Posted on

Содержание

Почему горячий воздух вбирает больше воды — Про стройку и не только

9 Май by admin Каждый из нас знает знаменитое утверждение: «батареи сушат воздух». Так говорят все: от бабушек возле подъезда до известных специалистов, вроде доктора Комаровского: «Любая система отопления сушит воздух» (несмотря на это я его все равно очень уважаю).

Тем не менее самые элементарные знания из области физики позволяют этот миф опровергнуть. Да, батареи отлично справляются с сушкой вещей, то есть переводят воду из жидкого состояния в газообразное. А как батареи могут сушить воздух?

Правильно, никак. Для того, чтоб «осушить» воздух, нужно забрать находящуюся в нем влагу. Ни одна из известных мне систем отопления не обладает такими функциями.

В то же время факт остается фактом: зимой воздух в отапливаемых помещениях намного суше, чем летом.

Так кто же ворует воду из воздуха? Давайте проведем следственный эксперимент.

В абсолютно упругую обычную комнату запустим воздух с улицы. Предположим, сейчас на улице один градус тепла и относительная влажность воздуха 50%.

Итак, начальные параметры воздуха в комнате таковы:

Температура: 1 °C
Максимально возможная абсолютная влажность воздуха при такой температуре: 5 г/м³ (воздух при такой температуре просто не может содержать больше влаги, иначе она начнет конденсироваться).
Текущая абсолютная влажность: 2,5 г/м³ (т.е. в одном кубометре воздуха содержится два с половиной грамма воды).
Относительная влажность: 50% (считается просто: текущая абсолютная влажность / максимальная абсолютная влажность * 100%) .

Рекомендуемая относительная влажность воздуха в помещении — 40–60%, т.е. наши 50% вполне приемлемы для жизни. В отличие от температуры в 1 градус. Давайте нагреем до 21 °C. Теперь:

Температура: 21 °C
Максимально возможная абсолютная влажность воздуха при такой температуре:

18 г/м³ (чем теплее воздух, тем больше влаги в нем может содержаться).
Текущая абсолютная влажность: 2,5 г/м³ (количество воды в воздухе не изменилось).
Относительная влажность: 14%.

Как видим, батареи полностью реабилитированы. Влажность украл сам воздух, который при повышении температуры становится более «прожорливым».

Source: badevlad.livejournal.com

vse-pro-stroyku.sqicolombia.net

Почему в бойлере скапливается воздух, и как его удалить: причины и устранение неполадок

От автора: привет, читатели! Водонагреватели давно уже стали неотъемлемой частью практически любого жилища. Даже во многоквартирных домах, которые подключены к централизованной системе горячего водоснабжения, бойлер иногда является настоящим спасением. Во время окончания отопительного сезона, а также в рамках подготовки к новому очень часто начинают проводиться различные профилактические работы: делаются опрессовки, устраняются прорывы и т. д. Сидеть все это время без горячей воды не слишком комфортно.

Что уж говорить про частные дома, в которых вообще нет возможности подключения к централизованному горячему водоснабжению. В общем, во многих случаях водонагреватель просто необходим для того, чтобы обеспечить людям необходимый уровень комфорта. К счастью, это оборудование становится все более доступным. Но после покупки не всегда получается ему радоваться, ведь иногда возникают различные неполадки, которые весьма озадачивают неопытного хозяина. Например, один из самых часто встречающихся вопросов — почему в бойлере скапливается воздух?

Симптом этого явления, как правило, один — когда вы открываете кран на смесителе, горячая вода из него как бы «выплевывается» толчками, поскольку вместе с ней выходит воздух. Причин тому может быть несколько. Сегодня рассмотрим основные из них, а также то, как спустить воздух из водонагревателя.

Возможные причины

Воздух может попасть в бойлер несколькими способами. Первый из них довольно прост — это наличие протечки где-то в системе водоснабжения. Конечно, зачастую данная проблема очевидна. Если вы периодически видите лужу на полу в одном и том же месте, это явно говорит о нарушении герметичности соответствующего сегмента трубопровода.

Но бывает и так, что протечка расположена в скрытом месте — например, прохудилось соединение труб, расположенное в полу или в стене. Или же она настолько мала, что вода выделяется буквально по чуть-чуть, но воздух при этом все же успевает попадать внутрь.

В первом случае найти место разгерметизации, конечно, довольно сложно. Именно поэтому рекомендуется еще при монтаже скрытой разводки обустроить возможность доступа к основным узлам. В противном случае, для поиска нужного места вам придется разбирать все это дело.

Что касается второй ситуации — то есть наличия совсем слабой протечки — то найти ее можно с помощью обычной туалетной бумаги. Та хорошо впитывает воду, поэтому будет видна даже малейшая капля. Просто приложите бумагу поочередно к каждому месту соединения элементов и внимательно осматривайте ее после каждого действия.

Если проблема действительно заключается в протечке, то выход очевиден. Ее нужно устранить, избавившись таким образом и от опасности прорыва, и от дальнейшего скопления воздуха в водонагревателе.

Если же причина не в протечке, то это может говорить о неполадках в работе обратного клапана. Этот элемент предназначен для того, чтобы уже нагревшаяся в бойлере вода шла строго по нужному маршруту. В противном случае она пойдет в общий стояк, тем самым провоцируя образование в бойлере большого количества воздуха.

Как правило, обратный клапан входит в комплектацию водонагревателя. Но в дешевых моделях зачастую используются не самые качественные элементы. Поэтому клапан может выйти из строя. Решение проблемы одно — замена элемента.

Третья причина наличия воздуха в водонагревателе предельно проста — вы только что установили бойлер. Естественно, поначалу бак заполнен воздухом, а не водой. Чтобы избежать проблем при дальнейшем использовании оборудования, его нужно правильно запустить. Делается это в определенной последовательности.

  1. С помощью запорного вентиля перекройте подачу воды из системы горячего водоснабжения.
  2. Откройте «горячий» кран на смесителе, чтобы удалить из трубы остатки воды. Затем закройте его.
  3. К нижней панели бойлера подключено две трубы. Одна предназначена для холодной воды и обозначается синим цветом. Вторая раздает горячую — маркировка, соответственно, красная. Откройте вентиль на «холодной» трубе, а затем на «горячей».
  4. Теперь снова откройте «горячий» кран на смесителе. Сначала из гусака пойдет воздух вперемешку с водой. Его нужно полностью выпустить из водонагревателя. Как только гусак перестал «плеваться», и вы увидели, что из него идет ровная струя, кран можно закрыть.
  5. Вот теперь включаем бойлер в сеть, устанавливаем нужный режим и ждем, когда вода наберется и нагреется. После этого можно полноценно наслаждаться теплым душем.

Как вы понимаете, если в бойлере есть воздух, нужно не только его выгнать, но и устранить причину данного явления. Только в этом случае водонагреватель будет приносить вам настоящий комфорт, служить долго и качественно. Успехов!

seberemont.ru

Правда ли, что батареи «сушат» воздух — Wonderzine

Текст: Адэль Мифтахова

ОТВЕТЫ НА БОЛЬШИНСТВО ВОЛНУЮЩИХ НАС ВОПРОСОВ мы привыкли искать онлайн. В новой серии материалов задаём именно такие вопросы: животрепещущие, неожиданные или распространённые — профессионалам в самых разных сферах.

Вопрос эксперту:
Правда ли, что батареи «сушат» воздух. Изображение № 1.

Когда батареи начинают работать, кремом мазаться хочется всё чаще, а пить — всё больше. Принято считать, что отопление делает воздух суше: раз мокрые варежки высыхают на батарее, то и эффект на воздух должен быть похож. При этом по законам физики холодный воздух суше горячего. Как же дела обстоят на самом деле? Мы узнали у экспертов.

кандидат технических наук

Воздух может удерживать в себе определённое количество водяного пара — и это количество называется абсолютной влажностью. Она зависит от температуры: чем теплее воздух, тем больше водяного пара он может удержать, то есть абсолютная влажность растёт по мере повышения температуры. Например, при температуре 20 градусов в одном кубометре воздуха может находиться максимум 17 грамм воды в виде пара, а при температуре 0 градусов — около 5 грамм. 

Другая мера содержания влаги в воздухе — «относительная влажность». Этот параметр измеряется в процентах и показывает, сколько в воздухе содержится воды от максимально возможного при данной температуре количества. Если проще, то это разница между тем, насколько воздух влажный сейчас, и тем, настолько влажным он может быть при данной температуре. Именно относительная влажность сказывается на наших ощущениях: чем она ниже (то есть чем больше разница между максимально возможной и фактической влажностью), тем более сухим ощущается воздух.

Так что же происходит зимой и почему воздух в помещениях в холодный период становится суше? Дело в том, что зимой «уличный» воздух сильно охлаждён и может удерживать в себе лишь небольшое количество воды. Когда он попадает в помещение (а он всегда попадает, иначе вам было бы нечем дышать), он нагревается и становится способен удержать в себе больше воды — но её фактическое содержание не меняется. В результате разница между тем, сколько воды он может удержать, и тем, сколько в нём есть сейчас, становится больше, то есть относительная влажность падает, и воздух воспринимается как более сухой.

Если воздух содержит максимальное количество влаги для текущей температуры, то относительная влажность равна 100 %. Представьте себе, что на улице ноль и воздух со стопроцентной влажностью попадает в тёплую комнату. Фактическое содержание воды в нём не меняется, но после нагрева до комнатной температуры падает относительная влажность — она составит всего 27 %. Из-за этого вода из кожи начинает испаряться, а у нас возникает ощущение сухости. Получается, что разница температур в связи с отоплением и правда приводит к снижению абсолютной влажности воздуха, хотя и косвенно. 

автор блога «Don’t touch my face»

Как сказал Василий, воздух во многом становится суше из-за инфильтрации, то есть проникновения воздуха с улицы. Но это не значит, что нужно герметично заклеивать окна, чтобы его избежать. Наоборот, помещения нужно часто проветривать, особенно если кто-нибудь в доме болеет, да и изолировать все мельчайшие щели просто не получится. 

Что можно делать, чтобы сделать свою жизнь комфортнее? Во-первых, очень поможет увлажнитель воздуха. Благодаря ему кожа и слизистые будут испарять меньше воды, и это поможет справиться с ощущением обезвоженности или чувством песка в глазах по утрам. Правда, важно убедиться, что в квартире нет холодных непроветриваемых областей — вроде участка стены за шкафом. При дополнительном увлажнении воздуха в таких местах вода начнёт конденсироваться, и может даже начать расти плесень.

Во-вторых, помогает интенсивное увлажнение, и ухаживающие средства нужно наслаивать. Увлажняющие компоненты делятся на водоудерживающие и запирающие. Первые — это те, которые насыщают кожу водой. Это глицерин, гиалуроновая кислота, мочевина, бутиленгликоль и так далее. Средства с ними обычно очень жидкие — всевозможные тоники, лосьоны, эссенции, сыворотки. На упаковках нужно искать надписи вроде «hydrating», «moisturizing», «aqua» и так далее — в общем, всё, что связано с водой.

Запирающие ингредиенты — это масла, маслоподобные вещества и силиконы. Они создают своеобразный барьер, из-за которого вода из кожи испаряется медленнее. Средства с ними могут быть в формате кремов, бальзамов или масел. Зимой особенно полезно выбирать те, на которых написано «barrier repair» и «replenishing». Они не только запирают воду в коже, но и помогают поддерживать собственные защитные функции кожи.

Порядок действий такой: сначала на влажную кожу нужно нанести средство с водоудерживающими компонентами. Кожа должна быть влажной, чтобы водоудерживающим компонентам было откуда взять воду. Если в ванной и так влажный воздух, то это не требуется — хотя и не повредит. Если наносить такие средства на сухую кожу в сухом воздухе, то увлажнять они будут не кожу, а воздух. Потом, когда первое средство почти полностью впитается, нужно нанести свой обычный крем, в котором много запирающих компонентов.

Едва ли кто-то будет наносить два средства на тело, поэтому тут рекомендация такая: нужно использовать как можно более мягкий гель для душа, желательно из линий для сухой и атопичной кожи. А сразу после ещё на влажную кожу наносить любой крем, которым вы пользуетесь. Нужно только, чтобы в нём были оба вида увлажняющих компонентов.

Фотографии: RTimages — stock.adobe.com, Rozetka

www.wonderzine.com

ГРАВИТАЦИЯ » Теплый воздух легче холодного

Бессмысленно продолжать делать то же самое и ждать других результатов (Эйнштейн)

Теплый воздух легче холодного

Рис. 1. Условно показана молекула кислорода на рычажных весах (детские качели) при разных температурах окружающей атмосферы. a – из наблюдений; b – по Эйнштейну.

Зададимся вопросом в стиле Якова Перельмана: какой воздух тяжелее холодный или теплый? После этого посмотрим ответы на форуме в интернете (ответы обозначены цифрами): 1) теплый; 2) холодный;3) холодный конечно; 4) тёплый воздух поднимается вверх, он легче; 5) холодный, поэтому он внизу всегда; 6) конечно теплый!; 7) тяжелей холодный, он опускается вниз, а теплый поднимается, значит легче; 8) тяжелее влажный воздух!; 9) холодный, вспомни, когда зимой открываешь форточку; 10) это и в садике знают, что тёплый легче, поэтому вверх стремится.

На тяжесть холодного воздуха ставок гораздо больше.

Мы народ северный и нас на таком вопросе не проведешь, открывая зимой форточку, наблюдаем, как холодный воздух буквально врывается в комнату, падает вниз к нашим ногам и расстилается по полу комнаты. А может он хочет нам поклониться за широкое гостеприимство? Не знаю, но это подтверждается визуально, когда холодный воздух, увлекая частицы пара, превращает их в видимый шлейф при конденсации. После чего выносится вердикт: холодный воздух тяжелее теплого, поэтому он устремляется вниз. Очередная зима, подкрепляет наши наблюдения и укрепляет правоту сказанного. Объясняем мы это плотностью – холодный воздух более плотный, теплый более разреженный.

Иногда для объяснения притягивают влажность воздуха. Поскольку, в зимний период на улице влаги больше, то влажный воздух должен весить якобы больше. Воздух – это смесь газов, состоящая на три четверти из азота и почти на четверть из кислорода и некоторого количества водяного пара. Количество остальных газов пренебрежимо мало, их не учитываем. Средняя молекулярная масса воздуха 29, молекулярная масса водяного пара 18. Об этом говорит и, упомянутый выше, Я. Перельман: «При одинаковом давлении и температуре кубометр влажного воздуха не тяжелее, а легче, чем кубометр сухого воздуха

» [1].

Для выяснения сути данного явления в бытовых условиях можно пойти в баню, и пока не вспотели, понаблюдать за движением пара. Кто в баню не ходит пусть поставит эксперимент на своей кухне и нагреет кастрюлю с водой. Как только кастрюля закипит, пар с завихрениями устремится вверх, под купол вытяжной вентиляции. В бане этот процесс выражен еще более контрастно, первый ковш воды, брошенный на раскаленные камни, выбрасывает вверх белый шлейф пара. Мы видим восходящий паровой поток, который буквально вонзается в потолок, растекается по нему, стараясь его приподнять, и, постепенно охлаждаясь, начинает оседать, а затем конденсироваться на холодных металлических трубах.

По сравнению с окружающим воздухом пар перегрет, поэтому его молекулы более энергонасыщены.

Можно ли доверять нашим органолептическим органам? Для начала необходимо разобраться, почему холодный воздух уплотняется?

2. Почему плотность холодного воздуха больше чем теплого?

На самом ли деле теплый воздух легче холодного. Давайте проверим это утверждение и взвесим две молекулы кислорода теплую, при температуре +20º С и холодную, при температуре 0º С. Но как это сделать, на каких весах измерить разницу веса между молекулами? Судя по рисунку, автору удалось это сделать с помощью рычажных весов (детской качели).

Трудность заключается еще и в том, что мы не сможем в земных условиях точно оценить вес даже, заключенных в оболочку, достаточно больших одинаковых объемов воздуха. Оценке мешает эффект плавучести (статья «Гравитационная температура»). Остается одно, разобраться с этим явлением с энергетической точки зрения. Если мы возьмем молекулы одного и того же газа, но при разных температурах, то понятно, что молекула, имеющая более высокую температуру, будет более энергонасыщена и будет иметь более высокую скорость перемещения.

А за счет какой энергии вообще молекулы перемещаются? Классическая молекулярно-кинетическая теория на этот вопрос не дает вразумительного ответа. Этот физический процесс был основательно исследован в главе «Броуновское движение». Молекулы двигаются благодаря энергии импульсов придачи «вперед за снарядом». Под действием этих импульсов электромагнитного крафонного (краснофотонного) излучения, молекулы пара стремительно разлетаются в разные стороны, но в большей степени вверх (область пониженного давления), тем самым, разреживая и освобождая пространство, в которое устремляется новые молекулы. Те, в свою очередь, поступают как первые. Тем самым мы видим восходящий поток пара. Этот процесс в динамике идет по нормали до первой преграды – потолка.

Попутно еще один вопрос: за счет чего уплотняется холодный воздух?

Конвективные перемещения осуществляются за счет разности давлений, разности температур и гравитации. Холодный воздух из открытой форточки непрерывным потоком падает на пол нашей комнаты. Да, температура холодного воздуха ниже, чем теплого и что из этого следует? Ранее было выяснено, что гравитация квантуется, т.е. передается импульсами. Количество этих импульсов гравитационного излучения земли и нашего пола распределяется по всей поверхности примерно одинаково. Тогда остается излучение самих молекул воздуха. Молекулы имеют маленькую массу и охотно отзываются на собственный импульс придачи, после чего устремляются в том же направлении отстрела этого импульса. Статистически у теплых молекул частота излучения выше, чем у холодных. Они чаще отстреливают свои импульсы в пространство, где меньше давление, поэтому теплые молекулы летят в сторону потолка, освобождая место холодным. Получается, за счет этого электромагнитное, гравитационное излучение земли подтягивает к полу в большей степени холодный воздух, соответственно, теплый выталкивается вверх. Холодные молекулы имеют меньшую скорость, поэтому находятся в более плотном состоянии. Вот по такой технологии идет конвекция в любой газовой среде.

Теплый воздух в комнате выходит из температурного равновесия и постепенно внедряется в ряды холодного, отдавая часть своей теплоты.

3. Эйнштейн против Клайперона и Менделеева

Теплый воздух легче холодного

Рис. 2. На рисунке условно показано равное количество молекул азота (1) и молекул кислорода (2), находящихся при разных температуре и занимающих не равные объемы. a – при высокой температуре; b – при низкой температуре.

Обычно объясняют, что холодный воздух выталкивает теплый и тот поднимается вверх. На самом деле никто никого не толкает и не выталкивает. Весь воздух подвержен притяжению Земли и эта энергия его подпитывает. В зависимости от энергонасыщенности происходит температурная сегрегация по высоте расположения. Молекулы теплого воздуха имеют большую скорость перемещения, они разлетаются на большие расстояния, происходит больше столкновений между ними и они занимают больший объем (рис. 2а).

А теперь для доказательства равенства масс молекул, находящихся под разным тепловым потенциалом, я призвал на помощь два уравнения из классической физики.

1) уравнение состояния для идеального газа Клайперона-Менделеева.

Теплый воздух легче холодного                                                                                                                                (1)

Теплый воздух легче холодного                                                                                                                                  (2)

Где, m – масса газа, P – давление, V – объем, M – молярная масса, R – универсальная газовая постоянная, Т – температура.

Замечание, сейчас принято обозначать температуру греческой буквой Θ (Тэта). Чтобы не нарушать написание известной формулы оставим символ Т.

Из (2) видно, что при повышении температуры, увеличивается

V (при постоянном давлении P). При этом масса газа (воздуха) остается постоянной.

2) Уравнение Эйнштейна. Энергия излучения связана с его массой.

E=mc2                                                                                                                     (3)

m=E/c2                                                                                                                     (4)

Подставив в формулы (3, 4) реальные значения, можно убедиться без лишних доказательств, что кубовый объем газа, имеющий меньшую энергию Е (температуру и скорость молекул) будет иметь и меньшую массу.

Тогда можно заключить, что холодный воздух легче теплого, и должен подниматься вверх, а он падает вниз. Вот где нелогичная конвекция и Эйнштейн против Клайперона и Менделеева.

В чем же дело? А дело в серьезном разбирательстве, связанном со знаменитой формулой. Если в расчете использовать формулу (3), то килограммовый куб воздуха будет иметь энергию 9·1016 Дж. Данная величина приблизительно равна электрической энергии 3∙1010 кВт∙ч! Такое количество электроэнергии потребляют США за один день! Невероятно, но где энергия? А ее, увы, не видно.

Этому разбирательству посвящена отдельная статья под названием: «Энергия покоя». А сейчас, чтобы выбраться из создавшейся коллизии введем в данное уравнение энергетический коэффициент GE.

Теплый воздух легче холодного

T – температура тела в Кельвинах

Tmax – максимально возможная температура вещества в природе.

E=GE·mc2                                                                                                                 (5)

Отсюда масса

Теплый воздух легче холодного                                                                                                                                  (6)

Теплый воздух легче холодного                                                                                                                                  (7)

Используя в расчетах уравнение (7) можно убедиться, что при прочих равных условиях, массы холодного и теплого воздуха будут равны. Такой же расчет дает по формуле (2) Клайперона-Менделеева и противостояние с Эйнштейном прекращается. И что самое главное, энергия газового куба снижается до удобоваримого значения, на десять порядков! Все расчеты привели меня к заключению, что уравнение Эйнштейна не общее, а частное, для максимального значения температуры при GE=1.

Электромагнитное, крафонное излучение Земли постоянно мониторит пространство и подтягивает атмосферу с паром вниз, но теплый воздух всегда оказываются наверху. Это происходит потому, что холодные молекулы реже отстреливают свои крафоны придачи в окружающее пространство из-за их меньшей энергонасыщенности.

Теплый воздух в комнате находится в термодинамическом равновесии, поэтому его молекулы продолжают хаотично двигаться, постепенно внедряясь в ряды холодного, отдавая часть своей теплоты.

Несмотря на то, что холодный воздух находится всегда внизу, масса теплых и холодных молекул остается одинаковой.

Конвективные перемещения в жидкости можно объяснить аналогичным способом.

Объемная плотность газа существенно зависит от температуры газа.

Как было указано выше, более горячий газ устремляется вверх не из-за его легкости, а по причине поднятия молекул за счет крафонного излучения. По сути, о какой легкости или тяжести мы говорим, каждая молекула находится во взвешенном состоянии, но не в какой-то среде, а фактически, в вакууме. Равные по массе и одинаковой температуре молекулы будут иметь одинаковый объемный вес. Известно, если охладить кубометр воздуха, то получим 1,2 литра в жидком состоянии. Отсюда вопрос: какое вещество занимает 998,8 литра этого объема воздуха, если мы уберем энергию расширения, то есть теплоту?!

  1. Перельман Я.И., Знаете ли вы физику? «ТЕРРА», М. 2007

Назад   Вперед

gennady-ershov.ru

Воздух в системе горячего водоснабжения дома и трубах, его удаление и сброс

Содержание статьи:

Трубы водоснабжения созданы для транспортировки воды, поэтому воздуху здесь не место. Тем не менее, воздух попадает в трубы. Почему это происходит и чем опасен воздух в системах водоснабжения частных домов? Можно ли предотвратить его проникновение и как удалить воздух из системы водоснабжения?

Чем опасен воздух в водопроводе

  • последствие гидроудара

    последствие гидроудара

    Пузыри воздуха дробят водный поток, доставляя неудобство потребителю. Краны постоянно “плюются”, ведут себя непредсказуемо;

  • Воздушные пробки скапливаются в одних и тех же местах, вызывая быстрое разрушение труб и переходников. В опасности повороты и изгибы труб, где есть возможность задержаться воздушному пузырю;
  • Воздух в трубах водоснабжения может спровоцировать гидроудар. Неприятное явление постепенно разрушает трубы, вызывая продольные трещины. Со временем в поврежденном месте труба лопается. Довольно долго владелец может не замечать разрушения, это основная опасность гидроударов.

Почему появляется воздух в водопроводе

в водопроводной воде содержится воздух

в водопроводной воде содержится воздух

Существует две причины появления воздуха в системе водоснабжения дома:

  • Снаружи. Через негерметичные соединения воздух попадает в трубы;
  • Изнутри. В потоке воды, проходящем по трубам, растворено приблизительно 30 грамм воздуха на 1 тонну воды. Постепенно воздух высвобождается. Чем медленнее течет вода, и чем она горячее, тем процесс идет быстрее. То есть, в системах горячего водоснабжения вероятность появления воздушных пробок выше.

В системах водоснабжения частных домов воздух появляется  по следующим причинам:

  • при падении уровня воды воздух может подсасывать через обратный клапан;
  • плохо затянуты фитинги с резиновыми уплотнителями;
  • в горячих системах водоснабжения наблюдается процесс кавитации: образуется пар, пузырьки воздуха собираются в воде, формируя пустоты или каверны;
  • воздух в трубах водоснабжения остался с первого запуска оборудования.

В воздушных пузырях кислорода на 30% больше, чем в атмосферном воздухе. Этим объясняется высокая окисляющая способность воздуха в системах горячего водоснабжения. Пузыри воздуха могут быть различной формы: сферические – мелкие, не больше 1 миллиметра в диаметре, грибовидные, овальные.

В вертикальных трубах пузыри устремляются вверх или распределяются по всему объему. В горизонтальных магистралях они останавливаются в самых высоких точках, где ведут разрушающую работу.

При скорости воды в трубах более 0,5 метра в секунду пузыри двигаются, не задерживаясь. Когда скорость превышает 1 метр в секунду, пузыри разбиваются на очень мелкие пузырьки. Получается подобие эмульсии из воды и воздуха. Пузыри воздуха в системе водоснабжения частного дома начинают разрушаться при скорости движения жидкости от 0,25 метра в секунду. Если она ниже, пробки могут застаиваться в одних местах довольно долго.

Как избавиться от воздуха в трубах

пример установки стравливателя

пример установки стравливателя

Если воздух в системе водоснабжения частного дома уже есть, но она не оборудована стравливателями, необходимо:

  1. Выключить насосную станцию.
  2. Открыть все сливные краны, сбросить воду и воздух из системы водоснабжения. После чего трубы заполняются опять.

Удалить воздух из системы водоснабжения можно раз и навсегда с помощью стравливающих или спускных приборов:

  • механических клапанов типа клапана Маевского;
  • автоматических воздухоотводчиков;
  • шаровых кранов;
  • вентилей.

Устройство механического клапана для сброса воздуха из системы водоснабжения таково: цилиндрическая коробочка, сверху закрывается крышкой, снизу резьба для подключения к водопроводу. Посередине крышки заглушка на резьбе. Внутри цилиндра подвешивается пластиковый поплавок в форме шарика. Если в системе горячего водоснабжения нет воздуха, шарик поднимается к отверстию в заглушке и под давлением сети плотно его закрывает. Как только в устройство проникает воздух, шарик отходит и воздух выводится. Через стравливатели воздух может проникнуть в систему, что бывает полезным при ремонте или осмотре сетей и ускоряет слив воды.

Удаляющие воздух устройства устанавливаются в определенных местах системы водоснабжения: в самых верхних оконечностях, на поворотах или изломах. То есть там, где повышена вероятность скопления воздуха.

Самодельный воздухонакопитель

В сельских водопроводах нередко вперемежку с водой течет воздух. Пользоваться таким водопроводом тяжело и неудобно, а автоматика не всегда справляется: если воздуха очень много, вода переливается фонтаном прямо из клапана. Поэтому вместо автоматического стравливателя для сброса воздуха в системе водоснабжения устанавливают воздухонакопитель. Его можно сделать самостоятельно, это бак с отводной трубкой и краном. Диаметр накопителя должен быть в 5 раз больше диаметра водопроводной трубы, тогда он сможет эффективно работать.

Воздухонакопитель устанавливается в самой верхней точке водопровода там, где удобно стравливать воздух вручную. Баки для скопления воздуха широко используются в многоэтажных домах в системах горячего водоснабжения.

Автоматические воздухоотводчики

Рисунок 1 - воздухоотводчик постоянного действия, рисунок 2 - переменного действия, рисунок 3 - двойного действия.

1 – воздухоотводчик постоянного действия, 2 – переменного действия, 3 – двойного действия.

Устройства для устранения воздуха из водопроводных систем широко представлены на рынке. Поплавковые клапаны это воздухоотводчики постоянного действия. Они защищают работающую систему от скопления воздуха и газов. Когда давление в системе падает до атмосферного, поплавковый клапан впускает воздух в трубы. Чтобы устранить причину появления воздуха в системе водоснабжения дома дополнительно устанавливается обратный клапан. Есть модели воздухоотводчиков, уже оснащенные обратным клапаном.

Воздухоотводчики пускового действия используются для отвода воздуха во время заполнения системы водой или для запуска воздуха при дренажных работах.

Воздухоотводчики комбинированного действия обладают свойствами обоих описанных ранее устройств.

При выборе воздухоотводчика учитывается объем выпускаемого воздуха. Этот показатель можно найти в характеристиках прибора. Не следует подбирать автоматический воздухоотводчик помощнее. Работая вполсилы, он быстрее износится.

Для корректной работы воздухоотводчика важно рабочее давление в водопроводе и качество жидкости. Если плотность ресурса ниже 960 килограммов на кубометр, устанавливают поплавки специальной конструкции.

Виодеоролик о простейшем воздухоотводчике – клапане Маевского:

strojdvor.ru

Как убрать воздух из системы водоснабжения. Воздушные пробки в водопроводе частного дома

В водоснабжающих сетях воздушные скопления нарушают постоянство и однородность потока жидкости (воды), а также могут вызвать ускоренную коррозию трубопроводов и фитингов. Поэтому очень важно бороться с образованием воздушных пробок и пузырьков. В напорных системах такой газ либо выходит из самой воды, либо заносится из атмосферы при неполной герметичности контура.

Правильно рассчитанный проект и его грамотное исполнение полностью исключают засасывание воздуха, а также не дают ему шанса скопиться в конкретных, постоянных местах (изгибах, поворотах или изломах трубопроводов). Что касается самой жидкости, то на каждую тонну ресурса приходится около 30-ти граммов воздушной смеси. Соответственно, воздух в системе водоснабжения тем активней высвобождается, чем меньше давление и выше температура.

Причины воздушных пробок в трубах

Такой побочный продукт содержит примерно 32% кислорода, то есть здесь окисляющего вещества на треть больше, чем в атмосфере. Свободно выраженная форма этих скоплений неодинакова. Сферическими можно считать лишь пузырьки до 1 мм. Большее количество может иметь эллипсоидную или грибовидную топологию. На вертикальных участках стояков водоснабжения воздушно-газовые включения поднимаются вверх или пребывают во взвешенном виде. В горизонтальных трубопроводах они всегда «прилипают» к стенкам в наивысшей точке, что может создать кондиции для активного ржавления труб

Когда скорость воды начинает превышать ½ м/с, воздушные скопления начинают двигаться вместе с ней. Если жидкость течёт в контуре быстрее 1 м/с, то воздух в системе водоснабжения разрывается на мельчайшие капсулы и создаётся некая эмульсия из газа и жидкости. Практические наблюдения выявили, что минимальная скорость разрушения подобных скоплений в водопроводе около ¼ м/с. При меньшей интенсивности прохождения потока воздушные пробки в состоянии держаться продолжительное время в одних и тех же участках, что нежелательно.

Воздушно-газовая смесь может не только высвобождаться из воды, но и взаимодействовать с ней, а при необходимой скорости полтока — разрушаться или выходить наружу.

Для избавления от воздушных скоплений применяют различные приборы спускного/стравливающего характера. Это и автоматические спускники воздуха, и механические клапана (к примеру, «кл

ayunova.ru

Выгоняем воздух из водяного теплого пола правильно

 

Скопление воздуха в системе отопления препятствует ее правильному функционированию. Если не удалить его вовремя, ухудшатся эксплуатационные показатели. В таких условиях увеличивается вероятность поломок дорогостоящего оборудования. Чтобы исключить ненужные риски и лишние затраты, надо знать, как самому прокачать теплый пол. Методика достаточно проста, поэтому в большинстве случаев обращение к профильным специалистам не требуется.

Проверку и устранение неисправностей следует выполнить до начала регулярного отопительного сезонаПроверку и устранение неисправностей следует выполнить до начала регулярного отопительного сезонаПроверку и устранение неисправностей следует выполнить до начала регулярного отопительного сезона

Как появляются проблемы

 

В частях системы, которые подключены к радиаторам, обнаружить неполадки можно быстро. Они расположены в помещениях, поэтому при прохождении воздуха слышны шумы. На ощупь определяют пониженную температуру отдельных участков батарей, где образовались газовые «пробки».

Но трубопровод, скрытый в глубине бетонной стяжки, хорошо изолирован. Если шкаф с коллекторной гребенкой и насосом установлен вдали от жилых комнат, посторонние звуки не будут слышны. Неисправности выявляют по существенной разнице нагрева в разных контурах.

В следующем перечне приведены причины, которые способствуют проникновению воздуха в теплоноситель:

  • Замена кранов, других элементов системы;
  • Неисправное состояние автоматических устройств, которые предназначены для удаления воздуха из системы;
  • Прокладка трассы трубопровода с большими перепадами по высоте;
  • Существенное изменение уровня давления в процессе эксплуатации. При малом напоре возможно образование пустот в верхних точках;
  • Чрезмерный нагрев теплоносителя, сопровождающийся выделением газов. Аналогичные негативные процессы способны вызывать некоторые виды химических соединений;
  • Процесс наполнения системы после летнего периода выполнялся слишком быстро, поэтому не весь воздух был удален;
  • При монтаже системы либо позднее нарушена герметичность соединений. В самом плохом варианте – течи образовались внутри бетонной стяжки. По этой причине после монтажа теплых полов выполняют тщательную проверку с применением повышенного давления.

Почему надо удалять воздух

Образование пустот снижает КПД системы отопления. Насосное оборудование, как и другие компоненты, работает менее эффективно. Чтобы обеспечить комфортные для пользователей температурные условия в помещениях, приходится тратить больше ресурсов.

При увеличении таких пустот постепенно падает давление. После достижения предельного минимального уровня соответствующий сигнал поступает в блок управления котла. Кроме электронных устройств, применяют механические средства аналогичного назначения. Это – аварийная ситуация, поэтому автоматика отключает подачу газа или другого топлива.

Для последующего включения приходится вручную поднимать давление. Но в свежей воде газообразных включений много, поэтому негативные процессы ускоряются. Оборудование будет отключаться чаще.

Опасно оставлять его в таком состоянии без постоянного присмотра. Если не удалить воздух с одновременным устранением первоначальных причин, техника полностью утратит функциональность.

Следует помнить, что окисление, разрушающее металлы, происходит при наличии воды и кислорода. Добавление нового теплоносителя активизирует соответствующие негативные процессы. В таком режиме работы снижается долговечность отопительного оборудования.

Следует исключить появление воздушных «пробок» в узлах теплообмена котлов. Эти части подвергаются воздействию очень высоких температур.

При недостаточно равномерном нагреве теплообменник будет испорчен без возможности восстановленияПри недостаточно равномерном нагреве теплообменник будет испорчен без возможности восстановленияПри недостаточно равномерном нагреве теплообменник будет испорчен без возможности восстановления

Перечисленных выше причин достаточно, чтобы понять необходимость выполнения профилактических мероприятий. Их проведение предотвратит сложные поломки и затраты, сопряженные с восстановительными работами.

Конструктивные особенности

Заранее надо учесть детали, которыми отличается определенное оборудование. Так, в некоторых ситуациях для циркуляции теплоносителя по всем контурам используют встроенный насос котла. Для крупного объекта его производительности может быть недостаточно, поэтому понадобится установка отдельного силового агрегата.

При использовании радиаторного отопления создают трассы с минимальным числом поворотов, без острых углов. Добавлением наклонов в сторону котла можно обеспечить естественную циркуляцию, под воздействием силы тяжести.

В теплых полах устанавливают длинные трубопроводы с большим количеством изгибовВ теплых полах устанавливают длинные трубопроводы с большим количеством изгибовВ теплых полах устанавливают длинные трубопроводы с большим количеством изгибов

Прокачивать воду по такой системе тяжелее. Здесь используют исключительно принудительные методики. При ошибках в расчетах мощности отдельного насоса будет недостаточно для дальних контуров. В этом случае их плохой нагрев не устранить удалением воздушных пробок. Понадобится модернизация системы.

Предварительно должны быть правильно настроены регуляторы гребенки. Помимо механических расходомеров устанавливают вентили с электрическими приводами. Такие устройства изменяют скорость подачи теплоносителя с учетом показаний температурных датчиков.

Автоматизированная система регулировкиАвтоматизированная система регулировкиАвтоматизированная система регулировки

Алгоритм удаления воздуха

В процессе перемещения теплоносителя по системе газ накапливается в самых верхних точках. Для системы теплого пола – это коллекторный распределитель (гребенка). В них ввинчивают при установке краны Маевского или автоматические устройства отведения воздуха.

Ниже приведена стандартная последовательность правильных действий:

  • Многие современные насосы этого типа оснащают ступенчатым регулятором скорости. Его устанавливают в положение «1», которое соответствует минимальной производительности. Придется затратить больше времени, зато удаление газов будет аккуратным.
  • Перекрывают все контуры, кроме одного. Далее аналогичные операции выполняют последовательно на других участках.
  • Винт крана Маевского первого контура поворачивают шлицевой отверткой по направлению против часовой стрелки. Полимерную вставку перед этим поворачивают отверстием вниз, подставляют подходящую емкость для сбора жидкости.
  • После того, как воздух вышел, винт поворачивают в обратном направлении, до полного закрытия крана.
  • Несмотря на то, что установлены минимальные обороты двигателя, прокачивать контур придется неоднократно. После первого выпуска газов насос выключают. Дожидаются скопления воздуха в кране, открывают кран. Далее опять подают питание на электропривод, несколько минут прогоняют теплоноситель на медленной скорости.
  • Данную процедуру повторяют 3-4 раза. После – перекрывают краном этот контур и переходят к следующему.
Типовой насос с красной рукояткой регулировки скорости вращения валаТиповой насос с красной рукояткой регулировки скорости вращения валаТиповой насос с красной рукояткой регулировки скорости вращения вала

Если насос установлен выше гребенки, либо используется только штатный агрегат (котла отопления), из него также можно выпустить воздух. Для этого слегка ослабляют винт, расположенный в центре крышки. На рисунке выше он отмечен стрелкой.

После завершения всего комплекса рабочих действий понадобится поднятие давления до номинального уровня. Следует понимать, что в ходе этой процедуры в систему опять попадет воздух. Поэтому не исключено, что придется выпустить его еще раз.

Составные элементы оборудования

Стоит рассмотреть подробнее части системы, которые были упомянуты выше.

Кран в разобранном состоянииКран в разобранном состоянииКран в разобранном состоянии

Принцип действия описан в инструкции по выпуску воздуха. Конструкцию крана Маевского проще изучать с помощью этого рисунка. Такое миниатюрное изделие устанавливают вместо заглушки в верхней части коллекторной гребенки. В центральной части сделана резьба. Туда вворачивают винт, прижимающий пластиковый уплотнитель.

Для обеспечения герметичности соединения используют резиновое кольцо. Все перечисленные детали входят в стандартную комплектацию изделия. Никаких дополнительных расходных материалов для монтажа и эксплуатации не требуется.

Значительно упрощает выполнение поставленной задачи применение автоматизированных устройств. Они без тщательного контроля со стороны пользователя и дополнительных настроек способны выполнять свои функции на протяжении длительного срока службы.

Автоматический отводчик газовАвтоматический отводчик газовАвтоматический отводчик газов

Здесь приведена принципиальная схема одного из устройств этой категории:

  • Узел (1) создает жесткое крепление штанги (2) к внутренней части корпуса с нужным углом. Им регулируют уровень открытия выпускного клапана.
  • В ходе эксплуатации воздух накапливается в верхней части. Поплавок опускается вниз. В определенном положении он откроет запорное устройство, которое выпустит газ наружу.
  • Далее поплавок поднимается в исходное положение, цикл повторяется снова.
  • В нижней части установлен мягкий уплотнитель (4), обеспечивающий герметичность соединения.
СепараторСепараторСепаратор

Более эффективно выполняет аналогичные функции такое устройство:

  • Тут приведен пример проточного сепаратора. Его устанавливают в верхней точке в разрезе трубопровода с применением резьбовых соединений (4, 5).
  • В центральной части закреплена сетка (3). При прохождении потока воды через такую конструкцию из него высвобождаются пузырьки воздуха (2).
  • Они устремляются вверх. В этой части установлен такой же узел, как и в автоматическом отводчике газов. Когда поплавок опустится ниже определенного уровня, тяга откроет клапан (1) для выпуска воздуха наружу.
  • Размеры ячеек и другие параметры сетки подбирают так, чтобы не создавать излишних препятствий перемещению теплоносителя. Однако такая конструкция задерживает частицы ржавчины (6). Они накапливаются в нижней части (7). Здесь есть отвинчивающаяся крышка, которую открывают для удаления загрязнений при выполнении регламентного обслуживания.

Удаление механических примесей снижает нагрузки на разные части системы отопления. Если установить простейший фильтр на основной магистрали подачи воды, будет предотвращено засорение протоков радиаторов, теплообменников котлов. Это же продлит долговечность жиклеров клапанов автоматических отводчиков воздуха.

Дополнительные рекомендации

При увеличении сложности увеличивается стоимость, но снижается общая надежность техники. В качестве примера можно использовать регулирующие вентили на коллекторной гребенке. Конструкции с механическими приводами стоят немного.

Их характеристики отработаны многолетней практикой, поэтому поломки появляются редко. Сервоприводы – дороже. В соответствующих системах есть электронные блоки, миниатюрные электромоторы, проводные соединения, датчики. Тут больше компонентов, которые способны выйти из строя.

Выбирать составляющие для удаления воздуха из системы следует с учетом конструктивных особенностей. Простые краны Маевского способны выполнять безупречно свои функции длительное время. Их не надо регулировать в процессе эксплуатации. Автоматические устройства сложнее и дороже. Они могут быть испорчены загрязнениями, поэтому нужна защита от механических примесей.

Иногда интенсивное образование воздушных пробок свидетельствует о нарушениях целостности соединений, иных повреждениях. Автоматические отводчики настолько эффективны, что не получится заметить появление проблем на ранних стадиях.

Видео

В любом случае осмотр системы отопления следует выполнять регулярно. Для удаления воздуха надо точно выполнять приведенные инструкции. Если инженерное сооружение отличается повышенной сложностью, а самостоятельные действия вызывают затруднения, нужно обратиться за помощью к профильным специалистам. Помимо удаления воздуха, им можно поручить настройку коллекторной гребенки.

 

teplota.guru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *