Posted on

Содержание

Подключение люминесцентной лампы без дросселя и стартера: схемы

Люминесцентные трубчатые лампы долгое время были популярны в освещении помещений любой площади. Они долго работают и не перегорают, а значит их нужно значительно реже обслуживать. Основная проблема — это не перегорание самой лампочки (выгорание спирали и люминофора), а выход из строя пускорегулирующей аппаратуры. В этой статье мы расскажем, как выполнить подключение люминесцентной лампы без дросселя и стартера, а также запитать от низковольтного источника постоянного тока.

Классическая схема включения люминесцентных ламп

Несмотря на технический прогресс и все преимущества электронных пускорегулирующих аппаратов (ЭПРА), и по сей день часто встречается схема включения с дросселем и стартером. Напомним, как она выглядит:

Схема с дросселем

Люминесцентная лампа — это колба, которая конструктивно выполняется как прямая и закрученная трубка, наполненная парами ртути. На её концах расположены электроды, например, спирали или иглы (для изделий с холодным катодом, которые используются в подсветке мониторов). Спирали имеют два вывода, к которым подается питание, а стенки колбы покрыты слоями люминофора.

Принцип работы стандартной схемы подключения люминесцентной трубки с дросселем и стартером довольно прост. В первый момент времени, когда контакты стартера холодны и разомкнуты – между ними возникает тлеющий разряд, он нагревает контакты и они замыкаются, после чего ток течет по такой цепи:

Фаза-дроссель-спираль-стартер-вторая спираль-ноль.

В этот момент под воздействием протекающего тока разогреваются спирали, при этом остывают контакты стартера. В определенный момент времени контакты от нагрева изгибаются и цепь разрывается. После чего, за счет энергии, накопленной в дросселе, происходит всплеск напряжения и в лампе возникает тлеющий разряд.

Такой источник света не может работать напрямую от сети 220В, потому что для ее работы нужно создать условия с «правильным» питанием. Рассмотрим несколько вариантов.

Питание от 220В без дросселя и стартера

Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают. Всё это стоит не дешево, поэтому есть несколько схем для подключения светильника без этих элементов. Одну из них вы видите на рисунке ниже.

Схема с диодами и конденсаторами

Диоды можно выбирать любые с обратным напряжением не менее 1000В и током не меньше чем потребляет светильник (от 0,5 А). Конденсаторы выбирайте с таким же напряжением в 1000В и ёмкостью 1-2 мкФ. Обратите внимание, что в этой схеме включения выводы лампы замкнуты между собой. Это значит, что спирали в процессе зажигания не участвуют и можно использовать схему для розжига ламп, где они перегорели.

Такую схему можно использовать для освещения подсобных помещений и коридоров. В гараже можно применять, если в нём вы не работаете на станках. Светоотдача может быть ниже, чем при классическом подключении, а световой поток будет мерцать, хоть это и не всегда заметно для человеческого глаза. Но такое освещение может вызвать стробоскопический эффект — когда вращающиеся части могут казаться неподвижными. Соответственно это может привести к несчастным случаям.

Примечание: во время экспериментов учтите, что запуск люминесцентных источников света в холодное время года всегда осложнен.

На видео ниже наглядно показано, как запустить люминесцентную лампу, используя диоды и конденсаторы:

Есть еще одна схема подключения люминесцентной лампы без стартера и дросселя. В качестве балласта при этом используется лампочка накаливания.

Добавление лампы накаливания

Лампу накаливания использовать на 40-60 Вт, как показано на фото:

Включение светильника через лампу накаливания

Альтернативой описанным способам является использование платы от энергосберегающих ламп. Фактически это тот же ЭПРА, что используется с трубчатыми аналогами, но в миниатюрном формате.

Использование платы от энергосберегающей лампы

Включение светильника без дросселя

На видео ниже наглядно показано, как подключить люминесцентную лампу через плату энергосберегающей лампы:

Питание ламп от 12В

Но любители самоделок часто задаются вопросом «Как зажечь люминесцентную лампу от низкого напряжения?», мы нашли один из вариантов ответа на этот вопрос. Для подключения люминесцентной трубки к низковольтному источнику постоянного тока, например, аккумулятору на 12В, нужно собрать повышающий преобразователь. Простейшим вариантом является схема автогенераторного преобразователя на 1 транзисторе. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.

Схема с транзистором

Такую схему можно использовать для подключения люминесцентных ламп к бортовой сети автомобиля. Для её работы также не нужен дроссель и стартер. Более того она будет работать даже если её спирали перегорели. Возможно вам понравится одна из вариаций рассмотренной схемы.

Схема включения люминесцентного светильника

Запуск светильника без стартера

Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам. Это не идеальное решение, а скорее выход из ситуации. Светильник с такой схемой подключения не следует использовать в качестве основного освещения рабочих мест, но допустимо для освещения помещений, где человек не приводит много времени — коридоры, кладовые и прочее.

Наверняка вы не знаете:

samelectrik.ru

Подключение люминесцентных ламп без дросселя и стартера

К сожалению, даже подключенные к современной электронной пускорегулирующей аппаратуре (ЭПРА) люминесцентные лампы перегорают. Такое случается с большими светильниками, и с компактными люминесцентными лампами (КЛЛ), более известными как экономлампы. И если сгоревшую электронику починить можно, то лампу с перегоревшей нитью попросту выбрасывают.

Понятно, что если у лампы, подключенной до дросселя со стартером или к ЭПРА, перегорит одна из нитей накала, то светильник уже не включится. Кроме того, старая «брежневская» схема подключения имеет ещё несколько недостатков: затяжной запуск стартером, сопровождающийся раздражающими миганиями; мерцание лампы с удвоенной частотой сети.

Однако выход прост — запитать люминесцентную лампу не переменным, а постоянным током, и чтобы не использовать капризные стартеры, нужно приложить при запуске повышенное напряжение сети. Таким образом, мало того, что источник света перестанет мерцать, но и после подключения по новой схеме даже перегоревшая люминесцентная лампа проработает ещё не один год.

Для запуска с умноженным напряжением сети не понадобится нагревать спирали — электроны для начальной ионизации будут вырваны уже при комнатной температуре, даже из перегоревших спиралей. Так как не нужен нагрев до температуры 800–900 градусов для тлеющего стартового разряда, то резко продлевается срок службы любой люминесцентной лампы, и с целыми спиралями. После запуска, кусочки нитей становятся теплыми за счет стабильного потока электронов. Простейшая схема, имеющая эти преимущества, следующая:

Подключение люминесцентных ламп без дросселя и стартера

На рисунке показана схема двухполупериодного выпрямителя с удвоением напряжения, здесь лампа загорается мгновенно

При подключении по такой схеме нужно соединить вместе оба внешних вывода каждой нити накала лампы — без разницы, перегоревшие они, или целые.

Конденсаторы С1, С4 нужны неполярные с рабочим напряжением более чем в 2 раза больше сетевого (например, МБМ не ниже 600 вольт). В этом и есть главный минус схемы — в ней применяются два конденсатора большой емкости, на высокое напряжение. Такие конденсаторы имеют значительные габариты.

Конденсаторы С2, С3 тоже нужны неполярные и желательно, чтобы они были слюдяными на напряжение 1000 В. На диодах Д1, Д4 и конденсаторах С2, С3 напряжение подскакивает до 900 В, чем обеспечивается надежное зажигание холодной лампы. Также эти две емкости способствуют подавлению радиопомех. Светильник можно зажечь и без этих конденсаторов и диодов, но с ними включение становится более безотказным.

Резистор нужно намотать самостоятельно из нихромовой или манганиновой проволоки. Рассеиваемая на нем мощность значительна, так как светящаяся люминесцентная лампа не имеет своего внутреннего сопротивления.

Подробные номиналы элементов схемы в зависимости от мощности светильника приведены в таблице:

Подключение люминесцентных ламп без дросселя и стартера

Диоды можно использовать необязательно указанные в таблице, а аналогичные современные, главное, чтоб они подходили по мощности.

Чтобы зажечь неподдающуюся лампу на один из концов наматывают колечко из фольги и соединяют его проводком со спиралью на противоположной стороне. Такой ободок шириною в 50 мм вырезается из тонкой фольги и приклеивается к колбе лампы.

Следует заметить, что люминесцентная лампа вовсе не предназначена для работы на постоянном токе. При таком питании световой поток от неё со временем ослабевает из-за того, что пары ртути внутри трубки постепенно собираются возле одного из электродов. Хотя, восстановить яркость свечения достаточно легко, нужно лишь перевернуть лампу, поменяв местами плюс с минусом на её концах. А чтобы вовсе не разбирать светильник, имеет смысл заранее установить в нем переключатель.

В цоколе маленькой КЛЛ уместить такую схему, разумеется, не получиться. Но и зачем это нужно! Можно же всю схему пуска собрать в отдельной коробке и через длинные провода подсоединить к светильнику. Важно из энергосберегающей лампы вытянуть всю электронику, а также соединить два вывода каждой её нити накоротко. Главное, не забыть, и не всунуть в такой самодельный светильник исправную лампу.

Рекомендуем также прочитать:

  1. Подключение люминесцентных ламп с дросселем.
  2. ЭПРА для люминесцентных ламп

 

Автор: Виталий Петрович, Украина, Лисичанск.

 


 

volt-index.ru

Подключение люминесцентных ламп без стартера %

Классическая схема включения люминесцентных ламп

Несмотря на технический прогресс и все преимущества электронных пускорегулирующих аппаратов (ЭПРА), и по сей день часто встречается схема включения с дросселем и стартером. Напомним, как она выглядит:

Люминесцентная лампа — это колба, которая конструктивно выполняется как прямая и закрученная трубка, наполненная парами ртути. На её концах расположены электроды, например, спирали или иглы (для изделий с холодным катодом, которые используются в подсветке мониторов). Спирали имеют два вывода, к которым подается питание, а стенки колбы покрыты слоями люминофора.

Принцип работы стандартной схемы подключения люминесцентной трубки с дросселем и стартером довольно прост. В первый момент времени, когда контакты стартера холодны и разомкнуты – между ними возникает тлеющий разряд, он нагревает контакты и они замыкаются, после чего ток течет по такой цепи:

Фаза-дроссель-спираль-стартер-вторая спираль-ноль.

В этот момент под воздействием протекающего тока разогреваются спирали, при этом остывают контакты стартера. В определенный момент времени контакты от нагрева изгибаются и цепь разрывается. После чего, за счет энергии, накопленной в дросселе, происходит всплеск напряжения и в лампе возникает тлеющий разряд.

Такой источник света не может работать напрямую от сети 220В, потому что для ее работы нужно создать условия с «правильным» питанием. Рассмотрим несколько вариантов.

Питание от 220В без дросселя и стартера

Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают. Всё это стоит не дешево, поэтому есть несколько схем для подключения светильника без этих элементов. Одну из них вы видите на рисунке ниже.

Диоды можно выбирать любые с обратным напряжением не менее 1000В и током не меньше чем потребляет светильник (от 0,5 А). Конденсаторы выбирайте с таким же напряжением в 1000В и ёмкостью 1-2 мкФ. Обратите внимание, что в этой схеме включения выводы лампы замкнуты между собой. Это значит, что спирали в процессе зажигания не участвуют и можно использовать схему для розжига ламп, где они перегорели.

Такую схему можно использовать для освещения подсобных помещений и коридоров. В гараже можно применять, если в нём вы не работаете на станках. Светоотдача может быть ниже, чем при классическом подключении, а световой поток будет мерцать, хоть это и не всегда заметно для человеческого глаза. Но такое освещение может вызвать стробоскопический эффект — когда вращающиеся части могут казаться неподвижными. Соответственно это может привести к несчастным случаям.

Примечание: во время экспериментов учтите, что запуск люминесцентных источников света в холодное время года всегда осложнен.

На видео ниже наглядно показано, как запустить люминесцентную лампу, используя диоды и конденсаторы:

Есть еще одна схема подключения люминесцентной лампы без стартера и дросселя. В качестве балласта при этом используется лампочка накаливания.

Лампу накаливания использовать на 40-60 Вт, как показано на фото:

Альтернативой описанным способам является использование платы от энергосберегающих ламп. Фактически это тот же ЭПРА, что используется с трубчатыми аналогами, но в миниатюрном формате.

На видео ниже наглядно показано, как подключить люминесцентную лампу через плату энергосберегающей лампы:

Питание ламп от 12В

Но любители самоделок часто задаются вопросом «Как зажечь люминесцентную лампу от низкого напряжения?», мы нашли один из вариантов ответа на этот вопрос. Для подключения люминесцентной трубки к низковольтному источнику постоянного тока, например, аккумулятору на 12В, нужно собрать повышающий преобразователь. Простейшим вариантом является схема автогенераторного преобразователя на 1 транзисторе. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.

Такую схему можно использовать для подключения люминесцентных ламп к бортовой сети автомобиля. Для её работы также не нужен дроссель и стартер. Более того она будет работать даже если её спирали перегорели. Возможно вам понравится одна из вариаций рассмотренной схемы.

Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам. Это не идеальное решение, а скорее выход из ситуации. Светильник с такой схемой подключения не следует использовать в качестве основного освещения рабочих мест, но допустимо для освещения помещений, где человек не приводит много времени — коридоры, кладовые и прочее.

Наверняка вы не знаете:

Лампы дневного света (ЛДС) широко применяются для освещения как больших площадей общественных помещений, так и в качестве бытовых источников света. Популярность люминесцентных ламп обусловлена в большей мере их экономическими характеристиками. По сравнению с лампами накаливания у данного типа ламп высокий КПД, повышенная светоотдача и более долгий срок службы. Однако функциональным недостатком ламп дневного света является необходимость наличия пускового стартера или специального пускорегулирующего устройства (ПРА). Соответственно задача пуска лампы при выходе из строя стартера или при его отсутствии является насущной и актуальной.

Принцип действия лампы дневного света

Принципиальное отличие ЛДС от лампы накаливания в том, что преобразование электроэнергии в свет происходит благодаря протеканию тока через пары ртути, смешанные с инертным газом в колбе. Ток начинает протекать после пробоя газа высоким напряжением, приложенным к электродам лампы.

  1. Дроссель.
  2. Колба лампы.
  3. Люминесцентный слой.
  4. Контакты стартера.
  5. Электроды стартера.
  6. Корпус стартера.
  7. Биметаллическая пластина.
  8. Газ.
  9. Нити накала лампы.
  10. Ультрафиолетовое излучение.
  11. Ток разряда.

Образующееся ультрафиолетовое излучение лежит в невидимой для человеческого глаза части спектра. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Меняя состав этого слоя можно получать разные световые оттенки.
Перед непосредственным запуском ЛДС электроды на её концах разогреваются прохождением через них тока или же за счёт энергии тлеющего разряда.
Высокое напряжения пробоя обеспечивает ПРА, который может быть собран по известной традиционной схеме или же иметь более сложную конструкцию.

Принцип действия стартера

На рис. 1 представлено типовое подключение ЛДС со стартером S и дросселем L. К1, К2 – электроды лампы; С1 – косинусный конденсатор, С2 – фильтрующий конденсатор. Обязательным элементом таких схем является дроссель (катушка индуктивности) и стартер (прерыватель). В качестве последнего зачастую используется неоновая лампа с биметаллическими пластинами. Для улучшения низкого коэффициента мощности из-за наличия индуктивности дросселя применяют входной конденсатор (С1 на рис.1).

Рис. 1 Функциональная схема подключения ЛДС

Фазы запуска ЛДС следующие:
1) Разогрев электродов лампы. В этой фазе ток течёт по цепи «Сеть – L – К1 – S – К2 – Сеть». В этом режиме стартер начинает хаотично замыкаться / размыкаться.
2) В момент разрыва цепи стартером S энергия магнитного поля, накопленная в дросселе L, в виде высокого напряжения прикладывается к электродам лампы. Происходит электрический пробой газа внутри лампа.
3) В режиме пробоя сопротивление лампы ниже, чем сопротивление ветви стартера. Поэтому ток течёт по контуру «Сеть – L – К1 – К2 – Сеть». В этой фазе дроссель L выполняет роль реактивного токоограничивающего сопротивления.
Недостатки традиционной схемы пуска ЛДС: звуковой шум, мерцание с частотой 100 Гц, увеличенное время пуска, низкий КПД.

Принцип действия ЭПРА

Электронные ПРА (ЭПРА) используют потенциал современной силовой электроники и являются более сложными, но и более функциональными схемами. Такие устройства позволяют контролировать три фазы запуска и регулировать световой поток. В результате повышается срок службы лампы. Также, из-за питания лампы током более высокой частоты (20÷100 кГц) отсутствует видимое мерцание. Упрощённая схема одной из популярных топологий ЭПРА приведена на рис. 2.

Рис. 2 Упрощённая принципиальная схема ЭПРА
На рис. 2 D1-D4 – выпрямитель сетевого напряжения, С – фильтрующий конденсатор, Т1-Т4 – транзисторный мостовой инвертор с трансформатором Tr. Опционально в ЭПРА могут присутствовать входной фильтр, схема коррекции коэффициента мощности, дополнительные резонансные дроссели и конденсаторы.
Полная принципиальная схема одного из типовых современных ЭПРА приведена на рис 3.

Рис. 3 Схема ЭПРА BIGLUZ
В схеме (рис. 3) присутствуют основные выше названные элементы: мостовой диодный выпрямитель, фильтрующий конденсатор в звене постоянного тока (С4), инвертор в виде двух транзисторов с обвязкой (Q1, R5, R1) и (Q2, R2, R3), дроссель L1, трансформатор с тремя выводами TR1, схема запуска и резонансный контур лампы. Две обмотки трансформатора служат для включения транзисторов, третья обмотка входит в состав резонансного контура ЛДС.

Способы пуска ЛДС без специализированного ПРА

При выходе из строя лампы дневного света возможны две причины:
1) Из строя вышел стартер. В таком случае достаточно заменить стартер. Эту же операцию следует провести при появлении мерцания лампы. В таком случае при визуальном осмотре на колбе ЛДС нет характерных затемнений.
2) Из строя вышла сама ЛДС. Возможно, перегорела одна из нитей электродов. При визуальном осмотре могут быть заметны потемнения на концах колбы. Здесь можно применить известные схемы запуска для продолжения эксплуатации лампы даже с перегоревшими нитями электродов.
Для экстренного запуска лампу дневного света можно подключить без стартера по схеме, приведенной ниже (рис. 4). Здесь роль стартера выполняет пользователь. Контакт S1 замыкается на весь период работы лампы. Кнопка S2 замыкается на 1-2 секунды для зажигания лампы. При размыкании S2 напряжение на ней в момент зажигания будет значительно больше сетевого! Поэтому при работе с такой схемой следует проявлять повышенную осторожность.

Рис. 4 Принципиальная схема запуска ЛДС без стартера
Если требуется быстро зажечь ЛДС со сгоревшими нитями накала, то необходимо собрать схему (рис. 5).

Рис. 5 Принципиальная схема подключения ЛДС со сгоревшей нитью накала
Для дросселя 7-11 Вт и лампы 20 Вт номинал С1 – 1 мкФ с напряжением 630 В. Конденсаторы с меньшим номиналом использовать не стоит.
Автоматические схемы запуска ЛДС без дросселя предполагают использование в качестве ограничителя тока обыкновенной лампы накаливания. Такие схемы, как правило, являются умножителями и питают ЛДС постоянным током, что вызывает ускоренный износ одного из электродов. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов. Типовая схема подключения люминесцентной лампы без дросселя приведена на рис. 6.

Рис. 6. Структурная схема подключения ЛДС без дросселя

Рис. 7 Напряжение на ЛДС подключенной по схеме (рис. 6) до момента пуска
Как видим на рис. 7 напряжение на лампе в момент пуска доходит до уровня 700 В примерно за 25 мс. Вместо лампы накаливания HL1 можно использовать дроссель. Конденсаторы в схеме рис. 6 следует выбирать в пределах 1÷20 мкФ с напряжением не меньше 1000В. Диоды должны быть рассчитаны на обратное напряжение 1000В и ток от 0,5 до 10 А в зависимости от мощности лампы. Для лампы мощностью 40 Вт будет достаточно диодов, рассчитанных на ток 1.
Ещё один вариант схемы запуска показан на рис 8.

Рис. 8 Принципиальная схема умножителя с двумя диодами
Параметры конденсаторов и диодов в схеме на рис. 8 аналогичны схеме на рис. 6.
Один из вариантов использования низковольтного источника питания приведен на рис. 9. На основе такой схемы (рис. 9) можно собрать беспроводную лампу дневного света на аккумуляторе.

Рис. 9 Принципиальная схема подключения ЛДС от низковольтного источника питания
Для вышеприведенной схемы необходимо намотать трансформатор с тремя обмотками на одном сердечнике (кольце). Как правило, первой наматывают первичную обмотку, затем главную вторичную (на схеме обозначена, как III). Для транзистора необходимо предусмотреть охлаждение.

Заключение

При выходе из строя стартера лампы дневного света можно применить экстренный «ручной» запуск или простые схемы питания постоянным током. При использовании схем на основе умножителей напряжения есть возможность запускать лампу без дросселя, используя лампу накаливания. Работая на постоянном токе, отсутствует мерцание и шум ЛДС, однако уменьшается срок службы.
В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением.

Лампы дневного света несмотря на всю их «живучесть», по сравнению с обычными лампочками накаливания, в один прекрасный момент также выходят из строя и перестают светить.

Конечно, срок их службы не сравнить со светодиодными моделями, но как оказывается, даже при серьезной поломке, все эти ЛБ или ЛД светильники опять можно восстановить без каких либо серьезных капитальных затрат.

В первую очередь вам нужно выяснить, что же именно сгорело:

    сама люминесцентная лампочка

Как это сделать и быстро проверить все эти элементы, читайте в отдельной статье.

Если сгорела сама лампочка и вам надоел такой свет, то вы легко можете перейти на светодиодное освещение, без какой-либо серьезной модернизации светильника. Причем делается это несколькими способами.

Одна из наиболее серьезных проблем — это вышедший из строя дроссель.

Большинство при этом считают такой люминесцентный светильник полностью негодным и выбрасывают его, либо перемещают в кладовку на запчасти для остальных.

Сразу оговоримся, что запустить ЛБ светильник без дросселя, просто выкинув его из схемы и не поставив туда чего-нибудь другого, у вас не получится. В статье пойдет речь об альтернативных вариантах, когда этот самый дроссель можно заменить другим элементом, имеющимся у вас под рукой дома.

Что советуют делать в таких случаях самоделкины и радиолюбители? Они рекомендуют применить, так называемую бездроссельную схему включения люминесцентных ламп.

В ней используется диодный мост, конденсаторы, балластное сопротивление. Несмотря на некоторые преимущества (возможность запуска сгоревших ламп дневного света), все эти схемы для рядового пользователя темный лес. Ему гораздо проще купить новый светильник, чем паять и собирать всю эту конструкцию.

Поэтому сперва рассмотрим другой популярный способ запуска ЛБ или ЛД ламп со сгоревшим дросселем, который будет доступен каждому. Что вам для этого потребуется?

Вам понадобится старая сгоревшая энергосберегающая лампочка с обычным цоколем Е27.

Конечно, схему с ее использованием нельзя считать абсолютно бездроссельной, так как на плате энергосберегайки дроссель все таки присутствует. Просто он по габаритам гораздо меньше, так как экономка работает на частотах до нескольких десятков килогерц.

Этот минидроссель ограничивает ток через лампу и дает высоковольтный импульс для зажигания. Фактически это ЭПРА в миниатюрном варианте.

Раньше была большая рекламная компания по замене ламп накаливания на энергосберегающие. Сегодня уже их активно меняют на светодиодные.

Выкидывать в мусорку экономки не рекомендуется, впрочем как и отдельные модели светодиодных.

Поэтому некоторые сознательные и бережливые граждане, которые еще не сдали их в специальные пункты приема, хранят подобные изделия у себя на полках в шкафчиках.

Меняют их не зря. Эти лампочки в рабочем состоянии очень вредны для здоровья, как в плане пульсаций света, так и в отношении излучения опасного ультрафиолета.

Хотя ультрафиолет не всегда бывает вреден. И порой приносит нам много пользы.

При этом не забывайте, что теми же самыми негативными факторами, в равной степени обладают и линейные люминесцентные модели. Именно ими активно пугают любителей выращивать растения под светом фитоламп.

Но вернемся к нашим энергосберегайкам. Чаще всего у них перестает работать светящаяся спиральная трубка (пропадает герметичность, разбивается и т.д.).

При этом схема и внутренний блок питания остаются целыми и невредимыми. Их то и можно использовать в нашем деле.

Сперва разбираете лампочку. Для этого по линии разъема, тонкой плоской отверткой вскрываете и разделяете две половинки.

При разделении ни в коем случае не держитесь за стеклянную трубчатую колбу.

Далее вытаскиваете плату. На ней находите места, к которым подключаются проводки от «нитей накала» колбы. Они обычно идут в виде штырьков.

При разборе запомните, какая пара куда подключена. Эти штырьки могут находиться как с одной стороны платы, так и с разных сторон.

Всего у вас должно быть 4 контакта, куда вам и следует подпаять в дальнейшем провода.

Ну и естественно не забываем про питание 220В. Это те самые жилки, которые идут от цоколя.

Все что нужно сделать далее, это припаять по два проводника к каждому контакту на плате (от бывших нитей накала трубок) и вывести их к боковым штырькам лампы дневного света.

То есть, отдельно два провода справа и два провода слева. После чего, остается только подать напряжение 220В на схему энергосберегайки.

Лампочка дневного света будет прекрасно гореть и нормально работать. Причем для запуска вам даже не нужен стартер. Все подключается напрямую.

Если стартер в схеме присутствует, его придется выкинуть или зашунтировать.

Запускается такой светильник моментально, в отличие от долгих морганий и мерцаний привычных ЛБ и ЛД моделей.

Какие есть недостатки у такой схемы подключения? Во-первых, рабочий ток в энергосберегайках при равной мощности, меньше чем у линейных ламп дневного света. Чем это чревато?

А тем, что выбрав экономку равной или меньшей по мощности с ЛБ, ваша плата будет работать с перегрузкой и в один прекрасный момент бабахнет. Чтобы этого не случилось, мощности плат от экономок в идеале должны быть на 20% больше, чем у ламп дневного света.

То есть, для модели ЛДС на 36Вт, берите плату от лапочки на 40Вт и выше. Ну и так далее, в зависимости от пропорций.

Если вы переделываете светильник с одним дросселем на две лампочки, то учитывайте мощности обеих.

Почему еще нужно брать именно с запасом, а не подбирать мощность КЛЛ равную мощности ламп дневного света? Дело в том, что в безымянных и недорогих лампочках КЛЛ, реальная мощность всегда на порядок меньше заявленной.

Поэтому не удивляйтесь, когда подключив к старому советскому светильнику ЛБ-40, плату от китайской экономки на те же самые 40Вт, вы в итоге получите негативный результат. Это не схема не работает — это качество товаров из поднебесной не соответствует «железобетонным» советским гостам.

Если вы все таки намерены собрать более сложную конструкцию, при помощи которой запускаются даже сгоревшие линейные светильники, то давайте рассмотрим и такие случаи.

Самый простейший вариант — это диодный мост с парой конденсаторов и подключенная последовательно в цепь в качестве балласта, лампочка накаливания. Вот схема такой сборки.

Главное преимущество ее в том, что подобным образом можно запустить светильник не только без дросселя, но и перегоревшую лампу, у которой вообще нет целых спиралей на штырьковых контактах.

Для трубок мощностью 18Вт подойдут следующие компоненты:

    диодный мост GBU408

    конденсатор 2нФ (до 1кв)
    конденсатор 3нФ (до 1кв)
    лампочка накаливания 40Вт

Для трубок в 36Вт или 40Вт емкости конденсаторов следует увеличить. Все элементы соединяются вот таким образом.

После чего схемка подключается к лампе дневного света.

Вот еще одна подобная бездроссельная схема.

Диоды подбираются с обратным напряжением не менее 1kV. Ток будет зависеть от тока светильника (от 0,5А и более).

В данной схеме при сгоревшей лампе двойные штырьки на концах замыкаются между собой.

Подбор компонентов в зависимости от мощности лампы, делайте ориентируясь на табличку ниже.

Если лампочка целая, перемычки все равно устанавливаются. При этом не требуется предварительный разогрев спиралей до 900 градусов, как в исправных моделях.

Электроны необходимые для ионизации, вырываются наружу и при комнатной температуре, даже если спираль и перегорела. Все происходит за счет умноженного напряжения.

mahnem-ru.ru

Люминесцентные лампы как подключить. Подключение люминесцентных ламп без дросселя и стартера

Лампы дневного света (ЛДС) — это первые экономичные приборы, которые появились после традиционных светильников с нитью накаливания. Они относятся к газоразрядным устройствам, где обязательно требуется элемент, ограничивающий мощность в электрической цепи.

Назначение дросселя

Дроссель для ламп дневного света управляет напряжением, подаваемым на электроды лампы. Кроме того, у него есть следующие назначения:

  • защита от скачков напряжения;
  • разогрев катодов;
  • создание высокого напряжения для запуска лампы;
  • ограничение силы электрического тока после пуска;
  • стабилизация процесса горения лампы.

Для экономии дроссель подключается на две лампы.

Принцип действия электромагнитного пускорегулирующего устройства (ЭмПРА)

Первая которая была создана и применяется до сих пор, включает элементы:

  • дроссель;
  • стартер;
  • два конденсатора.

Схема лампы дневного света с дросселем подключается в сеть на 220 В. Все детали, соединенные вместе, называются электромагнитным балластом.

При подаче питания замыкается цепь вольфрамовых спиралей лампы, и включается стартер в режиме тлеющего разряда. Через лампу ток пока не проходит. Нити постепенно разогреваются. Контакты стартера в исходном состоянии разомкнуты. Один из них выполнен биметаллическим. Он сгибается при нагревании от тлеющего разряда и замыкает цепь. При этом ток возрастает в 2-3 раза и катоды лампы разогреваются.

Как только замкнутся контакты стартера, разряд в нем прекращается и начинает остывать. В результате подвижный контакт размыкается и происходит самоиндукция дросселя в виде значительного импульса напряжения. Его достаточно, чтобы электроны пробили газовую среду между электродами и лампа зажглась. Через нее начинает проходить номинальный ток, который затем снижается в 2 раза по причине падения напряжения на дросселе. Стартер постоянно остается в выключенном состоянии (контакты разомкнуты), пока ЛДС горит.

Таким образом, балласт запускает лампу и в дальнейшем поддерживает ее в активном состоянии.

Достоинства и недостатки ЭмПРА

Электромагнитный дроссель для ламп дневного света отличается низкой ценой, простотой конструкции и высокой надежностью.

Кроме того, имеются недостатки:

  • пульсирующий свет, приводящий к усталости глаз;
  • до 15 % теряется электроэнергия;
  • шумы в момент запуска и при работе;
  • лампа плохо запускается при низкой температуре;
  • большие размеры и вес;
  • длительный запуск лампы.

Обычно гудение и мерцание лампы происходят при нестабильном питании. Балластники производят с разными уровнями шума. Чтобы его уменьшить, можно выбрать подходящую модель.

Лампы и дроссели подбираются равными друг другу по мощности, иначе срок службы светильника значительно сократится. Обычно их поставляют в комплекте, а замену балласта делают устройством с теми же параметрами.

В комплекте с ЭмПРА стоят недорого, и для них не нужна настройка.

Для балластника характерным является потребление реактивной энергии. Для снижения потерь параллельно сети питания подключается конденсатор.

Электронный балласт

Все недостатки электромагнитного дросселя необходимо было устранить, и в результате исследований был создан электронный дроссель для ламп дневного света (ЭПРА). Схема представляет собой единый блок, производящий запуск и поддерживание процесса горения путем формирования заданной последовательности изменения напряжения. Подключить его можно с помощью прилагаемой к модели инструкции.

Дроссель для ламп дневного света электронного типа имеет достоинства:

  • возможность мгновенного запуска или с любой задержкой;
  • отсутствие стартера;
  • отсутствие моргания;
  • повышенная светоотдача;
  • компактность и легкость устройства;
  • оптимальные режимы работы.

ЭПРА дороже электромагнитного устройства из-за сложной электронной схемы, которая включает фильтры, коррекцию коэффициента мощности, инвертор и балласт. В некоторых моделях устанавливается защита от ошибочного запуска светильника без ламп.

В отзывах пользователей говорится об удобстве применения ЭПРА в энергосберегающих ЛДС, которые встраиваются непосредственно в цоколи для обычных стандартных патронов.

Как запустить люминесцентную лампу с помощью ЭПРА?

При включении от электронного балласта на электроды подается напряжение, и происходит их разогрев. Затем на них поступает мощный импульс, зажигающий лампу. Он образуется путем создания колебательного контура, входящего в резонанс перед разрядом. Таким путем хорошо подогрев

dudley.ru

Подключение лампы дневного света без дросселя

Вошедшие в моду лампы дневного света имеют один большой недостаток, они, как и обычные лампочки, иногда перегорают. Часто сгорает электронная начинка балласта, выходит из строя дроссель или стартер, а иногда сгорают и нити накала самой люминесцентной трубки. Но явным преимуществом люминесцентной лампы есть то, что их можно использовать даже со сгоревшими нитями накала. Также можно с легкостью обыгрывать стандартные схемы подключения и избавляться от компонентов, которые неисправны.

Подключение лампы дневного света без дросселя

Такую схему можно применять даже к сгоревшим трубкам дневного света. Нить накала в такой схеме не используется, а сама трубка питается повышенным постоянным напряжением через диодный мост.

Поскольку питание трубки производиться постоянным током, со временем она сильно начнет темнеть с одной из своих сторон.





Подключение ламп дневного освещения без дросселя и стартера имеют очень простую схему и ее легко можно воссоздать из старых компонентов. Для эксперимента схема собрана на трубке дневного света мощностью 18 Вт, в роли диодного моста выступает сборка GBU 408, а конденсаторы используются емкостью 2 и 3 нФ с рабочим напряжением до 1000 В.

При включении более мощных трубок емкость конденсаторов стоит увеличить. Подключенная последовательно диодному мосту лампочка имеет мощность 40 Вт.

Внимание! Конденсаторы и диоды в диодном мосту необходимо подбирать с запасом по напряжению.

Собранная схема начинает работать сразу же, яркость свечения трубки невысокая, заметно ниже, чем при включении ее в обычную схему.

Схема подключения люминесцентных ламп без стартера

Принципиально эта схема ничем особо и не отличается от предыдущего описания. Вместо лампы последовательно подключен обычный дроссель.

Как и в предыдущей схеме, лампа моментально загорается, но яркость ее свечения гораздо выше.

Подключение лампы дневного света без дросселя и стартера не панацея. Со временем трубка в любом случае рано или поздно перестанет излучать свет, а экономия электричества в этих схемах желает лучшего. В таких случаях только вам решать стоит ли продлевать жизнь умершим светильникам дневного света или бежать в магазин за новыми.

VK

Facebook

Twitter

Odnoklassniki

comments powered by HyperComments

diodnik.com

Лампа дневного света без стартера

категория
Радиосхемы для дома
материалы в категории

Люминесцентные лампы (или как мы еще привыкли их называть Лампа дневного света) зажигаются при помощи разряда, создаваемого внутри колбы.
если кому интересно узнать об устройстве такой лампы- о их преимуществах и недостатках то можете заглянуть в эту статью.

Для того чтобы получить высоковольтный разряд применяются специальные приспособления- балластные дроссели управляемые стартером.
Работает это примерно так: внутри фурнитуры лампы размещается дроссель и конденсатор которые образуют колебательный контур. Последовательно с этим контуров устанавливается стартер- неоновая лампа с небольшим конденсатором. При  прохождении тока через неоновую лампу в ней возникает электрический пробой, сопротивление лампы падает практически до нуля, но она практически сразу-же начинает разряжаться через конденсатор. Таким образом стартер хаотично открывается-закрывается и в дросселе возникают хаотичные колебания.
За счет ЭДС самоиндукции эти колебания могут иметь амплитуду до 1000 Вольт, они-то и служат источником высоковольтных импульсов зажигающих лампу.

Данная конструкция применяется в быту уже много лет и имеет целый ряд недостатков- неопределенное время включения, износ нитей накала ламп и огромный уровень радиопомех.

Как показывает практика, в стартерных устройствах (упрощенная схема одного из них приведена на рис. 1) наибольшему нагреву подвергаются участки нитей накала, к которым подводится сетевое напряжение. Здесь зачастую нить перегорает.

Более перспективны — без стартерные устройства зажигания, где нити накала по своему прямому назначению не используются, а выполняют роль электродов газоразрядной лампы — на них подается напряжение, необходимое для поджига газа в лампе.

Вот, к примеру, устройство, рассчитанное на питание лампы мощностью до 40 Вт (рис. 2). Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ — через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться — ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.

В этом и последующих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к «своей» цепи — тогда в светильнике будет работать даже лампа с перегоревшими нитями.

Схема другого варианта устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 3. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А «пусковые» конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой — СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. 4. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов — этому способствуют диоды VD1,VD2.

Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

Несколько лучший вариант питания мощной люминесцентной лампы — использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис. 5. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

В рассмотренных устройствах используются диодные мосты КЦ405А или КЦ402А, а также выпрямительные диоды КД243Г-КД243Ж или другие, рассчитанные на ток до 1 А и обратное напряжение 400 В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы — МБМ, К42У-2, К73-16. Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 — для лампы мощностью 20 Вт, 1УБИ40 — 40 Вт, 1УБИ80-80ВТ). Вместо одной лампы мощностью 40 Вт допустимо включить последовательно две по 20 Вт.

Часть деталей узла монтируют на плате из одностороннего фольгированного стеклотекстолита, на которой оставлены площадки для подпайки выводов деталей и соединительных лепестков для подключения узла к цепям светильника. После установки узла в корпус подходящих габаритов его заливают эпоксидным компаундом.

Похожий материал:
 Вечная люминесцентная лампа
Восстановление ламп дневного света
Ремонт энергосберегающих ламп самостоятельно

radio-uchebnik.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *