуется сначала установить приспособления, выпрямляющие ток.
Правила безопасности при подключении
Техника безопасности в данном случае сводится не столько к предупреждению угрозы для здоровья, сколько к предотвращению поломки приборов и короткого замыкания. Рекомендации просты:
- не допускается прямое подключение светодиодных ламп к сети с переменным током и напряжением в 220В;
- прежде чем подключать любой вариант светильника, необходимо изучить технические характеристики;
- следует определить катод и анод у светодиода, как правило, длинная ножка выступает плюсом, то есть является анодом, а короткая, соответственно, катодом;
- необходимо рассчитать схему подключения светодиода к сети в 220В с учетом напряжения;
- эффективную работу прибора обеспечивает блок питания или драйвер с оптимальной мощностью;
- перед подключением обязательно определяют полярность светодиода;
- рекомендуется разделять резисторы на 2 части, чтобы снизить риск поражения током;
- необходимо тестировать конструкцию – включить и замерить уровень потребляемого тока в 220В.
Наиболее экономичным и простым решением проблемы является монтаж диммируемых устройств. Здесь достаточно определить мощность прибора.
Схемы подключения светодиода к 220В
Полупроводник пропускает ток только в одном направлении. Однако в сети в 220В имеется переменный ток, где с частотой в 50 Гц направление тока меняется. Чтобы компенсировать этот эффект и подключить светодиодную лампу, требуется выпрямитель какого-либо типа, способный погасить обратное напряжение.
В таком качестве выступает резистор, конденсатор, выпрямительный мост. Соответственно, подключить светодиод к сети в 220 Вольт можно несколькими способами. Чаще всего в быту используется схема с резистором, поскольку такой способ прост в монтаже и доступен по стоимости.
Как подключить светодиодный светильник последовательным способом
Такое подсоединение выполняется очень легко и вполне годится для бытовых светодиодных приборов и сети в 220 Вольт.
- Для начала рассчитывают требуемую мощность резистора и учитывают необходимость в защите от обратного напряжения. Теоретически при подсоединении светодиода, мощностью, например, в 3 Вольта, «избыток» в 217 Вольт оседает на резисторе. Однако на деле обратная полуволна в этом случае подается на светодиод, а не на резистор, а так как обратное напряжение у полупроводников невелико – до 30 Вольт, прибор быстро выходит из строя.
- Все элементы цепи – резистор, диод защиты и светодиод подключаются последовательно.
Важно! В схеме следует установить резистор мощностью не менее 2 Вт, так как устройство здесь заметно нагревается.
Как подключить светодиодный светильник к 220В параллельным способом
Подсоединить светодиодный светильник можно и параллельно. Такая схема более надежна, хотя не исключает эффект мерцания.
- Индикаторный диод подключают параллельно светодиоду. Диод должен иметь обратное включение. При первой полуволне работает индикаторный диод, при второй – светодиод. Напряжение, падающее на последний, не превышает 1 Вольт, что делает такую схему более долговечной.
- Мощность резистора и здесь должна быть избыточной – он нагревается.
Снизить эффект мерцания позволяет параллельная установка 2 светодиодов. При подсоединении к сети в 220В при одной полуволне включается 1 светодиод, при второй – параллельный ему. При таком расположении оба элемента в нужной степени защищены от избыточного обратного напряжения.
Важно! Окончательно от эффекта мерцания и в этом случае избавиться нельзя.
Схема включения светодиода в сеть 220 вольт лучевым соединением
Запитать светодиод от сети 220В таким способом – лучший вариант, так как метод предупреждает излишний нагрев всех деталей цепи и исключает заметные для глаза мерцания. Кроме того, цепь, включающая конденсатор, потребляет меньше тока. Минус схемы – подключение светодиодных ламп требует больше времени и подразумевает цепь из большого количества элементов.
- Вместо резистора основную нагрузку по выпрямлению тока берет на себя конденсатор. Использовать необходимо пленочное устройство – электролит не годится. Рассчитано на напряжение как минимум в 250 Вольт, а лучше в 400 Вольт.
- Параллельно конденсатору в цепь включают резистор. Его задача – разряд конденсатора после того, как светильник отключают от сети в 220 Вольт.
- Параллельно светодиоду подсоединяют диодный мост – его можно приобрести готовым, а можно самостоятельно сделать из 4 диодов с подходящими характеристиками. Максимальная сила тока моста должна быть выше, чем аналогичный показатель у светодиода. Возможное обратное напряжение – не менее 400 Вольт. Мост подсоединяется в обратном направлении по сравнению со светодиодным элементом.
- Последовательно конденсатору в цепь вставляют еще один резистор – токоограничительный. Его цель – защитить схему от случайных скачков напряжения в сети на 220 Вольт.
В такой схеме все элементы нагреваются незначительно, что обеспечивает высокую долговечность и надежность.
Схема шунтирования светодиода обычным диодом
Необходимость шунтирования доказана практикой. Теоретическая схема подключения светодиода без дополнительного элемента оказывается несостоятельной.
Рабочая схема включает индикаторный обычный диод с той же полярностью, что и светодиодное устройство. При этом излишне высокое напряжение обратной волны оседает на диодном элементе, а остаточное напряжение светодиод пробить уже не может. Диод монтируют между резистором и светодиодом.
Расчет гасящего конденсатора для светодиода
Подключение светодиодных светильников даже по самой удачной схеме выполняется после расчета характеристик резистора, дополнительных диодов, и, конечно, конденсатора. Емкость последнего вычисляют следующим образом.
Допустим, частота сети составляет обычные 50 Гц. Необходимо подсоединить светодиод в 20 мА, на который припадает 2 В. Необходимый коэффициент пульсаций составляет 2,5%.
- Светодиод представляют как простой резистор. Коэффициент пульсаций разрешается заменить напряжением на конденсаторе. Получается следующее: Кп = (Umax — Umin) / (Umax + Umin) ⋅ 100%, где после подстановки данных получают 2.5% = (2В — Umin) / (2В + Umin) ⋅ 100% => Umin = 1.9В.
- Используя типичную осциллограмму напряжения, можно вычислить время заряда конденсатора. tзар = arccos(Umin/Umax) / 2πf = arccos (1.9/2) / (2⋅1415⋅50) = 0.0010108 с. Остальной промежуток времени конденсатор разряжается. Так как в стандартной схеме используется двухполупериодный выпрямитель, этот показатель уменьшают вдвое.
- Затем вычисляют емкость по формуле и получают C = ILED ⋅ dt/dU = 0.02 ⋅008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ).
На деле ради 1 светодиодного светильника такой мощный конденсатор не устанавливают. Чтобы модифицировать схему, вместо обычного резистора в схему включают реактивное сопротивление – второй конденсатор.
Как подключить светодиодную ленту на 220 вольт
Нередко в быту вместо крупного прибора, который может выступать светильником, предпочитают установить подсветку. Для нее лучше всего использовать готовые светодиодные ленты. Монтаж очень прост, так как установщику нужно лишь следовать инструкции: все составляющие подсоединения при монтаже используют уже в готовом виде.
- Светодиодная лента – ряд последовательно закрепленных светодиодов. К блоку питания они присоединяются параллельно, друг к другу лучше монтировать платы тоже параллельно.
- Для начала определяют плюс и минус блок питания. Обычно красный шнур – это плюс, а синий или черный – минус. Если шнур отсутствует, подключение производят через маркированные зажимы.
- Лучше всего подсоединить ленту пайкой. В определенных случаях удобней использовать коннекторы. При монтаже требуется лишь отодвинуть зажимную пластину, насадить коннектор на край ленты и сдвинуть зажим назад. Затем провод от коннектора подсоединяют к блоку.
Если предполагается монтаж цветной ленты, схема будет включать контроллер, отвечающей за включение и отключение отдельных светодиодов.
Заключение
Подключить светодиод к 220В можно лишь с помощью дополнительных устройств. Схема подсоединения может включать резисторы, конденсаторы, выпрямительные мосты. Задача таких элементов – выпрямить переменный ток и предотвратить действие обратной волны напряжения на светодиод.
Отправить комментарий
2proraba.com
Подключение светодиода к сети 220В: все схемы и расчеты
Светоиндикация – это неотъемлемая часть электроники, с помощью которой человек легко понимает текущее состояние прибора. В бытовых электронных устройствах роль индикации, выполняет светодиод, установленный во вторичной цепи питания, на выходе трансформатора или стабилизатора. Однако в быту используется и множество простых электронных конструкций, неимеющих преобразователя, индикатор в которых был бы нелишним дополнением. Например, вмонтированный в клавишу настенного выключателя светодиод, стал бы отличным ориентиром расположения выключателя ночью. А светодиод в корпусе удлинителя с розетками будет сигнализировать о наличии его включения в электросеть 220 В.
Ниже представлено несколько простых схем, с помощью которых даже человек с минимальным запасом знаний электротехники сможет подключить светодиод к сети переменного тока.
Схемы подключения
Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя. Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.
Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи. Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.
Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.
Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду.
Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности. Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.
Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.
В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.
Расчет резистора для светодиода
Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома: R = U/I, где U – это напряжение питания, I – рабочий ток светодиода. Рассеиваемая резистором мощность равна P = U * I. Эти данные можно рассчитать при помощи онлайн калькулятора.
Важно. Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.
Расчет гасящего конденсатора для светодиода
Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле: C = 3200*I/U, где I – это ток нагрузки, U – напряжение питания. Данная формула является упрощенной, но ее точности достаточно для последовательного подключения 1-5 слаботочных светодиодов.
Важно. Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.
Конденсатор лучше использовать керамический типа К73–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.
Это нужно знать
Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания.
Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой. Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей.
При первом включении, сборки рекомендуется дать поработать некоторое время, чтобы убедиться в ее стабильности и отсутствии сильного нагрева элементов.
Для повышения надёжности устройства рекомендуется использовать заранее проверенные детали с запасом по предельно допустимым значениям напряжения и мощности.
Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью. Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.
Небольшой эксперимент
Читайте так жеЧтобы немного разбавить скучные схемы, предлагаем ознакомится с небольшим экспериментом, который будет интересен как начинающим радиолюбителям, так и опытным мастерам.
ledjournal.info
|
| Снижение расхода топлива в авто Ремонт зарядного 6-12 В Солнечная министанция Самодельный ламповый Фонарики Police Генератор ВЧ и НЧ |
elwo.ru
схемы подключения диодов в сеть переменного тока на 220 вольт, как включить в питание через конденсатор и резистор без блока питания, какие диоды подходят
Чаще всего для того, чтобы подключить светодиоды к сети 220 В, приобретаются драйверы. Их использование не целесообразно, если источник света обладает малой мощностью (например, индикатор подсветки).
Приходится искать вариант, как подключить светодиод к 220 В с минимальными затратами и максимальным КПД.
Существует несколько схем, основанных на использовании резисторов и конденсаторов в качестве преобразователей вольтажа.
В чем сложность
Проблема подключения светодиода к сети 220 вольт вызвана его техническими характеристиками. Чтобы светиться, LED-лампа пропускает ток в одном направлении.
Из сети поступает напряжение 220 В с частотой 50 Гц, диод может работать только на полуволнах. Это значит, что он мигает с той же частотой, что ток из сети. При прохождении в обратном направлении у напряжения противоположенная полярность, не позволяющая светиться и способствующая разрушению кристаллов.
Важно! Включение светодиода к электросети на 220 вольт требует подсоединения устройства, которое будет подавать столько тока, сколько лампе требуется для свечения.
Схемы подключения
Для снижения вольтажа существуют 3 варианта:
- резистор;
- конденсатор;
- оба элемента.
Первый способ самый п
svetilnik.info
способы интеграции, схемы питания и особенности подключения
Светодиоды — неотъемлемая часть электроники, позволяющая осуществлять индикацию состояния приборов. В зависимости от цвета и расположения на корпусе светоизлучающие диоды сигнализируют о состоянии зарядки, подключении гаджета к сети и т. п. Но бывают ситуации, когда в приборе отсутствует штатная сигнализация, а человеку она нужна. Тогда и встаёт вопрос о том, как включить светодиод в 220 В, не используя понижающих напряжение трансформаторных устройств.
Технические особенности диода
Светодиод представляет собой радиотехнический элемент, пропускающий ток, как и стандартный диод, только в одном направлении, но при этом излучающий электромагнитные волны в видимом диапазоне. Если осуществлять интеграцию такого диода в сеть с постоянным током, то важно не перепутать «плюс» и «минус». Внедрение же светового диода в переменную сеть и решение вопроса о том, как запитать светодиод от сети 220 В, где периодически (с частотой 50 Гц) происходит изменение направления тока и напряжения, потребует дополнительных расчётов.
Чтобы определить среднее значение тока и подключить светодиод к сети 220 вольт, необходимо разделить напряжение действующей сети пополам, то есть 220 В / 2 = 110 В. Это значение берут за основу для последующих расчётов.
Электрическое сопротивление светодиода, как и любого полупроводникового элемента, не линейно и зависит от величины разности потенциалов, приложенной к нему. Для сети с переменным током и напряжением 220 В с приемлемой точностью можно взять усреднённое значение в 1,7 Ом. Тогда, согласно закону Ома, величина тока, который будет проходить через полупроводниковый кристалл диода, если его подключить напрямую к сети, будет примерно равна 65 ампер (110/1,7).
Такой показатель просто приведёт к сжиганию прибора. Для уменьшения величины тока, проходящего через полупроводник, потребуется последовательное включение в цепь рядом со световым диодом сопротивления.
Для этой цели применяют исключительно резисторы в цепях с постоянным напряжением, а с переменным током есть возможность применять так называемые реактивные сопротивления — конденсаторы и катушки индуктивности. Сопротивление они создают благодаря накапливанию электромагнитной энергии в первый полупериод (ток протекает в одном направлении) и возвращению её в сеть во втором полупериоде (при обратном течении электрического тока).
Подключение через резистор
Подобная схема обычно реализуется для индикации работы электротехнических устройств. Она используется в световом сигнале, свидетельствующем о включении в сеть электрочайника, в подсветке кнопки выключателя и т. д. Главными достоинствами этого варианта интеграции светящегося диода в сеть считаются относительная дешевизна, простота и надёжность.
Но есть в этой схеме один нюанс. Он заключается в необходимости гашения обратного напряжения, так как его избыток может привести к выходу из строя полупроводникового прибора. С этой задачей легко справляются кремниевые диоды, которые способны пропускать ток по величине не меньше того, что проходит в сети. Подключить их можно в цепь двумя способами:
- последовательно, то есть после резистора и перед светодиодом, но соблюдая полярность;
- параллельно со светящимся диодом, но изменив полярность на 180 градусов.
Некоторые специалисты считают, что использование гасящих диодов необязательно, но практика показывает, что обратный ток в некоторых случаях вызывает тепловой пробой p-n перехода. Поэтому дополнительные затраты на приобретение кремниевых диодов вполне оправданы для реализации подключения светодиода к сети 220 В, схема которого содержит гасящий резистор.
Применение конденсатора
Негативной стороной использования резистора для уменьшения тока при включении в цепь 220 В светодиода является довольно существенное рассеивание мощности. Эта проблема становится заметной при нагрузке с большим током потребления. Решением является схема подключения светодиода к 220 В, где реализуется интеграция неполярного конденсатора вместо резистора. Сопротивление конденсаторов имеет реактивный характер, что исключает рассеивание мощности.
Подключение конденсатора в схему светодиода с целью токоограничения имеет один нюанс, который может привести к выходу из строя светового диода, — сохранение накопленного заряда после отключения питания сети. Из-за этого в схему с неполярным конденсатором добавляют:
- два резистора;
- диод, подключённый параллельно светодиоду, но в обратном направлении.
Резисторы (один — параллельно с конденсатором, а второй — последовательно) защищают всю схему от бросков напряжения при подаче напряжения из сети, а диод является защитой светодиода от разности потенциалов с обратной полярностью.
Эти способы подключения применимы к маломощным светодиодам, которые используются для индикации или подсветки. Подключение мощных диодных элементов, предназначенных для светодиодных ламп освещения, осуществляется схемами с использованием спецблоков питания (драйверов).
220v.guru