Ограничитель перенапряжения: устройство и принцип работы
Для создания условий безаварийной и долгосрочной эксплуатации огромной массы электрооборудования, используемого, как в промышленности, так и в повседневной деятельности, в первую очередь необходимо обеспечить безопасный способ доставки и стабильность параметров электроэнергии. Особую опасность для электрических потребителей представляет кратковременное многократное превышение значение величины номинального напряжения в электрической сети. В электротехнике это явление известно, как перенапряжение. Как правило, причиной его проявления является воздействие на линии электропередач грозовых явлений или же коммутационных процессов внутри электрической установки. Возникающие импульсы высокого напряжения могут безвозвратно вывести из строя дорогостоящее оборудование, быть причиной возникновения пожаров и взрывов. Для защиты от возникающих пиковых значений напряжения, служат специальные высоковольтные устройства, ограничители перенапряжения, принцип работы и назначение которых мы и рассмотрим далее.Назначение
Устройство
Первичным и основным элементом, из чего состоит ограничитель перенапряжения, служит варистор, выполняющий роль нелинейного переменного резистора. Конструктивно ОПН состоят из варисторов, размещенных в корпусе, изготовленном из фарфора или высокопрочного полимера. Конструкция ограничителя выполнена с учетом условий, обеспечивающих взрывобезопасность, в случае возникновения токов короткого замыкания. В зависимости от назначения и места установки ОПН могут быть исполнены в различных вариантах. Для ограничителей, используемых для защиты линий электропередач и оборудования промышленных объектов, на крышке корпуса предусмотрен контактный болт для подключения к сети, в комплект ОПН входит изолированная от контакта с землей плита основания.
Устройства, предназначенные для защиты от пиковых импульсов напряжения электрохозяйства квартиры или дачного домика, очень компактны, имеют привлекательный дизайн, а также снабжены устройством для крепления на din-рейку. В зависимости от категории сложности, могут быть обустроены индикацией режимов работы и дистанционным управлением.
Устройство модульного ограничителя перенапряжения предоставлено на фото:
где:
- Корпус
- Предохранитель
- Сменный варисторный модуль
- Указатель износа варисторного модуля
- Насечки на зажимах
Принцип работы
Принцип действия ОПН объясняется нелинейным характером вольтамперных характеристик (ВАХ) варисторов. Для их изготовления применяется материал, где находит применение окись цинка в смеси с оксидами других металлов. Благодаря составу данной смеси, колонка, собранная из варисторов является комбинацией параллельных и последовательных включений p-n переходов, что и обуславливает природу вольтамперных характеристик нелинейных резисторов ограничителей.
Когда характеристики напряжения в сети соответствуют номинальным значениям, ограничитель находится в режиме непроводящего состояния. Величина тока в варисторах имеет мизерные значения и объясняется емкостным характером. При появлении в сети импульса напряжения, величина которого может вызвать пробой изоляции электрооборудования, в цепи нелинейных резисторов ОПН, в соответствии с их вольтамперными характеристиками, будет иметь место возникновение значительного импульса тока. В конечном итоге это снижает величину перенапряжения до параметров безопасных для безаварийной эксплуатации оборудования. Когда напряжение в сети нормализуется, ОПН вновь возвращается в непроводящий режим.
Виды ОПН
Конструкции ОПН, предлагаемые производителями энергетикам весьма разнообразны, их различают по следующим признакам:
- Типу изоляции (фарфор или полимер).
- Конструктивному исполнению (одна или несколько колонок).
- Величине рабочего напряжения.
- Месту установки ограничителя.
Если говорить об ограничителях перенапряжения, устанавливаемых на DIN-рейку, то тут устройства первоначально разделяются на однофазные и трехфазные. Помимо этого модульные ОПН (они же УЗИП), делятся на три основных класса: B, C и D. Ограничители класса B устанавливаются на вводе в здание, C — непосредственно в распределительном щите квартиры либо дома, D — на отдельное оборудование, которое нужно защитить от помех, если с этим не справились ОПН класса B и C. Подробнее о модульных ограничителях перенапряжения вы можете узнать из видео:
Технические характеристики
- Максимально действующее напряжение. Под этим понятием необходимо понимать величину наибольшего значения величины напряжения, при котором ограничитель способен сохранять свою работоспособность без ограничения по времени.
- Номинальное напряжение, эквивалентно величине, воздействие которого ОПН способен выдерживать в течение 10 минут.
- Ток проводимости. Величина тока, в цепи нелинейных резисторов в период воздействия номинальных значений приложенного напряжения. Как правило, имеет мизерное значение.
- Номинальный разрядный ток. Параметр, определяющий классификацию ограничителя в условиях грозового режима.
- Расчетный ток коммутационного перенапряжения. Значение тока, определяющее классификацию при коммутационных перенапряжениях.
- Токовая пропускная способность. Величина эквивалентная классу разряда линии.
- Устойчивость к короткому замыканию. Категория способности ОПН противостоять токам короткого замыкания, сохраняя при этом целостность защитной оболочки.
Защита электрохозяйства административных зданий, многоквартирных домов и предприятий возлагается на соответствующие службы энергетических компаний, оградить свой дом от нежелательных последствий грозового разряда возложена на домовладельца. В настоящее время этот вопрос решается просто. В специализированных магазинах представлен широкий выбор ограничителей перенапряжения различной степени сложности и ценового диапазона.
На рисунке ниже показано подключение ОПН к однофазной сети и условное обозначение на схеме. Подключить ограничитель перенапряжения к домашней электросети не сложно, но выполнение этой операции лучше доверить специалисту, если вы не имеете опыта в электромонтажных работах.
Напоследок рекомендуем просмотреть видео, на котором наглядно рассматривается конструкция и принцип действия ограничителей перенапряжения нелинейных:
Вот мы и рассмотрели устройство, назначение и принцип действия ограничителя перенапряжения. Как вы видите, существует различные виды и конструктивные исполнения данных устройств, благодаря чему можно подобрать подходящий вариант для собственных условий применения.
Будет интересно прочитать:
Область применения и принцип работы ограничителей перенапряжения (ОПН)
- Подробности
- Опубликовано 28.03.2017 19:56
Область применения ограничителей напряжения
Ограничители перенапряжения (ОПН) — это высоковольтные аппараты, широко применяемые в промышленности. Область их применения распространяется на сети среднего и высокого классов напряжения переменного тока промышленной частоты. ОПН используются для защиты от повышенного сетевого и атмосферного напряжения
ОПН широко используются для защиты:
- двигателей
- трансформаторов
- подстанций подвижного состава
- компенсаторов напряжения
- различных электроустановок и электрических машин
ОПН для защиты трансформатора
Конструкция ограничителя перенапряжения
Основным элементом ОПН является варистор с нелинейным сопротивлением. При нормальном напряжении сопротивление варистора высокое, поэтому он не проводит электрический ток. В случае скачков напряжения варистор мгновенно переключается в проводящий режим, защищая электрооборудование от высокого напряжения. В конструкцию ОПН заложены одна или несколько последовательных/ парралельных цепочек варисторов.
Варисторы в основном состоят из окиси цинка в оболочке из глифталевой эмали для улучшения проводимости. В процессе изготовления в оксид цинка добавляют примеси других металлов образуя p-n переходы, которые обеспечивают нелинейность вольт-ампеной характеристики варистора.
Принцип действия ОПН
Защитная функция ограничителя перенапряжения состоит в том, что при нормальном напряжении, ограничитель перенапряжений опн пропускает минимальный ток в доли миллиампера. В случае возникновения импульсных скачков напряжения, ток через ограничитель резко возрастает, ограничивая тем самым максимальное напряжение, приложенное к электроустановке.
Принцип работы ОПН можно увидеть из вольт-амперной характеристики ограничителя.
Виды ограничителей перенапряжения:
Для промышленного применения чаще всего используются два вида ОПН:
ОГРАНИЧИТЕЛИ ПЕРЕНАПРЯЖЕНИЙ НЕЛИНЕЙНЫЕ ПОЛИМЕРНЫЕ (ОПНп)
В данных аппаратах колонки варисторов расположены в полимерном корпусе из высокомолекулярного каучука. К недостаткам ОПНп относят небольшую механическую прочность и влияние перепадов температур на сопротивление изоляции.
Преимущества полимерных ограничителей перенапряжения:
- Высокая взрывобезопасность
- Высокая герметичность
- Небольшой вес
- Простота монтажа
- Возможность работы в загрязненных условиях
- Хорошие разрядные характеристики
ОГРАНИЧИТЕЛИ ПЕРЕНАПРЯЖЕНИЙ НЕЛИНЕЙНЫЕ ФАРФОРОВЫЕ (ОПН)
Фарфоровые ОПН состоят из колонки варисторов, прижатой к боковой поверхности стеклопластиковой трубы, внутри фарфоровой покрышки. Фарфоровые ОПН отлично переносят перепады температур и обладают прекрасными механическими харктеристиками. В последнее время фарфоровые ОПН стали заменять на полимерные из-за ряда недостатков.
Недостатки фарфоровых ограничителей перенапряжения:
- Высокая масса и габариты
- Взрывоопасность
- Низкая герметичность из-за низких эксплуатационных характеристик резиновых уплотнителей
- Худшие в сравнении с ОПНп тепловые характеристики
- < Назад
- Вперёд >
Ограничитель перенапряжения Википедия
Ограничитель перенапряжений нелинейный (ОПН) — электрический аппарат, предназначенный для защиты оборудования систем электроснабжения от коммутационных и грозовых перенапряжений. ОПН также можно назвать разрядником без искровых промежутков. ОПН на сегодняшний день являются одним из эффективных средств защиты оборудования электрических сетей.
Применение[ | ]
В некоторых случаях оборудование может оказаться под влиянием завышенного, по сравнению с номинальным, напряжения (при грозе или коммутациях электрических цепей). В этом случае возрастает вероятность пробоя изоляции установки. Нелинейные ограничители перенапряжений предназначены для использования в качестве основных средств защиты электрооборудования станций и сетей среднего и высокого классов напряжения переменного тока промышленной частоты от коммутационных и грозовых перенапряжений. Ограничители применяются вместо вентильных разрядников соответствующих классов напряжения и включаются параллельно защищаемому устройству или установке.
Устройство и принцип действия[ | ]
Ограничитель перенапряжения является безыскровым разрядником.
Устройство ограничителя перенапряжений[ | ]
Основной элемент ОПН — варистор ( varistor, от англ. Vari(able) (Resi)stor — переменное, изменяющееся сопротивление). Основная активная часть ОПН состоит из набора варисторов, соединённых последовательно и составляющих так называемую «колонку». В зависимости от требуемых характеристик ОПН и его конструкции ограничитель может состоять из одной колонки или из ряда колонок, соединённых последовательно либо параллельно. Отличие материала варисторов ОПН от материала резисторов вентильных разрядников состоит в том, что у нелинейных резисторов ограничителей перенапряжения присутствует повышенная пропускная способность, а также высоконелинейная вольт-амперная характеристика (ВАХ), благодаря которой возможно непрерывное и безопасное нахождение ОПН под напряжением, при котором обеспечивается высокий уровень защиты электрооборудования. Данные качества позволили исключить из конструкции ОПН искровые промежутки.
Материал нелинейных резисторов ОПН состоит в основном из оксида (окиси) цинка ( ZnO ) и оболочки в виде глифталевой эмали, повышающей пропускную способность варистора. В процессе изготовления оксид цинка смешивается с оксидами других металлов. Варисторы на основе оксида цинка являются системой, состоящей из последовательно и параллельно включённых p – n переходов. Именно эти
УЗИП и ОПН — что это и как работает, какие разновидности бывают
К устройствам защиты от импульсных перенапряжений (УЗИП) в соответствии с ГОСТ Р 51992-2011 относятся приборы, предназначенные для защиты электроустановок и электрических сетей от последствий перенапряжений, возникающих в переходных режимах, а также вследствие ударов молнии, про них и поговорим на СтабЭксперт.ру.
УЗИП предназначены для подключения к сетям переменного тока, имеющего частоту 50 – 60 Гц напряжением до 1000 вольт, а также к цепям постоянного тока напряжением до 1500 вольт.
Классификация устройств
Стандартом предусмотрена классификация устройств по следующим параметрам:
- числу вводов;
- по способу осуществления защитных функций;
- по месту расположения;
- по способу монтажа;
- по набору защитных функций;
- по степени защиты наружной оболочки;
- по роду тока питания.
Так выглядят устройства для защиты от грозовых и коммутационных перенапряжений.
Читайте еще: что такое узо и зачем нужен автоматический выключатель тока?
По признаку количества вводов приборы защиты делятся на одновводные, то есть, имеющие один ввод и двухвводные. Защита может осуществляться различными способами, существуют устройства коммутирующего типа, приборы, осуществляющие ограничение напряжения, а также аппараты комбинированного типа. Место установки защиты зависит от вида защищаемого оборудования. Установка может осуществляться как наружно, так и внутри помещений. Способ установки аппаратов может быть стационарным либо переносным. Виды защит, содержащиеся в приборе, могут составлять комбинации из схем различных типов:
- защиты теплового типа;
- защиты, реагирующей на появление токов утечки;
- защиты от сверхтока.
Степень защиты по IP должна соответствовать условиям эксплуатации. Приборы могут питаться переменным или постоянным током.
Типы УЗИП
Основной принцип защиты сетей и электрооборудования от грозовых и коммутационных перенапряжений заключается в подключении заземляющего контура для принятия импульсного разряда и снижение волны перенапряжения. Осуществляется это двумя путями:
- разрядом импульса перенапряжения через воздушный промежуток;
- снижением уровня перенапряжения посредством применения нелинейного элемента.
Разрядники
Принцип работы разрядников основан на способности высокого напряжения пробивать воздушный промежуток. Напряжение пробоя промежутка зависит главным образом от величины воздушного зазора.
Воздушный разрядник
Конструкция воздушного разрядника очень проста. Величина воздушного зазора между фазным и заземляющим проводом выбирается таким образом, что он гарантированно не пробивается при рабочем напряжении, но в случае кратного увеличения этого значения происходит пробой. При этом образуется электрическая цепь через дуговой разряд между фазой и защитным заземлением. Импульс тока, уходящий в заземляющее устройство, снимает перенапряжение и защищает силовые цепи от повреждения.
Вентильный разрядник
Усовершенствованной моделью воздушного разрядника является разрядник вентильного типа. Конструкция вентильного разрядника включает в себя несколько компонентов:
- искровой промежуток, разделённый на несколько воздушных зазоров;
- резистора.
Рабочий резистор представляет собой набор последовательно соединённых между собой дисков, изготовленных из вилита или тирита. Свойства этих материалов таковы, что вольт-амперная характеристика рабочего сопротивления является нелинейной. Это свойство позволяет пропускать большие импульсные токи перенапряжений при малом падении напряжения на самом элементе. Благодаря нелинейности характеристики разрядник получил название вентильный. Срабатывание вентильных разрядников происходит практически бесшумно, кроме этого, не наблюдается такое обильное выделение газа и пламени как в случае с воздушным разрядником.
ОПН — ограничители перенапряжения
Ограничители перенапряжения являются следующим этапом эволюции устройств, защищающих от импульсных бросков напряжения. Данный прибор не содержит воздушных промежутков. Основным элементом устройства является варистор. Если быть более точным, набор варисторов. Для получения необходимых рабочих характеристик варисторы соединяются между собой в последовательные или параллельно – последовательные блоки.
Основу варистора составляет оксид цинка. В процессе изготовления варистора добавляются также оксиды других металлов. СтабЭксперт.ру напоминает, что в результате, готовое изделие представляет собой набор p–n переходов, соединённых параллельно и последовательно. Наличие данных полупроводниковых переходов определяет нелинейные свойства варистора. Варисторы заключены в фарфоровый или полимерный корпус ограничителя перенапряжения. Сопротивление варисторов ОПН очень велико в диапазоне рабочего напряжения. При возникновении импульсного броска напряжения, сопротивление ОПН резко падает, пропуская импульсный ток на землю.
Ограничители перенапряжения имеют некоторые конструктивные и функциональные различия. Классификация ОПН осуществляется по следующим признакам:
- материалу изоляции;
- конструкции устройств;
- рабочему напряжению;
- месту монтажа.
По поводу изоляции уже было сказано, применяется фарфор либо полимерная композиция. Конструктивно ограничители перенапряжения бывают одноколонковыми и многоколонковыми. ОПН выпускаются для каждого класса напряжения: 6-10 киловольт и выше. Монтируются ограничители перенапряжения в закрытых или открытых распределительных устройствах (ЗРУ, ОРУ).
Домашние модульные УЗИП для установки в распределительных устройствах 0,4 кВ
Для защиты внутридомовой электропроводки и бытовой техники от бросков напряжения, имеющих грозовую и переходную природу, многие производители электротехники выпускают компактные приборы модульного исполнения, которые удобно располагаются в распределительных шкафах.
Подобные УЗИП ставят на DIN-рейку.
Монтаж
Подключаются модульные УЗИП между фазным и защитным заземляющим проводом. Присоединение должно осуществляться после автоматического выключателя. При этом в момент возникновения перенапряжения и открывания варистора устройства, повышенный ток варистора протекает через выключатель, вызывая срабатывание защиты. Отключаясь, автоматический выключатель разрывает связь нагрузки с внешней сетью, являющейся источником повышенного напряжения.
Видео на тему работы модульных УЗИП
Далее:
Назначение ограничителей перенапряжений
- Подробности
- Категория: Подстанции
Ограничители перенапряжений нелинейные (ОПН) предназначены для защиты изоляции электрооборудования подстанций и электрических сетей от атмосферных и кратковременных коммутационных перенапряжений.
Применяемые в настоящее время разрядники с резисторами, имеющими недостаточную нелинейность, часто не позволяют обеспечить необходимое ограничение перенапряжений. Более глубокое снижение перенапряжений требует уменьшения нелинейного последовательного сопротивления, что приводит к существенному увеличению сопровождающих токов. Включение нелинейных сопротивлений на рабочее напряжение без искровых промежутков оказывается невозможным вследствие большого тока через нелинейное сопротивление при фазном напряжении. Применение искровых промежутков вызывает дополнительные трудности, связанные с необходимостью уменьшения сопровождающего тока до величины надежно отключаемой промежутками.
Значительное улучшение защитных характеристик разрядников может быть достигнуто при отказе от использования искровых промежутков. Это оказывается возможным в ОПН при использовании резисторов с резко нелинейной вольт-амперной характеристикой. Выполненные на основе окиси цинка варисторы отвечают этим требованиям и применяются в ограничителях перенапряжений. Высоконелинейные оксидно-цинковые варисторы в настоящее время выпускаются в виде дисков диаметров 28 мм и высотой 8 мм. Разработаны также варисторы увеличенного диаметра (45,60 и 85 мм) и, соответственно, большей пропускной токовой способности, налажен серийный выпуск их в России. ОПН комплектуются из большого числа последовательно и параллельно соединенных оксидно-цинковых варисторов. Число последовательно соединенных в колонку варисторов и число параллельных колонок в ограничителе перенапряжений определяется номинальным напряжением сети и зависит от требований к защитному уровню напряжения и пропускной способности ограничителей по току.
Пропускная способность ОПН и характер их повреждения зависят от амплитуды и длительности протекающего через них тока. При импульсах тока большой длительности, характерных для коммутационных перенапряжениях, наблюдается существенных нагрев ОПН, в результате так воздействий может происходить про- плавление в варисторах сквозных отверстий и их разрушение при токах с амплитудой 80… 120 А. При кратковременных импульсах тока, характерных для грозовых перенапряжений, варисторы не разрушаются даже при воздействии импульсов с амплитудой 1000… 1500 А. Дальнейшее увеличение тока может приводить к их перекрытию по боковой поверхности, однако, ток перекрытия может быть значительно увеличен, если покрыть боковую поверхность варисторов специальным изоляционным лаком или залить колонку варисторов полимерным компаундом.
Принято условное буквенно-числовое обозначение ОПН на класс напряжения от 3 до 110 кВ. Например:
На рис. приведена конструкция ограничителя ОПН-П1-110-НУХЛ1
Активная часть ОПН состоит из последовательно соединенных оксидно-цинковых резисторов 4, размещенных в полимерной покрышке 3, которая представляет собой стеклопластиковую трубу с нанесенной на нее защитной ребристой оболочкой из кремнийорганической резины. Сверху покрышка закрыта фланцем 1, на котором крепится экран 2, предназначенный для выравнивания электромагнитного поля и защиты полимерной покрышки от перекрытия по наружной поверхности. Нижний фланец 6 крепится на основании 8. Внутри фланца находится полимерный композит. Заземление разрядника осуществляется с помощью болта, закрепленного на основании.
Ограничитель перенапряжений типа ОПН-П1-110-НУХЛ1
Ограничители перенапряжений на класс напряжения 3,3 кВ постоянного тока выполняются в фарфоровых покрышках. Они имеют ряд преимуществ перед разрядниками: низкий защитный уровень для всех видов перенапряжений; высокая удельная энергоемкость; малые габариты и масса.
Рис. 2. Ограничитель перенапряжений типа ОПН-3,3
Пример условного обозначения ограничителя:
На рис. 2 приведена конструкция ограничителя ОПН-3,3 01. Активная часть ОПН представляет собой блок нелинейных резисторов 3 из четырех параллельных колонок. Блок оксидно-цинковых резисторов размещен в герметизированной фарфоровой покрышке 2. Верхним контактным болтом 1 ОПН присоединяется к токоведущим частям электроустановки, нижний контактный болт 6 служит для заземления фланца 4. Основание 5 покрышки имеет взрывопредохраняющее устройство, которое при повреждении внутри ограничителя исключает повышение давления до значений, вызывающих взрыв фарфоровой покрышки.
Устройство защиты от перенапряжения
Содержание:
- Причины возникновения и опасность скачков напряжения
- Длительные перенапряжения и провалы из-за недостатка напряжения
- Разновидности и принцип действия защитных устройств
- Молниезащита от перенапряжений
- Ограничители перенапряжений
- Другие виды защитных устройств
- Видео
В конструкцию всех современных бытовых приборов входят чувствительные электронные компоненты. В результате, несмотря на все положительные качества и высокие технические характеристики, данное оборудование крайне отрицательно реагирует на перепады напряжения. Подобные скачки присутствуют во всех электрических сетях и полностью устранить их практически невозможно. Поэтому, чтобы сберечь дорогостоящую технику, требуется устройство защиты от перенапряжения.
Причины возникновения и опасность скачков напряжения
В момент перепада напряжения в электрических сетях его амплитуда изменяется на короткий промежуток времени. После этого она быстро восстанавливается с параметрами, приближенными к начальному уровню.
Подобный импульс электрическим током продолжается буквально в течение нескольких миллисекунд, а его возникновение обусловлено следующими причинами:
- Грозовые разряды. Вызывают скачки напряжения до нескольких киловольт, которые не сможет выдержать ни один прибор. Подобные перепады нередко становятся причиной отключения сети и пожара.
- Перенапряжение, вызываемое процессами коммутации, когда подключаются или отключаются потребители с высокой мощностью.
- Явление электростатической индукции при подключении электросварки, коллекторного электродвигателя и другого аналогичного оборудования.
Опасность последствий от перенапряжений наглядно отражается на рисунке, где грозовой и коммутационный импульсы существенно отличаются от номинального сетевого напряжения. Изоляционный слой в большинстве проводов рассчитан на значительные перепады и пробоев обычно не случается. Часто импульс действует очень недолго и напряжение, проходя через блок питания и стабилизатор, просто не успевает подняться до критического уровня.
Иногда слой изоляции сети 220 В может не выдержать возрастающего напряжения. В результате случается пробой, сопровождающийся появлением электрической дуги. Для потока электронов образуется свободный путь в виде микротрещин, а проводником служат газы, наполняющие микроскопические пустоты. Этот процесс сопровождается выделением большого количества тепла, под действием которого токопроводящий канал расширяется еще больше. Из-за постепенного нарастания тока, срабатывание защитной автоматики немного запаздывает, и этих нескольких мгновений вполне хватает, чтобы вывести из строя в частном доме всю электропроводку.
Особую опасность представляют повышенное и пониженное напряжение, находящееся в таком состоянии долгое время. В основном это происходит по причине аварийных ситуаций, которые требуется устранить, чтобы ток пришел в норму. Других способов нормализации и каких-либо специальных приборов, защищающих от этого явления, не существует.
Длительные перенапряжения и провалы из-за недостатка напряжения
Как правило, причиной длительных перенапряжений в сетях становится обрыв нулевого провода. В этом случае нагрузка на фазные жилы распределяется неравномерно, что приводит к перекосу фаз, когда разность потенциалов смещается к проводнику с максимальной нагрузкой.
Таким образом, неравномерный трехфазный ток, воздействуя на нулевой кабель, находящийся без заземления, способствует концентрации на нем избыточного напряжения. Этот процесс будет продолжаться до полного устранения неисправности или до тех пор, пока линия окончательно не выйдет из строя.
Другим опасным состоянием сети является провал или недостаток напряжения. Подобные ситуации очень часто возникают в сельской местности. Суть явления заключается в падении напряжения ниже допустимой величины. Такие проседания представляют серьезную опасность и реальную угрозу для оборудования. Многие современные приборы оборудованы несколькими блоками питания и недостаточное напряжение приводит к кратковременному выключению одного из них.
В результате, последует незамедлительная реакция электронной аппаратуры в виде ошибки, выведенной на дисплей, и полной остановки рабочего процесса. Если подобная ситуация сложилась с отопительным котлом в зимнее время года, тогда отопление дома будет прекращено. Устранить проблему возможно с помощью стабилизатора, фиксирующего такие проседания и поднимающего напряжение до номинальной величины.
Виды и принцип действия защитных устройств
Защита электрической сети от скачков напряжения может осуществляться разными способами. Наиболее распространенными и эффективными считаются следующие:
- Молниезащитные системы.
- Стабилизаторы напряжения.
- Датчики повышенного напряжения, используемые совместно с УЗО. В случае неполадок они вызывают токовую утечку, под влиянием которой произойдет срабатывание защитного устройства.
- Реле перенапряжения.
Похожие функции выполняют блоки бесперебойного питания, с помощью которых компьютеры подключаются к домашней сети. Данные приборы не защищают от перенапряжений, они действуют как аккумуляторы, позволяя выполнить нормальное выключение компьютера и сохранить нужную информацию в случае внезапного отключения света. Стабилизировать напряжение это устройство не может.
Под действием молнии возникают электрические импульсы. Защита от их негативного воздействия осуществляется путем установки грозозащитного разрядника, используемого совместно с УЗИП – устройством защиты от импульсных перенапряжений. Он также известен, как автомат для защиты от перенапряжения. Кроме того, необходимо обеспечить дополнительную безопасность от электронного потока с параметрами, отличающимися от рабочих характеристик данной сети. Для этих целей используются специальные датчики, используемые с УЗО, и реле защиты от перенапряжения. Назначение и принцип работы данных устройств не такие, как у стабилизатора.
Основной функцией обоих компонентов является прекращение подачи электрического тока, когда перепад напряжения превысит максимальное значение, определенное паспортными техническими показателями этих устройств. После того как параметры сети нормализуются, реле включается самостоятельно и возобновляет подачу тока.
Молниезащита от перенапряжений
Защитные системы против грозовых разрядов могут быть устроены разными способами, в зависимости от технических условий.
1.
Первый вариант предполагает внешнюю молниезащиту, устанавливаемую дома (рис. 1). В этом случае допускается максимальная сила удара молнии непосредственно в элементы самой системы. Расчетная величина такого тока составит примерно 100 кА. Защититься от мощного импульса при перегрузке возможно с помощью комбинированного УЗИП, который устанавливается внутрь вводного электрического щита и действует как выключатель. Одно такое устройство защитит все оборудование, находящееся в доме.
В другом случае внешняя молниезащита отсутствует, а напряжение подается к дому по воздушной линии (рис. 2). Молния ударяет в опору ЛЭП с расчетным током, проходящим через УЗИП, величиной тоже 100 кА. Защитить электрооборудование от мощного импульса помогут специальные устройства с защитой, размещаемые во вводном щите, на стене здания или на самом столбе, в месте ответвления линии. При использовании распределительного щита, защита организуется по такой же схеме, как и в предыдущем варианте.
2.
Если же УЗИП устанавливается на столбе, то нецелесообразно применять дифференциальные устройства 3 в 1, поскольку на участке от столба до здания возможно появление наведенных, то есть, повторных перенапряжений. Поэтому будет вполне достаточно прибора класса 1+2, а при расстоянии до дома свыше 60 метров, внутри дома в главный щит дополнительно устанавливается УЗИП 2-го класса.
И, наконец, третья ситуация, когда питание дома подается через подземный кабель, в том числе и в сети 380 В, а внешняя молниезащита тоже отсутствует (рис. 3). Максимум, что может случиться – появление наведенных импульсных перенапряжений. Ток молнии не попадет в сеть даже частично. Величина расчетного импульсного тока составляет около 40 кА. Чтобы защитить электрооборудование достаточно УЗИП 2-го класса, установленного во вводный электрический щит.
3.
Ограничители перенапряжений
Рассматривая вопросы защиты от перенапряжения сети, следует отметить, что данную функцию в первую очередь должны выполнять организации, отвечающие за электроснабжение. Именно они устанавливают на ЛЭП необходимые защитные устройства. Однако, как показывает практика, это выполняется далеко не всегда, и проблемы защиты дома от перенапряжений вынуждены решать сами потребители.
Защита от перенапряжения в сети на подстанциях и воздушных ЛЭП осуществляется с помощью ОПН – нелинейных ограничителей перенапряжения. Основной этих устройств является варистор, имеющий нелинейные характеристики. Его нелинейность состоит в изменяющемся сопротивлении элемента в соответствии с величиной приложенного напряжения.
Когда электрическая сеть работает в нормальном режиме, а напряжение имеет свое номинальное значение, ограничитель напряжения в это время обладает большим сопротивлением, препятствующим прохождению тока. Если же при ударе молнии возникает импульс перенапряжения, наступает резкое снижение сопротивления варистора до минимального значения и вся энергия импульса уходит в контур заземления, соединенный с ОПН. Таким образом, обеспечивается безопасный уровень напряжения, и все оборудование оказывается надежно защищенным.
Для электрических сетей дома или квартиры существуют компактный блок модульных ограничителей перенапряжений, не занимающих много места в распределительном щитке. Они работают точно так же, как и в линиях электропередачи. Эти приборы подключены к заземляющему контуру или к рабочему заземлению, по которому уходят опасные импульсы.
Другие виды защитных устройств
Существуют и другие варианты защиты от перенапряжения в сети. Они широко применяются в быту и считаются одними из наиболее эффективных средств.
Сетевые фильтры
Отличаются простой конструкцией и доступной стоимостью. Несмотря на свою малую мощность, это устройство вполне способно защитить оборудование при скачках, достигающих 380 вольт и даже 450 вольт. Более высокие импульсы фильтр не выдерживает. Он просто сгорает, сохраняя в целости дорогостоящую электронику.
Данное устройство защиты от перенапряжения оборудуется варистором, играющим ключевую роль в обеспечении защиты. Именно он сгорает при импульсах свыше 450 В. Кроме того, фильтр надежно защищает от помех высокой частоты, возникающих при работе сварки или электродвигателей. Еще одним компонентом служит плавкий предохранитель, срабатывающий при коротких замыканиях.
Стабилизаторы
В отличие от сетевых фильтров, эти устройства позволяют выполнить нормализацию напряжения дома и привести его в соответствие с номиналом. Путем регулировок устанавливаются граничные пределы от 110 до 250 вольт, и на выходе устройства получаются требуемые 220 В. В случае скачков напряжения и выходе его за допустимые пределы, стабилизатор автоматически отключает питание. Подача напряжения возобновляется лишь после приведения сети к нормальному рабочему режиму.
Что лучше сетевой фильтр или стабилизатор напряжения. В определенных условиях, например, за городом или в сельской местности, стабилизаторы являются наиболее эффективной защитой от перенапряжения, выступают в качестве единственного варианта, способного выровнять напряжение до установленных норм.
Все стабилизирующие устройства, используемые в быту, разделяются на два основных типа. Они могут быть линейными, когда к ним подключается один или несколько бытовых приборов, или магистральными, устанавливаемыми на вводе сети в квартире или во всем здании.
Разрядники: назначение, типы, принцип работы
Содержание:
- Устройство и принцип работы
- Технические характеристики газовых разрядников
- Виды разрядников
В электрических сетях довольно часто наблюдается появление импульсных всплесков напряжения, вызванных различными причинами: коммутацией аппаратуры, атмосферными разрядами и прочими факторами. Несмотря на то, что такие перенапряжения носят кратковременный характер, они способны вызвать пробой изоляции с последующим коротким замыканием и разрушительными последствиями.
Одним из вариантов предотвращения негативных последствий могло бы стать использование более надежной изоляции, однако этот способ значительно увеличивает стоимость всего оборудования. Поэтому наиболее оптимальным вариантом стали разрядники, назначение которых зависит от области их применения. Основной функцией этих устройств является ограничение перенапряжений в электрических сетях и установках.
Общее устройство и принцип работы
Высокочастотное оборудование защищается не только молниеотводами, но и с помощью высоковольтных разрядников. Каждый из них состоит из двух основных частей – электродов и устройства для гашения дуги.
Один из электродов устанавливается на защищаемую цепь, а к другому подводится заземление. Между ними образуется пространство, известное как искровой промежуток. Когда напряжение достигает определенного значения, наступает пробой искрового промежутка между двумя электродами. За счет этого с защищаемого участка цепи снимается перенапряжение. Основным техническим требованием, предъявляемым к разряднику, является определенный уровень гарантированной электрической прочности в условиях промышленной частоты. То есть, при нормальном режиме работы сети разрядник не должен пробиваться.
После пробоя в действие вступает дугогасительное устройство. Под действием импульса повышается ионизация искрового промежутка, в результате чего пробивается фазное напряжение, действующее в нормальном режиме. Оно приводит к короткому замыканию и срабатыванию защитных устройств на этом участке. Основной задачей дугогасительного устройства как раз и является скорейшее устранение замыкания, до срабатывания средств защиты.
Широкое распространение получили конструкции газовых разрядников. В их состав входит коаксиальный элемент с незначительным разрядным промежутком, и патрон с выводом на землю. В промежутке между ними выполняется установка газоразрядного элемента в форме таблетки, заключенного в стеклянную или керамическую оболочку и оборудованного электродами с каждой стороны. Внутреннее пространство оболочки заполнено газом – аргоном или неоном.
В случае перенапряжения происходит срабатывание защиты: под действием высокой температуры в разряднике наступает резкое падение сопротивления. После этого образуется дуговой разряд с напряжением около 10 вольт. Каждый такой разрядник оборудуется собственным заземлением, в противном случае он будет бесполезен.
Во всех газовых разрядниках центральная жила коаксиального кабеля и первый электрод соединяются между собой. Второй электрод соединяется с заземленным корпусом разрядника. Когда через устройство проходит высокий импульс с большим напряжением, происходит пробой разрядника и центральная жила кабеля в течение короткого времени шунтируется на землю. Наблюдается существенное падение значения тока, до состояния гашения дуги, после чего наступает размыкание, то есть прибор находится в непроводящем режиме.
Как правило, газоразрядная трубка считается одноразовой деталью разрядника, требующая замены после каждого срабатывания.
Технические характеристики газовых разрядников
Каждый газовый разрядник обладает специфическими электрическими свойствами и техническими характеристиками.
- Номинальный импульсный ток разряда. Технические требования, предъявляемые к разряднику, определяют его способность выдерживать определенное значение импульсного тока. Отклонение от нормы имеет допустимые пределы, определяемые требованиями. Номинальное значение тока всегда указано в технической спецификации конкретного устройства.
- Емкость и сопротивление изоляции. Данные параметры достигают, соответственно, свыше 10 гОм и менее 1 пФ, что делает такие устройства буквально незаменимыми при использовании в той или иной сети.
- Статическое напряжение срабатывания. Данным параметром определяется тип разрядника, установленного в защитном устройстве. Его значение равно напряжению, достаточному для зажигания разрядника, при условии медленного возрастания величины напряжения.
- Динамическое напряжение срабатывания. Эта величина является своеобразным пределом, когда наступает быстрый рост напряжения, при котором происходит срабатывание газового разрядника.
Виды разрядников
Трубчатый разрядник. Изготовлен в виде полихлорвиниловой трубки, предназначенной для гашения дуги. На каждом конце разрядника имеется по одному электроду. К одному электроду подводится заземление, а другой устанавливается на незначительном расстоянии от защищаемого участка.
Регулировка этого расстояния осуществляется в зависимости от величины напряжения на участке. В случае возникновения перенапряжения, возникает пробой сразу в двух местах – между обоими электродами и между разрядником и защищаемым участком. Действие пробоя приводит к возникновению в трубке интенсивной газогенерации, а продольное дутье, образующееся в выхлопном отверстии, вполне способно погасить электрическую дугу.
Вентильный разрядник. Конструкция включает две основные части: многократный искровой промежуток, состоящий из нескольких однократных элементов и рабочий резистор, представляющий собой последовательно набранные вилитовые диски. Оба основных элемента последовательно соединены между собой. Рабочий резистор обеспечивается герметичной защитой от внешней среды, в связи со свойствами вилита изменять свои характеристики при повышенной влажности. При появлении перенапряжения возникает пробой многократного искрового промежутка.
Рабочий резистор выполняет задачу снижения тока до такой величины, чтобы ее могли свободно погасить искровые промежутки. Сопротивление вилита является нелинейным, оно снижается по мере увеличения силы тока. Данное свойство дает возможность пропускать больше тока при уменьшении падения напряжения. Основным достоинством разрядников этого типа считается бесшумное срабатывание при отсутствии выбросов газа или пламени.
Магнитовентильный разрядник. В его состав входят несколько блоков, соединенных последовательно, с магнитными искровыми промежутками и вилитовыми дисками. В каждом блоке имеются единичные искровые промежутки, соединенные последовательно, и постоянные магниты. Все элементы блока размещаются в фарфоровом цилиндре. Во время пробоя в единичных промежутках возникает дуга. На нее воздействует поле, создаваемое кольцевыми магнитами, заставляя вращаться с высокой скоростью. В результате, гашение дуги происходит гораздо быстрее, чем в других типах вентильных разрядников.
Ограничитель перенапряжения нелинейный. В этом разряднике отсутствуют искровые промежутки. Конструкция активной части ограничителя включает в себя последовательный набор варисторов. Именно на их свойствах основан принцип работы всего устройства, поскольку проводимость варисторов находится в зависимости от прилагаемого напряжения.