Posted on

Содержание

Обрыв нулевого провода: последствия и способы защиты

Последствия обрыва нуля в трехфазных и однофазных сетях

К домовому электрощиту многоквартирного дома подходит 3- х фазное напряжение 380 В. К подъездному щиту также подводится три фазы, для отдельной сети квартиры используется одна фаза и нейтраль. Такая система электропитания TN-C применялась для старых построек и существует до сих пор.

obryv-nulya-01

Двухпроводная сеть частного дома с защитным заземлением

В новых домах используется система питания TN-C-S с третьим, дополнительным защитным проводником. В многоквартирном доме все фазы распределены по квартирам равномерно таким образом, чтобы нагрузки на все три фазы были одинаковыми и перекос фаз был бы минимальным.

Однако при обрыве нулевого провода происходит перераспределение напряжения по фазам и возникает перекос фаз. В результате в одной квартире возможно напряжение поднимется до 380 В, а в другой будет занижена до 170 В. В обоих случаях бытовые электроприборы и техника выходят из строя.

Особенно чувствительны к таким перекосам фаз бытовые приборы, имеющие электродвигатели — это стиральные машины, холодильники, кондиционеры, вентиляторы, пылесосы и т. д. Величина напряжения при перекосе фаз зависит от числа подключенных потребителей электроэнергии на всех фазах и их мощности.

Что происходит при обрыве нуля? Напряжение с другой фазы, через подключенные приборы других квартир, поступает на общий нулевой провод и в квартирах в розетках появляется напряжение не 220 В (фаза – ноль, как должно быть), а напряжение 380 В (фаза — фаза).

В результате, подключенные бытовые приборы выходят из строя из-за перекоса напряжения сети. Хуже еще если в электропроводке старых построек с системой электропитания TN-C в качестве защитного проводника используется нулевой провод, который присоединяется к корпусу бытовых приборов.

sistema-energosnabzheniya-tn-c-s

Система энергоснабжения TN-C-S с дополнительным проводником заземления PE применяемая в новых постройках

Тогда при прикосновении к корпусу, человек получит опасный удар током. В новых домах система заземления TN-C-S с проводником защитного заземления, на корпусах бытовых приборов опасного напряжения не будет, опасности поражения током нет.

Если обрыв нуля в однофазной сети произошел у вас в квартире, то опасности для бытовых приборов не будет, а вот при касании корпуса прибора вас поразит током (старая электропроводка TN-C) если использовать рабочий ноль в качестве защитного заземления.

Если в дом подведена трехфазная сеть, то при обрыве нулевого провода в трехфазной сети возникнет опасность выхода из строя бытовых приборов, не зависимо где произошел обрыв в магистральной линии или у вас в доме.

Причины возникновения обрыва нуля

Причин достаточно много — это обрыв нейтрали на подстанции, в домовых и подъездных щитах, неопытность электриков, отсутствие обслуживания электросетей и далее. Основной причиной обрыва нейтрали — это некачественное крепление провода.

При слабом креплении нейтрали провод нагревается, окисляется (что увеличивает сопротивление перехода нейтраль — корпус) и перегорает. Также возможно обгорание нейтрали при использовании больших номиналов предохранителей.

Нередко обрывается нейтраль при сильных порывах ветра, обледенений, ремонтных работах и т. д. Как видно имеется масса причин обрыва нейтрали. Чтобы избежать последствий от этой неисправности нужно выбрать правильный вариант защиты.

Защита от обрыва нуля

Электропроводка в старых постройках системы заземления TN-C не имеет никакой защиты от обрыва нуля и представляет с собой большую опасность при использовании нейтрали в качестве заземляющего проводника корпусов электроприборов.

sistema-tn-c-obryva-nulya-net

Система TN-C. Обрыва нуля нет. Опасности нет

sistema-tn-c-posledstviya-pri-obryve-nulya

Система TN-C. Последствия при обрыве нуля

В новых постройках системы электроснабжения TN-C-S с отдельным заземляющим проводником, вероятность поражения опасным для жизни током уменьшается. Уменьшить сопротивление заземления, и улучшить качество защиты позволяют дополнительные повторные заземления у каждого дома.

Однако эта система заземления не защитит ваши бытовые приборы при обрыве нуля. Для защиты приборов, техники и поражения током человека помогут реле контроля напряжения или стабилизаторы напряжения. Реле напряжения отключит вашу электросеть при опасных перенапряжениях и минимальных значениях напряжения в сети. Помогут еще и УЗО, дифавтоматы с защитой от обрыва нуля.

Сработает ли УЗО при обрыве нуля

УЗО отключит электросеть при касании корпуса человеком, если в качестве заземляющего проводника использована нейтраль. В этом случае через человека потечет ток утечки, на которую среагирует УЗО. Обычные УЗО и дифавтоматы, если у них нет функции защиты от перенапряжений, не защитят от поломок бытовых электроприборов.

Вывод. Для защиты человека от поражения опасным высоким напряжением и выхода из строя электробытовых приборов, техники, ламп освещения поможет УЗО или дифавтомат с защитой от обрыва нуля. Также можно поставить реле напряжения и обычные УЗО, дифавтомат или реле контроля напряжения с отдельным защитным заземлением.

Тоже интересные статьи

Отгорание нуля в трехфазной сети

Чем опасен обрыв нулевого провода в электрической сети?

Даже те, кто не имеет электротехнического образования, наверняка слышали о такой аварийной ситуации, как перекос фаз. В некоторых предыдущих публикациях мы уже упоминали, чем грозит обрыв нуля, и кратко упоминали о способах защиты от несимметрии фазных напряжений. Сегодня мы более подробно рассмотрим данную тему.

Что такое обрыв нуля?

Для полноценного ответа на этот вопрос необходимо привести примеры штатной работы трехфазной схемы ввода электроснабжения. В качестве примера приведем упрощенный вариант с вводом для этажного распределительного щита.

Схема 1. Штатная работа системы

Как видно из рисунка, каждая из квартир на этаже запитана от отдельной фазы (L1 – L3) и общего нуля. Что формирует в бытовой сети каждой квартиры фазное напряжение 220 вольт (L1N=L2N=L3=220 В.). В данном случае используется схема питания TN-C-S, где задействована шина заземления PE, соединяемая в РУ здания с нулем. Приведенная система сбалансированная, поскольку ток нагрузки в фазных проводах суммируется через нулевую линию, что снижает вероятность перекоса фазных напряжений.

Заметим, что полностью исключить данное явление довольно сложно, поскольку сопротивление нагрузок на каждой фазе может различаться. К примеру, в квартире_1 включен кондиционер и стиральная машина, в квартире_2 хозяин запустил бойлер и электропечку, а в квартире_3 жильцы отсутствуют и все бытовые приборы отключены от сети. По итогу, в трехфазной системе питания возникнет несимметрия напряжений.

Теперь рассмотрим работу сети в нештатном режиме, когда происходит отгорание нуля.

Что происходит в электросети при обрыве нуля?

Рассмотрим отдельно, изменение режима работы трехфазной сети при обрыве магистрального нуля и как поведет себя однофазная электрическая проводка, если отгорание нулевого проводника произойдет на вводе.

Отгорание нуля в трехфазной сети

Внесем изменения в рисунок 1, вызванные аварией, а именно отключением нуля .

Оборвался нулевой магистральный проводник

В данном случае обрыв общего нулевого провода приведет к тому, что движение электрического тока по нему прекратиться. В результате все квартиры R

1-R3 будут запитаны по типу подключения «звезда без нулевой магистрали». Другими словами, при обрыве нуля на каждую квартиру будет поступать не фазное, а линейное напряжение.

Контур из квартир 1 и 2

Для примера предлагаем рассмотреть, как сложится ситуация в квартирах 1 и 2. Нагрузка электрических приборов суммируется в данном контуре при прохождении через него тока I12. Соответственно, уровень напряжения для квартир установится в зависимости от нагрузки подключенных к сети приборов. То есть: U1 = I12*R1, а U2 = I12* R2. Из этого следует, что суммарная величина силы тока составит I12 = U12 / (R1+R2) :

Обратим внимание, что суммарное напряжение контура будет равно линейному в данной электросети, то есть U

12 = 380 вольт. Но при этом показатели U1 и U2 могут варьироваться в диапазоне 0-380 вольт и, естественно, существенно отличаться друг от друга. На данные значения может влиять как нагрузка подключенных приборов в каждой из квартир, так и ее активная и пассивная составляющая.

В результате если произойдут проблемы с нейтралью трансформатора (нулем источника), велика вероятность выхода из строя подключенных к сети приборов. Причина – повышение уровня напряжения в сети.

Обрыв нуля в однофазной сети

В данной ситуации последствия будут не такими печальными, как в описанном выше случае, но, тем не менее, если отгорает вводный ноль в системе TN-C, это может представлять серьезную опасность для жизни человека.

Отгорание нуля в схеме однофазного потребителя

Для однофазных нагрузок обрыв нуля будет аналогичен отключению напряжения, за исключением того фактора, что на фазном проводе останется потенциал, представляющий опасность для жизни. Причем, он также проявится там, где был ранее защитный ноль в контактах розеток. Если корпуса электроприборов заземлялись рабочим нулем, то весьма велика вероятность негативных последствий. В системах TN-C-S фактор риска существенно сокращается, за счет использования PEN проводника.

Как защититься?

Узнав об опасности, представляемой потерей нуля, предлагаем рассмотреть варианты защиты от данного явления:

  • Начать необходимо с грамотного монтажа электропроводки. Если для питания объекта планируется задействовать трехфазную схему электроснабжения, то ее расчет должен быть произведен таким образом, чтобы минимизировать вероятность перекоса фаз. То есть, необходимо планомерно распределить нагрузку на каждую линию.
  • Следует задействовать в управлении сетью приборы, выравнивающие нагрузку на каждую из фаз. Причем, в идеале, эта работа должна осуществляться без привлечения операторов, то есть, выполняться автоматически при обрыве нуля.
  • Должна иметься возможность оперативного изменения схемы подключения потребителей. Это позволяет внести корректировки, если на этапе проектирования не была должным образом учтена нагрузка на каждый участок или увеличилась мощность потребления в связи с вводом новых объектов. То есть, при возникновении критической ситуации должна иметься возможность изменения мощности. В качестве примера можно привести вариант, когда многоквартирный дом переводится на линию с большей нагрузкой для «разбавления» перекоса фаз, возникающего при обрыве нуля.

В приведенных выше вариантах мы рассматривали защиту от перекосов в глобальных масштабах, конечный потребитель может обеспечить должный уровень защиты значительно проще. Для этого достаточно установить реле контроля напряжения, в котором указать допустимый минимальный и максимальный уровень. Как правило, это ±10% от нормы.

Подведем итоги

Безусловно, что вероятности аварий носят случайный характер, максимум, что можно сделать в таких ситуациях, — принять необходимые меры для обеспечения защиты. Но помимо этого не будет лишним вовремя определить аварийную ситуацию по характерным признакам. В первую очередь отгорание нулевого магистрального провода приводит к перенапряжению сети. Обнаружив первые признаки этого явления, следует отключить все электроприборы.

Сделать это оперативно и самостоятельно практически нереально. Временной промежуток для этого слишком коротким, поэтому следует установить на электрическом щитке специальные приборы, реагирующие на обрыв нуля. Как только напряжение выйдет за установленные пределы, реле контроля напряжения произведет защитное отключение.

Полностью доверять системе защиты не стоит. Может случиться так, что при наличии характерных признаков перепадов напряжения, отключение питания не произойдет. Поэтому имеет смысл перечислить наиболее вероятные проявления для данного явления:

  • Мерцание ламп накаливания. Они наиболее чувствительны к перепаду уровня напряжения, возникающего при обрыве нуля. Энергосберегающие осветительные приборы и светодиодные лампы не настолько реагируют на изменения.
  • Электронные приборы, имеющие встроенную защиту, как правило, отключаются от сети питания. Или не запускаются. Такие действия предусмотрены реакцией защиты импульсных БП на броски напряжения. Характерно, что такая реакция может сработать раньше, чем реле напряжения. Но это, во многом зависит от производителя и схемы реализации защиты электросетей, а также надежности электрического соединения.
  • Еще один характерный признак – повышение температуры выключателя. Даже если Вы не обратили внимания на мерцание ламп, то данное проявление должно вызвать опасения.
  • Искрение, при попытке подключения электроприбора, может говорить об обрыве нуля на вводе однофазного потребителя. Даже, если оно вызвано другим фактором, а не обрывом нуля, это очень нехороший признак.
  • Самопроизвольные срабатывания вводных автоматов, также могут указывать на перенапряжение. Такая реакция на обрыв нуля характерна при включении электронагревательных приборов, например электропечи, бойлера, чайника и т.д.
  • Характерные звуки во вводном электрическом щите также могут указывать на перепады напряжения. В такой ситуации рекомендуется отключить ввод питания и дождаться приезда аварийной бригады. Велика вероятность, что авария обрыва нуля имела место в электросети поставщика.
  • Обязательно установите на вводе электрической сети реле напряжения. В идеале желательно продублировать данную систему стабилизатором напряжения для дома или квартиры. Такое устройство, работая в паре с реле, позволит поддерживать заданный уровень напряжения, не отключая питание.

Собственно, только многоуровневая защита может обеспечить максимальную безопасность.

Хочу все знать

Про кабель и провод и электротехническую продукцию

  1. Вы здесь:
  2. Главная
  3. Хочу все знать
  4. Процесс отгорания нуля в трехфазной сети

Процесс отгорания нуля в трехфазной сети

Достаточно часто питание используемой в быту техники осуществляется строго в однофазном режиме. Стоит понимать, что снабжение их электрической энергией производится по специальным кабелям, которые характеризуются, как трехфазные.

Важно! Вся современная качественная кабельная продукция должна быть рассчитана строго на определенные условия, которые потребуется соблюдать в процессе прокладки проводов и их последующей эксплуатации. Именно по этой причине максимально безопасное их использование автоматически подразумевает определенные допустимые нагрузки и условия применения.

Фразу «Отгорел ноль!» очень часто можно услышать от электрика, который на профессиональном уровне занимается одноименными работами. Мало, кто понимает значение данной фразы. Стоит знать, что в сети, которая характеризуется, как трехфазная, ноль отгорает довольно часто, что же касается однофазной, то здесь нет. Почему так происходит? Какие планы стоит строить на будущее, то есть будет данный «ноль» отрабатывать свои функции или не будет?

Более подробное рассмотрение подобного вопроса даст возможность всем собственникам трехфазного снабжения энергией в жилых домах или иных объектах недвижимости не только ясно понять всю суть происходящего процесса, но также предотвратить все вероятные действия, которые могли привести к отгоранию нуля. Это автоматически может привести к тому, что значительно снизится вероятность появления проблем, которые могут быть связаны с подобным процессом.

Ноль в стандартной цепи однофазной

В обычных однофазных целях под понятием «ноль» подразумевается один только из двух основных проводников, который не имеет требуемого потенциала относительно «земли».

Фаза, то есть второй проводник, в отличие от первого имеет подобный потенциал. Обычно в стандартных бытовых условиях он равняется примерно 220 В. Ток, который течет по данной фазе, постоянно равен тому , который перемещается по «нулю». Определенных тенденций к проблемам «отгорания нуля» в стандартной однофазной линии нет. Кроме того, подобные линии очень надежно защищены особой недорогой по стоимости автоматической системой.

Ноль в трехфазной цепи

Перед тем, как более подробно рассмотреть данный вопрос, необходимо отметить, что трехфазные линии могут быть двух основных типов. Они отличаются по методу подключения общей нагрузки к фазам, что именуются, как «звезда» и особый «треугольник». В последнем случае, столь необходимого соединения «треугольник»- ноль, просто нет, потому он не отгорает. Что же касается трехфазной схемы нагрузки по такой схеме, как «звезда», данное явление может появиться, как специальный проводник. Именно его работа и будет рассмотрена более подробно.

  • По всем трем из присутствующих фаз при совершенно равной по параметрам нагрузке перемещаются токи, имеющие равные показатели. Они изменены немного по особой временной фазе примерно на 120 градусов, то есть на одну третью часть общего периода. При сложении данные показатели равны, но особым образом смещенные значения параметров векторов перемещающегося тока дают в значении ноль. В такой ситуации нагрузка зовется трехфазной и одновременно сосредоточенной. Подобный ток по специальному одноименному проводу проводится только если сложится идеальная ситуация. В таком случае полностью обесточенный «ноль», по сути, и не нужен совсем.

На самом деле идеала такого плана не существует, так как общие нагрузки рабочих фаз обычно немного различаются. Соответственно, сложенный вектор тока немного отличается от нулевого. В данном случае компенсация не осуществляется. По нулевому проводнику перемещается относительно небольшой по показателям уравнительный ток.

На основании такой определенной незначительности уравнительного тока, в большинстве трехфазных проводов есть еще одна жила, которая именуется, как нулевая. Ее сечение примерно в два раза меньше данных показателей у фазных проводников. Данные устройства применяются для значительно экономии дорогой по стоимости меди, категории электротехнической, а также алюминия. Стоит отметить, что таких токов совершенно не хватит для появления «отгорания нуля». В чем дело?

  • Это основано на таком факторе, что в трехфазную линию включены разные по назначению однофазные степени нагрузки. Разница в показателях величины здесь бывает достаточно серьезной, в таком случае речь может идти о таком явлении, которое имеет название «перекос фаз». Многие современные проектировщики всеми возможными методами сравнивают присутствующие нагрузки, но это далеко не всегда срабатывает. Как бы равномерно не распределять все установленные мощности, общее время запуска всех присутствующих приборов предупредить просто невозможно. Также нельзя компенсировать их по остальным, потому настоящего полноценного равенства получиться не может.

Обычные обыватели в процессе ведения бытовых дел включают все приборы, совершенно не заботясь о благе для всех кабельных линий, а также об их нагрузке, которая является несимметричной. Человек стремится запустить или выключить, совершенно не заботясь о токах, присутствующих в жиле.

Даже в ситуации, когда общая сумма всех токов не равняется нулевому показателю, тока экстремальной категории в нулевом кабеле нет. Это достаточно неприятно, но можно стерпеть. При этом ноль отгорает очень редко.

В каких тогда случаях отгорает ноль?

Многие на основании выше изложенной информации могут сделать вывод, что информацией с отгоревшим нулем может просто заморочить голову. По-своему такие мысли являются вполне обоснованными. Но есть одно важное «но»: для значительной экономии электрической энергии примерно в 1990 году было внедрено важное новшество – это специальный блок питания, характеризующийся, как импульсный. В настоящее время его устанавливают везде – в обычные телевизоры, персональные компьютеры, а также в большинство единиц техники.

Необходимо понимать, что в подобных блоках питания ток перемещается по трети всей длины протяженности полупериода. Это и превращает потребление в непонятный процесс для стандартной сети, чего не скажешь об обычной нагрузке, но с некоторыми последствиями. К ним можно отнести следующие факторы:

  • В трехфазной сети через определенное врем начинают течь и совершенно не компенсироваться присутствующие импульсные токовые показатели, которые уходят в нулевой кабель совершенно бесконтрольно;
  • По нулю все время протекают токи на совершенно разных фазах от ассиметричной нагрузки;

Если сложить это все вместе, может случиться так, что ток, который идет по «нулю» и при этом значение у него может быть приблизительное или немного больше номинального фазного параметра тока. Это и есть отгорание нуля. Все отлично, если в данной ситуации трехфазный провод будет иметь определенное нулевое сечение, так же, как и фазы. Что же делать, если этого нет?

Ситуацию такого плана в состоянии спаси умная, надежная и достаточно оперативная автоматическая защита. Но даже здесь не все так идеально, так как очень часто для серьезной экономии покупают особые трехфазные автоматы, не имеющие «нулевой» клеммы. Это основано на том, что по всем фазам перемещается ток строго в номинальных пределах, такого плана автомат сторожит эффективную безопасность для всех фаз, при этом о нуле позаботиться просто некому.

При серьезных нагрузках часто осуществляется обрыв. Это еще одна из причин, по которой обычно отгорает ноль. Если общее значение всех токов будет больше нормы, это тоже приведет к подобному процессу.

Количество техники, которая работает на импульсном питании, постоянно увеличивается. Это повышает опасность появления процесса отгорания всех присутствующих нулевых проводов, а общая ситуация становится все хуже.

Важно! Не рекомендуется ставить отдельно расположенный автомат на нулевой кабель, потому что это очень опасно. Причина этого основана на том, в процессе его полного выключения токи будут подбирать для себя выход посредством определенных фазных проводов. Автоматически это приведет к неприятным результатам, предсказать которые невозможно.

Стоит обратиться к профессионалам, которые могут составить грамотный с технической точки зрения проект, в нем будут учтены все нюансы. Кроме того, специалисты могут провести максимально качественный монтаж и последующий запуск сети разного уровня сложности и длины.

Отгорание нуля в трехфазной сети: современные проблемы электросетей

Причины отгорания нуля в трехфазной сети

Отгорание нуля в однофазной сети, то есть в пределах одного дома или квартиры не принесет вреда бытовой технике. В этом случае пропадёт напряжение сети 220 В, а фазный провод останется под потенциалом. В другом варианте, когда произойдёт отгорание нуля в трехфазной сети, может не выдержать бытовая техника повышенного напряжения.

Защита от отгорания нуля в квартире

При отгорании нуля в трехфазной сети, напряжение в квартире может достигнуть 380 В. Такого напряжения, не выдержит ни один бытовой прибор. Как известно к электрощиту на площадке вашего этажа подведен четырех жильный трехфазный кабель.

Три фазы, которого распределяются по квартирам равномерно, а нулевой провод (сечение его в 2 раза меньше фазного) является общим для всех квартир. Если отгорит ноль в вашей квартире, тогда просто пропадет напряжение. Но если отгорает общий ноль с кабеля на электрощите в подъезде, тогда вся ваша техника окажется под угрозой повышенного напряжения.

Повышенное напряжение приходит через какую-либо нагрузку (бойлер, электроплита, электрический чайник) от вашего соседа, имеющего другую фазу, чем ваша. Фаза соседа — включенный чайник — нулевой провод. То есть фаза через ваш нулевой провод окажется на вашем нуле. Это напряжение может достигнуть 380 В (в зависимости от нагрузки соседа).

Особенности нулевого провода трехфазной сети

В промышленности электросеть может собираться по схеме “треугольник” или “звезда”. Для нужд населения используется сеть по схеме “звезда” с нулевым проводником. Как известно три фазы трехфазной сети сдвинуты относительно друг друга на 120. В нулевом проводнике токи, сдвинутые на 120, взаимно компенсируются.

Схема соединений нагрузок звезда

При одинаковой нагрузке в каждой фазе, общий ток нулевого провода будет равен нулю. Это в идеале. В действительности нагрузка каждой фазы разные, ведь все потребители нагрузок в многоквартирном доме включаются не согласовано, в разное время и разной мощностью.

Поэтому токи в трехфазной сети в нулевом проводе будут отличаться от нуля. Но всё равно для сети 50 Гц ток в нулевом проводе будет ниже, чем токи в фазных проводах. Поэтому для трехфазных сетей 50 Гц сечение нулевого провода берется в 2 раза ниже фазного. Такие особенности сети можно отнести к прошедшим годам.

Перекос фаз в трехфазной сети, ток нулевого провода не равен нулю

Что же изменилось в современной электросети? С появлением техники на импульсных источниках питания, в сети кроме частоты 50 Гц стали присутствовать и высшие гармоники. Если раньше к сети подключалась только линейная нагрузка (тэны, двигатели, лампы накаливания), то сейчас еще добавились и нелинейные нагрузки с импульсным характером питания.

Все импульсные источники имеют диодные мосты с конденсаторами, которые периодически меняют свое сопротивление (включаясь и отключаясь), с частотой импульсного генератора. Таким образом, при работе импульсного источника появляются короткие импульсы в сети. Присутствие этих коротких импульсов вызывает ряд негативных последствий.

Перегрев нулевого провода

Появление коротких импульсов в сети с нелинейными нагрузками приводит к появлению больших токов нулевого провода в 1,5 раза превышающих фазные токи. Сечение же нулевого провода остается ниже фазного и отсутствует какая-либо защита нулевого проводника.

Всё это приводит к перегрузке нулевого провода и его перегреву. Вероятность отгорания нуля значительно увеличивается. Как следствие, под влиянием токов импульсного характера меняется форма синусоиды напряжения, она становится “плоской”.

Работа электродвигателей и трансформаторов в сетях с искаженной формой синусоиды

Возникающие гармоники в сетях с нелинейной нагрузкой отрицательно действуют на работу трансформаторов, вызывая немалые потери. Увеличение потерь в трансформаторе сопутствует его перегреву, увеличению потребления электроэнергии и выходу его из строя.

Искаженная форма синусоиды сети

Перегрев трансформатора исключает возможность его использования на максимальной мощности, уменьшается время работы в несколько раз. Импульсные помехи в электросетях значительно уменьшают срок службы бытовых приборов из-за их перегрева и быстрого старения изоляции.

В электродвигателях импульсный характер сетей вызывает дополнительное подмагничивание стали, ее перегреву, преждевременному износу и ухудшению характеристик электродвигателя. Гармоники в сетях могут вызвать срабатывание автоматических выключателей из-за дополнительного нагрева его элементов.

Такие импульсные помехи возникают в случае близкого расположения питающих сетей сотовой связи. Иногда можно встретить подключение кабелей сотовой связи к электросетям жилых зданий. В результате страдают жильцы от частого отгорания нуля, выхода из строя бытовой техники и быстрого износа электропроводки.

Определить импульсный характер токов обычными токоизмерительными клещами не получится, так как они рассчитаны на сеть 50 Гц и токи гармоник не видят. Для этой цели можно использовать измерительные приборы имеющие функцию True RMS, которые рассчитаны на обширный частотный диапазон.

Как сделать защиту от отгорания нуля? Для защиты нужно установить реле напряжения в квартирный щиток, на нулевые проводники поставить автоматы. Лучшим решением для защиты своей сети от отгорания нуля и импульсных помех будет использование инверторного стабилизатора, который на выходе даст идеальную синусоиду с частотой 50 Гц с минимальными искажениями.

{SOURCE}

Чем опасен обрыв нуля в однофазной и трехфазной сетях?

Как известно, электрический ток течет по замкнутой цепи, выполняя при этом работу. Домашняя электросеть является одним из множества ответвлений глобальной сети энергоснабжения. Это означает, что для работы домашних электроприборов необходимо, чтобы было подведено минимум два проводника, по которым будет течь ток.

По рациональным причинам, описанным ниже, их называют фазным и нулевым рабочим проводом (N). В данной статье разъясняется функция рабочего нулевого проводника, и описываются проблемы, возникающие, если происходит аварийный обрыв нуля.

Практически все взрослые люди знают, что нулевой проводник сети, работающий в штатном режиме, не представляет угрозы при прикосновении, так как на нем нет опасного для здоровья напряжения. Но, это не означает, что через провод ноля не течет ток – нужно четко различать эти понятия. В идеальной цепи ток фазного и нулевого проводника идентичен.

Функция рабочего ноля

В процессе изучения электричества ученые поняли, что земля (грунт, геологические породы и вся планета целиком) является неплохим проводником электрического тока. В принципе, для энергоснабжения было бы достаточного одного провода с электрическим потенциалом, а грунт бы выполнял функцию обратного участка цепи.

Кривая зависимости удельного сопротивления грунта от влажности

Но прогресс не пошел по этому направлению

Обрыв нуля — особенности и методы защиты

Уже много лет системы электроснабжения используют три фазы как наиболее удобную схему производства и передачи электроэнергии. В генераторе на электростанции есть три обмотки. Каждая соответственно имеет два вывода. Эти выводы можно соединить двумя способами – либо треугольником, либо звездой. Генератор соединяется с трансформатором, который своей высоковольтной стороной соединён с линией электропередачи — ЛЭП.

При передаче электроэнергии по ЛЭП потребителю в конце электрической цепи всегда используется, как минимум, два трансформатора. Потребитель М подключён к вторичным обмоткам Т последнего. Они соединены по схеме звезда с нулевым проводом:

Провод с зелёной стрелкой называется либо «нулевой», либо «нейтраль». И при нарушении его целостности используется популярная фраза: «обрыв нуля». Хотя фраза «обрыв нейтрали» по сути то же самое.

Особенность нейтрали

Каждая обмотка трансформатора питающего потребителя в трёхфазной сети содержит два вывода, один из которых соединён с нейтралью. В месте соединения с нейтралью получается узел, в котором суммируются токи всех фаз. И они далее текут в «нулевом» проводе. По этой причине нейтраль является наиболее нагруженной в трёхфазной схеме «звезда с нулевым проводом». Чтобы уменьшить нагрузку на провод и связанные с этим нагрев и потери электроэнергии его заземляют.

Грунт получается аналогом проводника, который проложен параллельно нейтрали и берёт на себя часть её токовой нагрузки. Но такое облегчение возможно только между местами заземления. Поэтому в пределах тех или иных зданий, подключенных четырёхжильным кабелем или четырех — проводной линией электропередачи появляется перегруженный нулевой провод. И если происходит его обрыв по той или иной причине возникает обрыв нуля с возможными неприятностями.

Что происходит при обрыве?

Промышленные объекты обычно используют все три фазы, особенно при наличии электромоторов и станков. При этом каждый потребитель электроэнергии на таких объектах имеет регулярно проверяемое заземление. Также там применяется специальная защита от обрыва нуля. Поэтому если такая неприятность и произойдёт, её последствия при соблюдении всех необходимых предосторожностей будут ощутимы незначительно.

В многоэтажных домах и частном секторе все потребители подключены к фазному напряжению 220 В. А три обмотки трансформатора, которые обеспечивают их электроснабжение, распределяются между подъездами, этажами, домами, улицами.

Электроприборы в них рассчитаны для напряжения 220В. А при обрыве нуля образуется три электрические цепи из потребителей соседних фаз: Za-Zb, Za-Zc и Zb-Zc (смотрим первое изображение).

Каждая цепь находится под напряжением 380 В. А его величина на потребителях определяется значением Z. На потребителе с большим значением Z будет большая величина напряжения. При этом не исключена вероятность того, что оно превысит предельно допустимое значение для некоторых электроприборов, и они испортятся. Ведь ток при увеличении питающего напряжения возрастает не столь значительно, чтобы плавкий предохранитель сгорел, а пробка – автомат или выключатель отключились.

Они, скорее всего, сработают от поломки чего-либо в подключенных устройствах. Наиболее вероятные кандидатуры – холодильники, стиральные машины, электролитические конденсаторы в выпрямителях телевизоров и других радиоэлектронных устройств, лампы накаливания. Последствия такой аварии непредсказуемы особенно в дневное время.

Ведь самым заметным признаком её будет более яркое свечение ламп накаливания и люминесцентных ламп с не электронными балластами. А днём они не светят. Поэтому по функционированию стиральной машины или холодильника, скорее всего не получится определить обрыв нуля. А поскольку для ремонта нейтрали потребуются как минимум часы, их двигатели имеют время для поломки.

Какие защитные меры могут быть?

Самая простая мера для защиты электрооборудования в многоквартирном доме это надёжное заземление нулевого провода на распределительном щите лестничной клетки. В частном доме для заземления можно использовать трубу скважины для воды или иные глубоко зарытые металлические конструкции. В крайнем случае, надо сделать хорошее заземление – обрыв нуля в частном секторе домов и дач существенно выше, чем в городе. Здесь имеет значение большая протяжённость уличных проводов и погодные условия.

Более дорогая защита потребует использования мощных нормально замкнутых контактов реле, которое сработает при обрыве нуля и отключит щиток со электросчётчиком. Обмотка реле включается между нулевой шиной и землёй. Но можно сделать защиту от повышения напряжения на входе электросчётчика. Такая схема чуть сложнее, но не учитывает качество заземления.

Словом затраты для принятия мер по защите от обрыва нуля будут в любом случае, но они намного меньше чем возможные последствия от порчи электрооборудования.

Обрыв нулевого провода | Проектирование электроснабжения

Обрыв нулевого провода (N) – очень опасное явление, возникающее в электроустановках. Случается, что в одних квартирах выгорают электроприборы, а в других остаются работоспособными. Рассмотрим, с чем связано это явление.

Все многоквартирные дома имеют трехфазный ввод. В новых домах все сети уже пятипроводные L1+L2+L3+N+PE, т.е в каждую квартиру приходит три провода, а в старых домах сети выполнены четырехпроводными L1+L2+L3+PEN. В таких домах все квартиры (потребители) равномерно распределяют на три фазы.

Но, у трехфазных сетей есть два существенных недостатка: обрыв нулевого провода и перекос фаз, когда одна или две фазы нагружены больше, чем остальные.

В зависимости от того, в каком месте произошел обрыв нулевого провода, возможны различные последствия от этой аварийной ситуации.

1 Обрыв нуля (PEN-провода) в питающем кабеле, например на подстанции питающей наш дом.

В таком случае, наверное, мы даже и не заметим, что произошел обрыв нулевого провода, поскольку все электроустановки должны иметь повторное заземление. В нормальных условиях заземлитель будет состоять из двух контуров: на подстанции (4 Ом) и контура повторного заземления (около 30 Ом), которые соединены через PEN-проводник. При обрыве нуля у нас останется один контур, что вполне безопасно, если сделано так, как показано на картинке ниже:

Обрыв нулевого провода на ТП

2 Обрыв нуля в кабеле, питающем этажные щитки, например «отгорел» N-провод (PEN-провод) в вводно-распределительном щите здания (ВРУ, ГРЩ).

Такое явление очень опасно. Именно в таких случаях происходит массовый выход из строя электроприборов. При обрыве нуля или значительном увеличении сопротивлении (плохой контакт между проводом и шиной N) происходит «перекос фаз». В квартирах, где включено мало электроприборов напряжение увеличивается и может достигать чуть ли не 380В, а в других квартирах, где в это время включены мощные электрические приборы, наоборот напряжение может упасть ниже 220В. Низкое напряжение может также привести к выходу из строя некоторых приборов.

Обрыв нулевого провода после ВРУ

Для защиты рекомендуется в квартирном щитке установить расцепитель минимального/максимального напряжения.

3 Обрыв нуля в квартирном щитке.

Этот случай повлияет только на вашу квартиру. Электроприборы работать не будут, но в розетках может наблюдаться вторая фаза, которая может попасть в нулевой провод через лампочку. Вернее это одна и та же фаза. Мультиметр покажет в розетке 0 В, а индикаторная отвертка будет светится в двух полюсах розетки. А если еще вы решили заземлить, например, вашу стиральную машину нулевым проводом, то на корпусе машины будет опасное напряжение.

Две фазы в розетке

Ни в коем случае не используйте нулевой провод для заземления! Только PE-провод.

Теперь начинаешь понимать некоторые нормативные требования, такие как: повторное заземление, запрет присоединения нулевого и защитного проводников под общий зажим, 5-проводные (3-проводные) сети.

Если я где-то не прав, то вы меня, пожалуйста, поправьте

Советую почитать:

Обрыв «нуля» в цепи переменного тока. Всегда ли это опасно?

Наверное, многие слышали о таком явлении в цепях переменного тока как обрыв нулевого провода. Данное явление возникает довольно редко и может приводить к скачкам или просадкам напряжения, что может повлиять не только на нормальную работу приборов, но и на их целостность.

Физический смысл нулевого провода

Как известно из электротехники, а именно из первого закона Кирхгофа, что сумма токов в узле будет равна нулю. Соответственно зависимость между фазными токами и током нулевого проводника будет иметь вид:

зависимость между фазными токами и током нулевого проводника

В случае если нагрузка трех фаз симметрична (что бывает крайне редко для жилых домов):

зависимость между фазными токами и током нулевого проводника при симметричной нагрузке

Общий вид схемы соединения:

Схема соединения фаз звездой

Из схемы соединения и полученных соотношений токов можно сделать вывод, что через нулевой проводник будет протекать уравнительный ток в случае ассиметричной фазной нагрузки. То есть благодаря нулевому проводнику будет производится выравнивание межфазной нагрузки путем протекания уравнительного тока от источника к нагрузке. В случае когда данный проводник будет оборван выравнивания не будет и нагрузка каждой фазы будет влиять на напряжение и ток другой фазы, таким образом, на остальных фазах возможны колебания напряжений от минимума к максимуму. Это означает, что если фазное напряжение 220 В, то при обрыве нуля в некоторых случаях оно может достигать 380 В, что опасно для электроприборов. Но ведь данный провод может оборваться в различных местах. И всегда ли будут печальные последствия для потребителя?

Обрыв нулевого провода на пути от подстанции к потребителю

В данном случае все будет зависеть от типа системы заземления и ее реализации. Если используется система типа TN-C, то в таком случае возможны скачки напряжения и последствия могут быть не самыми приятными. Это вызвано особенностью данной системы. Если же используется система типа TN-C-S c повторным заземлением непосредственно в самом доме, то в данном случае обрыв нуля не будет иметь печальных последствий, ведь нагрузку заземленного PEN проводника возьмет на себя контур заземления реализованный в самом доме.

Система-заземления-TN-C-S при обрыве нуля

 Обрыв нулевого провода в этажном щитке

А вот при обрыве нулевого провода в этажном щитке тип системы заземления не защитит. Здесь может возникать перекос фаз при несимметричной нагрузке, при чем напряжение может достигать как максимальных значений (380 В), так минимальных (может снижаться чуть ли не до нуля). Величина перекосов будет зависеть от включенных в квартирах электроприборов (их количества и мощности). Для защиты от такого явления можно использовать расцепители максимального и минимального напряжения или реле напряжения устанавливаемые в квартирном щитке.

Система защитного заземления типа TN-C-S при однофазном вводе в квартиру

Обрыв нуля в квартирном щитке

В данном случае обрыв нуля повлияет только на вашу квартиру и не приведет к броскам напряжения.

Обрыв нуля в квартирном щитке

При таком варианте обрыва как показан на рисунке, при замкнутом контакте в точке 1 будет присутствовать потенциал. Также в таком случае, если делали контур заземления через нулевой проводник, на корпусах этих приборов также будет присутствовать потенциал.

Трёхфазная система электроснабжения — Википедия

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.

Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C[1].

Распространённые обозначения фазных проводов:

Россия, EC (выше 1000 В)Россия, ЕС (ниже 1000 В)ГерманияДания
АL1L1R
BL2L2S
CL3L3T
Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда» Векторная диаграмма фазных токов. Симметричный режим. Графическое представление зависимости фазных токов от времени Возможная схема разводки трёхфазной сети в многоквартирных жилых домах
  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
  • Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
  • Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
  • Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
  • Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Звезда[править | править код]

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку.

Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.

Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.

Линейные и фазные величины[править | править код]

Напряжение между фазным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя фазными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

IL=IF;UL=3×UF{\displaystyle I_{L}=I_{F};\qquad U_{L}={\sqrt {3}}\times {U_{F}}}

Несложно показать, что линейное напряжение сдвинуто по фазе на π/6{\displaystyle \pi /6} относительно фазных:

uLab=uFa−uFb=UF[cos⁡(ωt)−cos⁡(ωt−2π/3)]=2UFsin⁡(−π/3)sin⁡(ωt−π/3)=3UFcos⁡(ωt+π−π/3−π/2){\displaystyle u_{L}^{ab}=u_{F}^{a}-u_{F}^{b}=U_{F}[\cos(\omega t)-\cos(\omega t-2\pi /3)]=2U_{F}\sin(-\pi /3)\sin(\omega t-\pi /3)={\sqrt {3}}U_{F}\cos(\omega t+\pi -\pi /3-\pi /2)}

uL=3UFcos⁡(ωt+π/6){\displaystyle u_{L}={\sqrt {3}}U_{F}\cos(\omega t+\pi /6)}

Мощность трёхфазного тока[править | править код]

Для соединения обмоток звездой, при симметричной нагрузке, мощность трёхфазной сети равна P=3UFIFcosφ=3UL3ILcosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3{\frac {U_{L}}{\sqrt {3}}}I_{L}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }

Последствия отгорания (обрыва) нулевого провода в трёхфазных сетях[править | править код]
Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах Шины для раздачи нулевых проводов (синяя) и проводов заземления (зелёная)

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Несмотря на это, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый перекос фаз, в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной выхода из строя бытовой электроники в квартирных домах, который может приводить к пожарам. Пониженное напряжение также может послужить причиной выхода из строя техники.

Проблема гармоник, кратных третьей[править | править код]

Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пиков синусоиды питающего напряжения на интервалах зарядки конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания. Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ Р 54149-2010, ГОСТ 32144-2013 (с 1.07.2014), ОСТ 45.188-2001.


Треугольник[править | править код]


Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями[править | править код]

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

IL=3×IF;UL=UF{\displaystyle I_{L}={\sqrt {3}}\times {I_{F}};\qquad U_{L}=U_{F}}

Мощность трёхфазного тока при соединении треугольником[править | править код]

Для соединения обмоток треугольником, при симметричной нагрузке, мощность трёхфазного тока равна:

P=3UFIFcosφ=3ULIL3cosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3U_{L}{\frac {I_{L}}{\sqrt {3}}}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }

Распространённые стандарты напряжений[править | править код]

СтранаЧастота, ГцНапряжение (фазное/линейное), Вольт
Россия [2]50220/230 [3] (бытовые сети)
230/400, 380/660, 400/690, 380, 400, 220/380, 3000, 6000, 10000 (промышленные сети)[источник не указан 544 дня]
Страны ЕС50230/400,
400/690 (промышленные сети)

660

450

Япония50 (60)120/208
США60120/208,
277/480
240 (только треугольник)

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования — фазировка (чередование фаз, то есть очерёдность протекания токов по фазам) принципиальна, так как от неё зависит направление вращения трёхфазных двигателей, правильная работа управляемых трёхфазных выпрямителей и некоторых других устройств. В разных странах маркировка проводников имеет свои различия, однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

P=3U_{F}I_{F}cos\varphi =3U_{L}{\frac {I_{L}}{\sqrt {3}}}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi Трёхфазная двухцепная линия электропередачи

Цвета фаз[править | править код]

Каждая фаза в трёхфазной системе имеет свой цвет. Он меняется в зависимости от страны. Используются цвета международного стандарта IEC 60446 (IEC 60445).

СтранаL1L2L3Нейтраль / нольЗемля

/ защитное заземление

Россия, Белоруссия, Украина, Казахстан (до 2009), КитайБелыйЧерныйКрасныйГолубойЖёлто/зелёный (в полоску)
Европейский союз и все страны которые используют европейский стандарт CENELEC с апреля 2004 (IEC 60446), Гонконг с июля 2007, Сингапур с марта 2009, Украина, Казахстан с 2009, Аргентина, Россия с 2009КоричневыйЧёрныйСерыйГолубойЖёлто/зелёный (в полоску)[4]
Европейский союз до апреля 2004[5]КрасныйЖёлтыйГолубойЧёрныйЖёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Индия, Пакистан, Великобритания до апреля 2006, Гонконг до апреля 2009, ЮАР, Малайзия, Сингапур до февраля 2011КрасныйЖёлтыйГолубойЧёрныйЖёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Австралия и Новая ЗеландияКрасный (или коричневый)[6]Белый (или чёрный)

(ранее — жёлтый)

Тёмно синий (или серый)Чёрный (или голубой)Жёлто/зелёный (в полоску)

(зелёный в очень старых установках)

Канада (обязательный)[7]КрасныйЧёрныйГолубойБелый или серыйЗелёный или цвета меди
Канада (в изолированных трехфазных установках)[8]ОранжевыйКоричневыйЖёлтыйБелыйЗелёный
США (альтернативная практика)[9]КоричневыйОранжевый (в системе треугольник), или

фиолетовый (в системе звезда)

ЖёлтыйСерый или белыйЗелёный
США (распространённая практика)[10]ЧёрныйКрасныйГолубойБелый или серыйЗелёный, жёлто/зелёный (в полоску),[11] или провод цвета меди
НорвегияЧёрныйБелый/серыйКоричневыйГолубойЖёлто/зелёный (в полоску), в более старых установках может встречаться только жёлтый или цвета меди
  1. ↑ Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
  2. ↑ Согласно ГОСТ 29322-2014
  3. ↑ Согласно ГОСТ 29322-2014
  4. ↑ Жёлто-зелёная маркировка была принята как международный стандарт для защиты от поражения эл.током дальтоников. От 7 % до 10 % людей не могут точно распознать красный и зелёные цвета.
  5. ↑ В Европе ещё осталось много установок со старой цветовой схемой начала 1970-х. В новых установках используются жёлто/зелёные шины заземления в соответствии с IEC 60446. (Фаза/ноль+земля; Германия: чёрный/серый + красный; Франция зелёный/красный + белый; Россия: красный/серый + чёрный; Швейцария: красныйd/серый + жёлтый или жёлтый и красный; Дания: белый/чёрный + красный
  6. ↑ В Австралии и Новой Зеландии фазы могут быть люього цвета, но только не жёлто-зелёного, зелёного, жёлтого, чёрного или голубого цвета.
  7. ↑ Canadian Electrical Code Part I, 23rd Edition, (2002) ISBN 1-55324-690-X, rule 4-036 (3)
  8. Canadian Electrical Code (англ.)русск. 23-е издание 2002 года, правила 24-208(c)
  9. ↑ Начиная с 1975 в США National Electric Code (англ.)русск. не имел специальных обозначений фаз. По сложившейся практике для соединения звезда 120/208 фазы маркировались чёрным, красным и голубым цветом, а при соединении звезда или треугольник 277/480 фазы обозначались коричневым, оранжевым и жёлтым. В системе 120/240 треугольник с наибольшим напряжением 208 вольт (обычно фаза B) всегда обозначалась оранжевым, общая фаза A была чёрного цвета, а фаза C — красной или голубой.
  10. ↑ See Paul Cook: Harmonised colours and alphanumeric marking Архивная копия от 4 марта 2016 на Wayback Machine. IEE Wiring Matters, Spring 2006.
  11. ↑ В США провод жёлто-зелёного цвета (в полоску) может обозначать изолированную землю[неизвестный термин]. Сегодня в большинстве стран, жёлто-зелёные (в полоску) провода используются для защитного заземления и не могут быть отсоеденины и использованы для других целей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *