Обозначения в графических схемах. Часть 2
Для удобства воспользуйтесь поиском, это комбинация клавиш Ctr+F
Таблица 6 (г):
Наименование | Обозначение |
1. Постоянный ток, основное обозначение | |
Примечание. Если невозможно использовать основное обозначение, то используют следующее обозначение | |
2. Полярность постоянного тока: | |
б) отрицательная | |
3. m проводная линия постоянного тока напряжением U, например: | |
а) двухпроводная линия постоянного тока напряжением 110 В | |
б) трёхпроводжная линия постоянного тока, включая средний провод, напряжением 110 В между каждым внешним проводником и средним проводом 220 В — между внешними проводниками | |
4. Переменный ток, основное обозначение | |
Примечание. Допускается справа от обозначения переменного тока указывать величину частоты, например переменного тока частотой 10 кГц | |
5. Переменный ток с числом фаз m, частотой f, например переменный трёхфазный ток частотой 50 Гц | |
6. Переменный ток числом фаз m, частотой f, напряжением U, например: | |
а) переменный ток, трёхфазный, частотой 50 Гц, напряжением 220 В | |
б) переменный ток, трёхфазный, четырёхпроводная линия (три провода, нейтраль) частотой 50 Гц,напряжением 220/380 В | |
в)переменный ток, трёхфазный, пятипроводная линия (три провода фаз, нейтраль, один провод защитный с заземлением) частотой 50 Гц, напряжением 220/380 В | |
г) переменный ток, трёхфазный, четырёхпроводная линия (три провода фаз, один защитный провод с заземлением, выполняющий функцию нейтрали) частотой 50 Гц, напряжением 220/380 В | |
7. Частоты переменного тока (основные обозначения): а) промышленные | |
б) звуковые | |
в) ультразвуковые и радиочастоты | |
г) сверхвысокие | |
8. Постоянный и переменный ток | |
9. Пульсирующий ток |
Таблица 6 (д)
Наименование | Обозначение |
1. Однофазная обмотка с двумя выводами | |
2. Однофазная обмотка с выводом от средней точки | |
3. Две однофазные обмотки, каждая из которых с двумя выводами | |
4. Три однофазные обмотки, каждая из которых с двумя выводами | |
5. m однофазных обмоток, каждая из которых с двумя выводами | |
6. Двухфазная обмотка с раздельными фазами | |
7. Трёхфазная обмотка с раздельными фазами | |
8. Многофазная обмотка n с числом раздельных фаз m. Примечание. к пп. 6-8. Обозначения применяются для обмоток с раздельными фазами, для которых допускаются различные способы внешних соединений | |
9. Двухфазная трёхпроводная обмотка | |
10. Двухфазная четырёхпроводная обмотка | |
11. Двух-трёхфазная обмотка Т-образного соединения (обмотка Скотта) | |
12. Трёхфазная обмотка V-образного соединения двух фаз в открытый треугольник | |
Примечание. Допускается указывать угол, под которым включены обмотки, например под углами 60 и 120 градусов | |
13. Трёхфазная обмотка, соединённая в звезду | |
14. Трёхфазная обмотка, соединённая в звезду, с выведенной нейтралью | |
15. Трёхфазная обмотка, соединённая в звезду, с выведенной заземлённой нейтралью | |
16. Трёхфазная обмотка, соединённая в треугольник | |
17. Трёхфазная обмотка, соединённая в разомкнутый треугольник | |
18. Трёхфазная обмотка, соединённая в зигзаг | |
19. Трёхфазная обмотка, соединённая в зигзаг, с выведенной нейтралью | |
20. Четырёхфазная обмотка | |
21. Четырёхфазная обмотка с выводом от средней точки | |
22. Шестифазная обмотка , соединённая в звезду | |
23. Шестифазная обмотка , соединённая в звезду, с выводом от средней точки | |
24. Шестифазная обмотка , соединённая в двойную звезду | |
25. Шестифазная обмотка , соединённая в две обратные звезды | |
26. Шестифазная обмотка , соединённая в две обратные звезды, с раздельными выводами от средних точек | |
27. Шестифазная обмотка , соединённая в два треугольника | |
28. Шестифазная обмотка , соединённая в шестиугольник | |
29. Шестифазная обмотка , соединённая в двойной зигзаг | |
30. Шестифазная обмотка , соединённая в двойной зигзаг, с выводом от средней точки |
Таблица 6 (е)
Таблица 6 (ж)
Таблица 6 (з)
Таблица 6 (и)
Таблица 6 (к)
Таблица 6 (л)
Таблица 6 (м)
Таблица 6 (н)
Таблица 7
ПРИЛОЖЕНИЕ 1:
Термины, применяемые в стандарте, и их пояснения
Термин | Пояснение |
Электрическая связь | Проводящая среда, электрически соединяющая группу точек электрического соединения (электрических контактов) |
Линия электрической связи | Условное графическое обозначение электрической связи, показывающее путь прохождения тока. Примечание. Линия электрической связи не даёт информации о проводах (кабелях, шинах), осуществляющих данную электрическую связь |
Ответвление линии электрической связи | Условное изображение электрического узла, в котором происходит сложение и вычитание токов. Примечание. Ответвления линий электрической связи не дают информации о реальных электрических контактах, соединённых данной электрической связью |
Линия групповой связи | Линия, условно изображающая группу линий электрической связи (проводов, кабелей, шин), следующих на схеме в одном направлении. |
Графическое слияние линий электрической связи (проводов, кабелей, шин) | Упрощённое изображение нескольких электрически не соедиинённых линий связи ( проводов, кабелей, шин), использующих линию групповой связи. |
ПРИЛОЖЕНИЕ 2:
Размеры (в модульной сетке) основных условных графических обозначений
Источник тока — Википедия
Обозначение источника тока на схемах (вариант)Исто́чник то́ка (в теории электрических цепей) — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока.
Источник тока используется в качестве простейшей модели некоторых реальных источников электрической энергии или как часть более сложных моделей реальных источников, содержащих другие электрические элементы. Следует заметить, что электрические характеристики реальных источников могут быть близки к свойствам источника тока или его противоположности — источника напряжения.
В электротехнике источником тока называют любой источник электрической энергии.
Идеальный источник тока[править | править код]
Сила тока, текущего через идеальный источник тока, всегда одинакова по определению:
- I=const{\displaystyle I={\text{const}}}
Напряжение на клеммах идеального источника тока (не путать с реальным источником!) зависит только от сопротивления R{\displaystyle R} подключенной к нему нагрузки:
- U=I⋅R{\displaystyle U=I\cdot R}
Мощность, отдаваемая источником тока в нагрузку:
- P=I2⋅R{\displaystyle P=I^{2}\cdot R}
Поскольку ток через идеальный источник тока всегда одинаков, то напряжение на его клеммах и мощность, передаваемая им в нагрузку, с ростом сопротивления нагрузки возрастают, достигая в пределе бесконечных значений.
Реальный источник[править | править код]
В линейном приближении любой реальный источник тока (не путать с описанным выше источником тока — моделью!) или иной двухполюсник может быть представлен в виде модели, содержащей, по меньшей мере, два элемента: идеальный источник и внутреннее сопротивление (проводимость). Одна из двух простейших моделей — модель Тевенина — содержит источник ЭДС, соединенный последовательно с сопротивлением, а другая, противоположная ей, модель Нортона — источник тока, соединенный параллельно с проводимостью (т. е. идеальным резистором, свойства которого принято характеризовать значением проводимости). Соответственно, реальный источник в линейном приближении может быть описан при помощи двух параметров: ЭДС E{\displaystyle {\mathcal {E}}} источника напряжения (или силы тока I{\displaystyle I} источника тока) и внутреннего сопротивления r{\displaystyle r} (или внутренней проводимости y=1/r{\displaystyle y=1/r}).
Можно показать, что реальный источник тока с внутренним сопротивлением r{\displaystyle r} эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление r{\displaystyle r} и ЭДС E=I⋅r{\displaystyle {\mathcal {E}}=I\cdot r}.
Напряжение на клеммах реального источника тока равно
- Uout=IR⋅rR+r=IR1+R/r.{\displaystyle U_{\text{out}}=I{\frac {R\cdot r}{R+r}}=I{\frac {R}{1+R/r}}.}
Сила тока в цепи равна
- Iout=IrR+r=I11+R/r.{\displaystyle I_{\text{out}}=I{\frac {r}{R+r}}=I{\frac {1}{1+R/r}}.}
Мощность, отдаваемая реальным источником тока в сеть, равна
- Pout=I2R(1+R/r)2.{\displaystyle P_{\text{out}}=I^{2}{\frac {R}{\left(1+R/r\right)^{2}}}.}
Реальные генераторы тока имеют различные ограничения (например, по напряжению на его выходе), а также нелинейные зависимости от внешних условий. В частности, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.
Источником тока является катушка индуктивности, по которой шёл ток от внешнего источника, в течение некоторого времени (t≪L/R{\displaystyle t\ll L/R}) после отключения источника. Этим объясняется искрение контактов при быстром отключении индуктивной нагрузки: стремление к сохранению тока при резком возрастании сопротивления (появление воздушного зазора) приводит к резкому возрастанию напряжения между контактами и к пробою зазора.
Вторичная обмотка трансформатора тока, первичная обмотка которого последовательно включена в мощную линию переменного тока, может рассматриваться как почти идеальный источник переменного тока. Следовательно, размыкание вторичной цепи трансформатора тока недопустимо. Вместо этого при необходимости перекоммутации в цепи вторичной обмотки (без отключения линии) эту обмотку предварительно шунтируют.
Источники тока широко используются в аналоговой схемотехнике, например, для питания измерительных мостов, для питания каскадов дифференциальных усилителей, в частности операционных усилителей.
Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем. Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:
В схеме токового зеркала (рисунок 2) ток нагрузки в правой ветви задается равным эталонному току в левой ветви, так что по отношению к нагрузке R2 эта схема выступает как источник тока.
Существуют различные варианты обозначений источника тока. Наиболее часто встречаются обозначения (a) и (b). Вариант (c) устанавливается ГОСТ[1] и IEC[2]. Стрелка в кружке указывает положительное направление тока в цепи на выходе источника. Варианты (d) и (e) встречаются в зарубежной литературе. При выборе обозначения нужно быть осмотрительным и использовать пояснения, чтобы не допускать путаницы с источниками напряжения.
Рисунок 3. Обозначения источника тока на схемах- ↑ ГОСТ 2.721-74 Единая система конструкторской документации. Обозначения условные графические в схемах. Обозначения общего применения.
- ↑ IEC 617-2:1996. Graphical symbols for diagrams — Part 2: Symbol elements, qualifying symbols and other symbols having general application
- Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3.
Батарейки в электрических цепях
Полярность цилиндрической батарейки Условное графическое обозначение
и условное графическое обозначение. батарейки на схеме в соответствии с ГОСТ.
Обозначение батарейки на электрических схемах содержит короткую черту, обозначающую отрицательный полюс и длинную черту – положительный полюс. Одиночную батарейку, используемую для питания прибора, на схемах обозначают латинской буквой G, а батарею, состоящую из нескольких батареек буквами GB.
Примеры использования обозначения батареек в схемах.
Самое простое условное графическое обозначение батарейки или аккумулятора в соответствии с ГОСТ использовано в схеме 1. Более информативное обозначение батареи в соответствии с ГОСТ использовано в схеме 2, здесь отражено количество батареек в составе групповой батареи, указано напряжение батареи и положительный полюс. ГОСТ допускает использовать обозначение батареи, примененное в схеме 3.
Часто в бытовой технике встречается использование нескольких цилиндрических батареек. Включение различного количества последовательно соединенных батареек позволяет получать источники питания, обеспечивающие различное напряжение. Такой батарейный источник питания дает напряжение равное сумме напряжений всех входящих батареек.
Последовательное соединение трех батареек с напряжением 1,5 вольта обеспечивает напряжение питания прибора величиной 4,5 вольта.
При последовательном включении батареек, ток, отдаваемый в нагрузку, сокращается из-за возрастающего внутреннего сопротивления источника питания.
Подключение батареек к пульту дистанционного управления телевизором.
Например, мы сталкиваемся с последовательным включением батареек при их замене в пульте управления телевизором.
Параллельное включение батареек используется редко. Преимущество параллельного включения состоит в увеличении тока нагрузки, собранного таким образом источника питания. Напряжение включенных параллельно батареек остается прежним, равным номинальному напряжению одной батарейки, а ток разряда увеличивается пропорционально количеству объединенных батарей. Несколько слабых батареек можно заменить на одну более мощную, поэтому для маломощных батареек использовать параллельное включение бессмысленно. Параллельно включать есть смысл только мощные батарейки, из-за отсутствия или дороговизны батарейки с еще большим током разряда.Параллельное включение батареек.
Такое включение имеет недостаток. Батарейки не могут иметь точно совпадающее напряжение на контактах при отключенной нагрузке. У одной батарейки это напряжение может составлять 1,45 вольта, а у другой 1,5 вольта. Это вызовет протекание тока от батарейки с большим напряжением к батарейке с меньшим. Будет происходить разряд при установке батареек в отсеки прибора при отключенной нагрузке. В дальнейшем при такой схеме включения саморазряд происходит быстрее, чем при последовательном включении.
Комбинируя последовательное и параллельное соединение батареек можно получить различную мощность источника батарейного питания.Литература:
ГОСТ 2.768-90 Обозначения условные графические в схемах источники электрохимические, электротермические и тепловые.
12. Источники питания, электродвигатели, линии связи — Условные графические обозначения на электрических схемах — Компоненты — Инструкции
Для автономного питания радиоэлектронной аппаратуры широко используют электрохимические источники тока — гальванические элементы и аккумуляторы. Буквенный код элементов питания — G. УГО [11] напоминает символ конденсатора постоянной ёмкости — параллельные линии разной длины: короткая обозначает отрицательный полюс, длинная — положительный (рис. 12.1, G1). Знаки полярности на схемах можно не указывать.
Поскольку для питания приборов чаще всего требуется напряжение, большее того, что обеспечивает один элемент или аккумулятор, их соединяют в батарею. Буквенный код в этом случае — GB. Батарею обозначают упрощенно: изображают только крайние элементы, а наличие остальных показывают штриховой линией (см. рис. 12.1, GB1). ГОСТ допускает изображать батарею и совсем просто — символом одного элемента (GB2 на рис. 12.1). Рядом с позиционным обозначением в любом случае указывают напряжение батареи.
Отводы от части элементов показывают линиями электрической связи, продолжающими черточки, которые обозначают их положительные полюсы (см. рис. 12.1, GB3). В местах присоединения линий-отводов к символам положительных полюсов ставят точки.
На основе символа электрохимического элемента строятся УГО так называемых солнечных фотоэлементов и батарей. Отличительные признаки УГО этих источников тока — корпус в виде кружка или овала и знак фотоэлектрического эффекта (см. рис. 12.1, G2, GB4), На месте буквы п в УГО солнечной батареи можно указывать число образующих ее элементов.
Для защиты от перегрузок по току или коротких замыканий в нагрузке в электронных устройствах часто используют плавкие предохранители. Код этих устройств — латинские буквы FU. УГО [12] напоминает постоянный резистор (и имеет те же размеры 4×10 мм), отличие заключается только в проходящей через весь прямоугольник линии, символизирующей сгорающую при перегрузке металлическую нить (рис. 12.2, FU1). Рядом с УГО предохранителя, как правило, указывают ток, на который он рассчитан, а иногда и его тип.
В аппаратуре с высоковольтным питанием для защиты некоторых элементов от опасных для них перенапряжений применяют разрядники (код — буква F). В простейшем случае — это два электрода, установленных на изоляционном основании на определенном расстоянии один от другого (иногда технологически это печатный проводник, разделенный на две части просечкой в печатной плате насквозь). Символ искрового промежутка — две встречно направленные стрелки (см. рис. 12.2, F1). Если же такое устройство выполнено в виде самостоятельного изделия, используют УГО, показанное на рис. 12.2 под позиционным обозначением F2. УГО вакуумного разрядника получают, заключая символ искрового промежутка в символ баллона электровакуумного прибора (F3).
В устройствах автоматики и телемеханики, в бытовой радиоаппаратуре для привода различных механизмов применяют электродвигатели. В бытовых магнитофонах и проигрывателях — это чаше всего асинхронные двигатели переменного тока и коллекторные двигатели постоянного тока. Первые из них обычно имеют коротко-замкнутый ротор в виде так называемой «беличьей клетки» и статор с двумя обмотками: рабочей (или основной) и фазосдвигающей (последовательно с ней включают конденсатор, благодаря чему создается вращающееся магнитное поле). УГО такого двигателя состоит из окружности (ротор) и двух статорных обмоток (рис. 12.3, M1). Символ основной обмотки помешают над ротором, а фазосдвигающей — справа от него, под углом 90° к символу основной. Рядом с УГО обычно указывают тип двигателя [13].
Если необходимый сдвиг фазы создается короткозамкнутым витком на полюсе статора, его изображают в виде замкнутой накоротко обмотки, развернутой по отношению к символу основной на угол 45° (см. рис. 12.3, M2).
В электродвигателях постоянного тока на статоре устанавливают постоянные магниты, а обмотку размешают на роторе. Для автоматической коммутации ее секций при вращении ротора используют узел, состоящий из двух щеток и нескольких пластин. Все эти особенности конструкции отражены и в УГО коллекторного двигателя, показанном на рис. 12.3 {M3): здесь окружность, как и ранее, символизирует ротор, касающиеся его узкие прямоугольники — щетки, а светлая П-образная скобка — постоянные магниты на статоре.
Линии электрической связи (ЛЭС) символизируют на схемах реальные электрические соединения между радиокомпонентами и узлами [14]. Для удобства прослеживания этих соединений на схемах ЛЭС чертят, как правило, только в горизонтальном и вертикальном направлениях. Исключение составляют лишь схемы некоторых функциональных узлов, начертание которых давно стало традиционным (измерительные и выпрямительные мосты, мультивибраторы и т. п.).
Для удобства чтения схем символы элементов стараются расположить и сориентировать таким образом, чтобы ЛЭС имели возможно меньшее число изломов и пересечений. Если же избежать пересечения не удается, его делают под углом 90° (рис. 12.4, а), изменяя при необходимости направление одной из ЛЭС. В местах пересечений, символизирующих электрическое соединение в виде пайки, сварки, скрутки ставят жирные точки (см. рис. 12.4, б). Аналогично поступают и в тех случаях, когда необходимо показать ответвления от той или иной ЛЭС (см. рис. 12.4, в). Ответвляющиеся ЛЭС допускается проводить на чертеже под углами, кратными 15°. Использовать в качестве точек присоединения ЛЭС элементы УГО, имеющие вид точки (например, переключателей с нейтральным средним положением), излома линий (контакты кнопок и переключателей) и их пересечений (выводы эмиттера и коллектора в местах пересечения с окружностью корпуса и т. п.), нельзя.
При изображении ЛЭС с ответвлениями в несколько параллельных идентичных цепей (рис. 12.4, г) можно использовать следующий прием: показать на схеме лишь одну цепь, а наличие остальных указать Г-образными ответвлениями, рядом с которыми указать общее число параллельных целей, включая изображенную (см. рис. 12.4, д).
Необходимость экранирования того или иного соединения показывают штриховыми линиями по обе стороны от ЛЭС (см. рис. 12.4, е, ж) или небольшим штриховым кружком (см. рис. 12.4, и). Ответвление от линии, символизирующей экранирующую оплетку, допускается изображать как с точкой, так и без нее. Соединение с общим проводом устройства (корпусом) показывают отрезком утолщенной линии на конце ответвления (см. рис. 12.4, х, ц).
Если в общий экран помещены несколько проводов, соответствующие ЛЭС объединяют знаком, изображенным на рис. 12.4, к. Если же разместить эти ЛЭС рядом не удается, поступают, как показано на рис. 12.4, л: от символа экрана проводят линию со стрелками, указывающими на те из них, которые находятся в общем экране. Экран, в который заключены детали того или иного устройства, изображают в виде замкнутого контура, охватывающего их символы (см. рис. 12.4, м).
Аналогичные приемы используют и в случаях, если группа ЛЭС символизирует соединение многопроводным кабелем или скрученными проводами. Знак кабеля в виде овала применяют для объединения идущих рядом ЛЭС (см. рис. 12.4, н), кружок со стрелками — для объединения ЛЭС, перемежающихся другими (см. рис. 12.4, п). Точно так же применяют знак скрутки — наклонную линию с засечками на концах (см. рис. 12.4, о,р).
Линию электрической связи, символизирующую гибкое соединение (например, гибкий провод, соединяющий измерительный прибор со щупом), изображают волнистой линией (см. рис. 12.4, с).
Для передачи сигналов на высоких частотах используют коаксиальные кабели (см. рис. 12.4, m). Поскольку знак коаксиальной структуры практически символизирует внешний проводник, от него, как и от символа экранирования, при необходимости делают ответвление (см. рис. 12.4, у). В обозначении ЛЭС, выполненной коаксиальным кабелем лишь частично, знак видоизменяют: касательную к кружку направляют только в его сторону. Пример, показанный на рис. 12.4, ф, означает, что коаксиальная структура в данном случае имеется левее знака.
Число ЛЭС на принципиальных схемах сложных электронных устройств очень часто бывает большим. Если к тому же они идут параллельно одна другой и неоднократно меняют направление, то иногда проследить связь между элементами становится очень трудно. Для облегчения чтения схем ГОСТ рекомендует разбивать параллельно идущие ЛЭС на подгруппы из трех линий каждая (считая сверху) и отделять их увеличенными интервалами (рис. 12.5, а).
Однако и этого иногда оказывается недостаточно, если к тому же большое число параллельных ЛЭС сильно загромождает схему и увеличивают её размеры. В подобном случае можно слить параллельные ЛЭС в одну утолщенную линию групповой связи (ЛГС). При выполнении принципиальных схем автоматизированным способом допускается линию групповой связи не утолщать. У входа и выхода из ЛГС каждой ЛЭС присваивается порядковый номер (рис. 12.5, б). Чтобы не спутать эти линии с ЛЭС, просто пересекающей ЛГС, расстояние между соседними линиями, отходящими в разные стороны, должно быть не меньше 2 мм.
Для облегчения поиска отдельных ЛЭС допускается показывать их направление с помощью излома под углом 45° (рис. 12.5, в). При этом точка излома должна быть удалена от ЛГС не менее чем на 3 мм, а наклонные участки соседних ЛЭС, изображенных по одну сторону от нее, не должны иметь пересечений и общих точек.
Источник ЭДС — Википедия
Материал из Википедии — свободной энциклопедии
Рисунок 1. Обозначение на схемах источника ЭДС (слева) и реального источника напряжения (справа). Вариант.Исто́чник ЭДС (идеа́льный источник напряже́ния) — двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС. ЭДС источника может быть задана либо постоянным, либо как функция времени, либо как функция от внешнего управляющего воздействия. В простейшем случае ЭДС определена как константа, обычно обозначаемая буквой E{\displaystyle {\mathcal {E}}}.
Идеальный источник напряжения[править | править код]
Рисунок 2. Реальный источник напряжения под нагрузкой Рисунок 3. Нагрузочная характеристика идеального (синий) и реального (красный) источников.Напряжение на выводах идеального источника напряжения не зависит от нагрузки U=E=const{\displaystyle U={\mathcal {E}}={\text{const}}}. Ток определяется только сопротивлением внешней цепи R{\displaystyle R}:
- I=UR.{\displaystyle I={\frac {U}{R}}.}
Модель идеального источника напряжения используется для представления реальных электронных компонентов в виде эквивалентных схем. Собственно, идеальный источник напряжения (источник ЭДС) является физической абстракцией, поскольку при стремлении сопротивления нагрузки к нулю R→0{\displaystyle R\rightarrow 0} отдаваемый ток и электрическая мощность неограниченно возрастают, что противоречит физической природе источника.
Реальный источник напряжения[править | править код]
В реальности любой источник напряжения обладает внутренним сопротивлением r{\displaystyle r}. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника. Эквивалентная схема реального источника напряжения представляет собой последовательное включение идеального источника ЭДС E{\displaystyle {\mathcal {E}}} и внутреннего сопротивления r{\displaystyle r}.
На рисунке 3 приведены нагрузочные характеристики идеального источника напряжения (синяя линия) и реального источника напряжения (красная линия).
- E=Ur+UR,{\displaystyle {\mathcal {E}}=U_{r}+U_{R},}
где
- Ur=I⋅r,{\displaystyle U_{r}=I\cdot r,} — падение напряжения на внутреннем сопротивлении;
- UR=I⋅R,{\displaystyle U_{R}=I\cdot R,} — падение напряжения на нагрузке.
При коротком замыкании R=0{\displaystyle R=0} вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток короткого замыкания Is.c.{\displaystyle I_{\text{s.c.}}} будет максимален. Зная напряжение холостого хода Uxx{\displaystyle U_{\text{xx}}} и ток короткого замыкания, можно вычислить внутреннее сопротивление источника напряжения:
- r=UxxIs.c..{\displaystyle r={\frac {U_{\text{xx}}}{I_{\text{s.c.}}}}.}
При помощи модели источника напряжения хорошо описываются химические источники тока, батарейки, гальванические элементы, коллекторные генераторы постоянного тока с параллельным возбуждением и бытовые электросети для маломощных потребителей.
Различают источник постоянного и переменного напряжения, а также источник напряжения, управляемые напряжением (ИНУН) и источники напряжения, управляемые током (ИНУТ).
Существуют различные варианты обозначений источника напряжения. Наиболее часто встречается обозначение (a) . Вариант (c) устанавливается ГОСТ[1] и IEC[2]. Стрелка в кружке указывает на положительную клемму на выходе источника. При выборе обозначения нужно быть осмотрительным и использовать пояснения, чтобы не допускать путаницы с источниками тока (b), который обозначен так в статье «Источник тока».
Рисунок 4. Обозначения источника напряжения на схемахЧтобы определить, который полюс источника постоянного напряжения является положительным, а какой — отрицательным, используются специальные «полюсоискатели», действие которых основано на явлении электролиза. Полюсоискатель представляет собой стеклянную ампулу, заполненную раствором поваренной соли с добавкой фенолфталеина. В ампулу снаружи введены электроды. При подключении к электродам источника напряжения начинается электролиз: на отрицательном полюсе идёт выделение водорода и образуется щелочная среда. Из-за наличия щёлочи фенолфталеин меняет свою окраску — краснеет, по красной окраске у электрода и судят о том, что он соединён с отрицательным полюсом источника напряжения[3].
- ↑ ГОСТ 2.721-74 Единая система конструкторской документации. Обозначения условные графические в схемах. Обозначения общего применения.
- ↑ IEC 617-2:1996. Graphical symbols for diagrams — Part 2: Symbol elements, qualifying symbols and other symbols having general application
- ↑ Элементарный учебник физики / Под ред. Г. С. Ландсберга. — 13-е изд.. — М.: ФИЗМАТЛИТ, 2003. — Т. 2. Электричество и магнетизм. — С. 151,152,465.
- Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов.— 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
- Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3.
Постоянный ток — Википедия
Постоя́нный ток — электрический ток, который с течением времени не изменяется по величине и направлению.
Постоянный ток является разновидностью однонаправленного тока. Однонаправленный ток (англ. direct current) — это электрический ток, не изменяющий своего направления[1]. Часто можно встретить сокращения DC от первых букв английских слов, или символом (ГОСТ 2.721-74), или —
На рисунке к этой статье красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t{\displaystyle t}, а по вертикальной — масштаб тока I{\displaystyle I} или электрического напряжения U{\displaystyle U}. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).
Величина постоянного тока I{\displaystyle I} и электрического напряжения U{\displaystyle U} для любого момента времени сохраняется неизменной.
При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов).
Постоянный ток — это постоянное направленное движение заряженных частиц в электрическом поле.
В каждой точке проводника, по которому протекает постоянный ток, одни элементарные электрические заряды непрерывно сменяются другими, совершенно одинаковыми по сумме электрическими зарядами. Несмотря на непрерывное перемещение электрических зарядов вдоль проводника, общее пространственное их расположение внутри проводника как бы остаётся неизменным во времени, или стационарным.
Переносчиками электрических зарядов являются:
Постоянное движение электрических зарядов создаётся и поддерживается сторонними силами, которые могут иметь химическую (в гальванических элементах), электромагнитную (динамо-машина постоянного тока), механическую (электрофорная машина) или иную (например, радиоактивную в стронциевых источниках тока) природу. Во всех случаях источник тока является преобразователем энергии сторонних сил в электрическую.
Электрическое поле, сопутствующее постоянному току в проводнике и в соответствии с этим стационарное распределение в нём электрических зарядов, называется стационарным (неизменным во времени) электрическим полем.
Электрические заряды в стационарном электрическом поле нигде не накапливаются и нигде не исчезают, так как при всяком пространственном перераспределении зарядов неизбежно должно было бы измениться стационарное электрическое поле и соответственно ток перестал бы быть постоянным по времени.
Для стационарности поля и тока требуется, чтобы электрические заряды нигде не накапливались и нигде не терялись, а перемещались непрерывным и равномерным потоком вдоль проводников. Для этого необходимо, чтобы проводники совместно образовывали замкнутый на себя контур. В этом случае будет достигнуто непрерывное круговое равномерное движение электрических зарядов вдоль всего контура.
Постоянный электрический ток может существовать только в замкнутом на себя контуре, состоящем из совокупности проводников электричества, в котором действует стационарное электрическое поле.
Самыми первыми источниками постоянного тока являлись химические источники тока: гальванические элементы, затем были изобретены аккумуляторы. Полярность химических источников тока самопроизвольно измениться не может.
Для получения постоянного тока в промышленных масштабах используют электрические машины — генераторы постоянного тока, а также солнечные батареи.
В электронной аппаратуре, питающейся от сети переменного тока, для получения постоянного тока используют блоки питания. Как правило, переменный ток понижается трансформатором до нужного значения, затем выпрямляется. Далее для уменьшения пульсаций используется сглаживающий фильтр и, при необходимости, стабилизатор тока или стабилизатор напряжения или регулятор напряжения.
В современной радиоэлектронной аппаратуре получили распространение импульсные блоки питания. Сглаживание пульсаций выходного напряжения происходит благодаря наличию интегрирующего элемента, способного накапливать электрическую энергию и отдавать её в нагрузку. В результате на выходе можно получить практически постоянный ток.
Электрическую энергию могут накапливать электрические конденсаторы. В общем случае, при разряде конденсатора во внешней цепи протекает переменный ток. Если конденсатор разряжается через резистор, то появляется однонаправленный переменный ток (постепенно уменьшающийся). Однако, если конденсатор разряжается через катушку индуктивности, то в цепи появляется двунаправленный переменный ток, это устройство называется колебательный контур. Электролитические конденсаторы могут иметь очень большую электрическую ёмкость (сотни и тысячи микрофарад и более). При разряде таких конденсаторов через большое сопротивление ток уменьшается медленнее, и для короткого времени можно считать, что во внешней цепи протекает постоянный ток.
Ионисторы — гибрид конденсатора и химического источника тока, способны накапливать и отдавать довольно большое количество электрической энергии, например, чтобы электромобиль с ионисторами проехал некоторое расстояние.
Направление постоянного тока и обозначения на электроприборах и схемах[править | править код]
Условное обозначение однонаправленного тока на электроприборахУсловно принято считать (общепринято), что электрический ток в электрическом поле имеет направление от точек с бо́льшими потенциалами к точкам с меньшими потенциалами. Это значит, что направление постоянного электрического тока всегда совпадает с направлением движения положительных электрических зарядов, например положительных ионов в электролитах и газах. Там же, где электрический ток создаётся только движением потока отрицательно заряженных частиц, например, потока свободных электронов в металлах, за направление электрического тока принимают направление, противоположное движению электронов.
Точки с бо́льшими потенциалами (например, на зажимах батареек и аккумуляторов) носят название «положи́тельный по́люс» и обозначаются знаком +{\displaystyle +} («плюс»), а точки с меньшими потенциалами называются «отрица́тельный по́люс» и обозначаются знаком −{\displaystyle -}(«минус»).
Исторически сложилось, что электрическая изоляция положительного провода окрашена в красный цвет, а отрицательного провода — в синий или чёрный.
Условное обозначение на электроприборах: −{\displaystyle \mathbf {-} } или ={\displaystyle \mathbf {=} }. Однонаправленный ток (в том числе постоянный) обозначается латинскими буквами DC{\displaystyle DC}. Для однонаправленного тока может быть также использован символ Юникода ⎓ (U+2393).
В ряде случаев можно встретить другие символы, например на малогабаритных штекерах, предназначенных для подключения к электронному устройству сетевого блока питания (или на корпусе самого электронного устройства, возле разъёма для подключения штекера) ⊙{\displaystyle \odot } с указанием полярности.
Электроды каких-либо устройств или радиодеталей (диодов, тиристоров, вакуумных электронных приборов), подключаемые к положительному проводу, носят название «анод», а электроды, подключаемые к отрицательному проводу, называются «катод»[2].
Величина постоянного тока (сила тока)[править | править код]
Мерой интенсивности движения электрических зарядов в проводниках является величина тока или просто ток (I, i){\displaystyle (I,~i)}.
Величина тока — это количество электрических зарядов (электричества), протекающих через поперечное сечение проводника в единицу времени.
Общепринято, что вместо терминов «ток» и «величина тока» часто применяется термин «сила тока».
- Термин «сила тока» является некорректным, так как сила тока не есть какая-то сила в буквальном смысле этого слова, а только интенсивность движения электрических зарядов в проводнике, количество электричества, проходящего за единицу времени через площадь поперечного сечения проводника. В проводах нет никаких сил. Мы с вами не будем нарушать эту традицию.
Если при равномерном движении электрических зарядов по проводнику за время t{\displaystyle t} протекло количество электричества Q{\displaystyle Q}, то ток в проводнике можно выразить формулой I=Qt{\displaystyle I={\frac {Q}{t}}}.
В проводнике ток равен одному амперу A{\displaystyle A}, если через площадь поперечного сечения его за одну секунду протекает один кулон электричества.
Ампер — единица измерения силы тока, названа в честь Андре-Мари Ампера.
Кулон — единица измерения электрического заряда (количества электричества), названа в честь Шарля Кулона. В тех случаях, когда приходится иметь дело с большими токами, количество электричества измеряется более крупной единицей, называемой ампер-часом, 1 ампер-час равен 3 600 кулонам.
Сила тока измеряется амперметром, он включается в цепь так, чтобы через него проходил весь измеряемый ток, то есть последовательно.
Плотность тока[править | править код]
В электротехнике часто бывает важно знать не только силу тока в проводнике, но и плотность тока, так как плотность тока является мерой допустимой нагрузки проводов.
Плотностью тока называют ток (j{\displaystyle (j} или δ){\displaystyle \delta )}, приходящийся на единицу площади проводника: j=IS{\displaystyle j={\frac {I}{S}}}, где
- I{\displaystyle I} — сила тока, в Амперах;
- S{\displaystyle S} — площадь поперечного сечения проводника, в квадратных метрах,
- j{\displaystyle j} — плотность тока, выражается в амперах на квадратный метр: [Am2]{\displaystyle \left[{\frac {A}{m^{2}}}\right]}.
Так как провода с поперечным сечением, исчисляемым квадратными метрами, встречаются крайне редко, то плотность тока обычно выражается в амперах на квадратный миллиметр [Amm2]{\displaystyle \left[{\frac {A}{mm^{2}}}\right]}.
Электродвижущая сила и электрическое напряжение[править | править код]
Разность потенциалов между точками, между которыми протекает постоянный ток, могут охарактеризовать электродвижущая сила и электрическое напряжение.
Электродвижущая сила[править | править код]
Каждый первичный источник электрической энергии создаёт стороннее электрическое поле. В электрических машинах (генераторах постоянного тока) стороннее электрическое поле создаётся в металлических проводниках якоря, вращающегося в магнитном поле, а в гальванических элементах и аккумуляторах — в месте соприкосновения электродов с электролитом (растворами солей или кислот) при их химическом взаимодействии.
Стороннее электрическое поле, имеющееся в источнике электрической энергии постоянного тока, непрерывно взаимодействует на электрические заряды проводников, образующих вместе с ним замкнутую цепь, и создаёт в ней постоянный электрический ток.
Перемещая электрические заряды по замкнутой цепи, силы стороннего электрического поля преодолевают сопротивление противодействующих сил, например вещественных частиц проводников. Это приводит к тому, что силы стороннего электрического поля совершают работу за счёт энергии этого поля. По мере расхода энергии стороннее электрическое поле пополняет её за счёт механической или химической энергии.
В результате работы сил стороннего электрического поля энергия этого поля переходит в электрической цепи в какие-либо иные виды энергии, например в тепловую энергию в металлических проводниках, тепловую и химическую в электролитах, тепловую и световую энергию в электрических лампах и так далее.
Выражение «работа сил стороннего электрического поля» источника электрической энергии ради краткости обычно заменяют выражением «работа источника электрической энергии».
Если известна работа, совершаемая источником электрической энергии при перемещении единичного электрического заряда по всей замкнутой электрической цепи, то легко определить работу, совершаемую им при переносе некого электрического заряда Q{\displaystyle Q} по этой цепи, так как величина работы пропорциональна величине заряда.
- Величина, численно равная работе, совершаемой источником электрической энергии при переносе единицы положительного заряда по всей замкнутой цепи, называется электродвижущей силой E{\displaystyle E}.
Следовательно, если источник электрической энергии при переносе заряда Q{\displaystyle Q} по всей замкнутой цепи совершил работу A{\displaystyle A}, то его электродвижущая сила E{\displaystyle E} равна E=AQ{\displaystyle E={\frac {A}{Q}}}.
В Международной системе единиц (СИ) за единицу измерения электродвижущей силы принимается один вольт ( v, V ){\displaystyle (~v,~V~)}. Единица названа в честь итальянского физика и физиолога Алессандро Вольта.
- Электродвижущая сила источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой цепи им была совершена работа, равная одному джоулю : 1 volt=1 joule1 coulomb{\displaystyle 1~volt={\frac {1~joule}{1~coulomb}}}.
Например, если электродвижущая сила какого-либо источника электрической энергии E=220 volt{\displaystyle E=220~volt}, то это надо понимать так, что источник электрической энергии, перемещая один кулон электричества по всей замкнутой цепи, совершит работу A=220 joule{\displaystyle A=220~joule}, так как E=AQ=220 joule1 coulomb{\displaystyle E={\frac {A}{Q}}={\frac {220~joule}{1~coulomb}}}.
Из формулы E=AQ{\displaystyle E={\frac {A}{Q}}} следует, что A=EQ{\displaystyle A=EQ}, то есть работа источника электрической энергии при переносе его электрического заряда по всей замкнутой цепи равна произведению величины электродвижущей силы E{\displaystyle E} его на величину переносимого электрического заряда Q{\displaystyle Q}.
Электрическое напряжение[править | править код]
Если источник электрической энергии переносит электрический заряд Q{\displaystyle Q} по всей замкнутой цепи, то он совершает некоторую работу A{\displaystyle A}. Часть этой работы A0{\displaystyle A_{0}} он совершает при переносе заряда Q{\displaystyle Q} по внутреннему участку цепи (участок внутри самого источника электрической энергии), а другую часть A1{\displaystyle A_{1}} — при переносе заряда Q{\displaystyle Q} по внешнему участку цепи (вне источника).
Следовательно, A=A0+A1{\displaystyle A=A_{0}+A_{1}}, то есть работа A{\displaystyle A}, совершаемая источником электрической энергии при переносе электрического заряда Q{\displaystyle Q} по всей замкнутой цепи, равна сумме работ, совершаемых им при переносе этого заряда по внутреннему и внешнему участкам этой цепи.
Если разделить левую и правую часть равенства A=A0+A1{\displaystyle A=A_{0}+A_{1}} на величину единичного заряда Q{\displaystyle Q}, получим работу, отнесённую к единичному заряду: AQ=A0Q+A1Q{\displaystyle {\frac {A}{Q}}={\frac {A_{0}}{Q}}+{\frac {A_{1}}{Q}}}.
Работа источника электрической энергии, совершаемая им при переносе единичного заряда по всей замкнутой цепи, численно равна его электродвижущей силе, то есть E=AQ{\displaystyle E={\frac {A}{Q}}}, где E{\displaystyle E} — электродвижущая сила источника электрической энергии.
Величина A0Q{\displaystyle {\frac {A_{0}}{Q}}}, численно равная работе, совершаемой источником электрической энергии при переносе единичного заряда по внутреннему участку цепи, называется падением напряжения (напряжением) на внутреннем участке цепи, то есть U0=A0Q{\displaystyle U_{0}={\frac {A_{0}}{Q}}}, где U0{\displaystyle U_{0}} — падение напряжения на внутреннем участке цепи.
Величина A1Q{\displaystyle {\frac {A_{1}}{Q}}}, численно равная работе, совершаемой источником электрической энергии при переносе единичного заряда Q{\displaystyle Q} по внешнему участку цепи, называется падением напряжения (напряжением) на внешнем участке цепи, то есть U1=A1Q{\displaystyle U_{1}={\frac {A_{1}}{Q}}}, где U1{\displaystyle U_{1}} — падение напряжения на внешнем участке цепи.
Следовательно, равенству AQ=A0Q+A1Q{\displaystyle {\frac {A}{Q}}={\frac {A_{0}}{Q}}+{\frac {A_{1}}{Q}}} можно придать такой вид: E=U0+U1{\displaystyle E=U_{0}+U_{1}}, то есть
- Электродвижущая сила источника электрической энергии, создающего ток в электрической цепи, равняется сумме падений напряжения на внутреннем и внешнем участке цепи.
Из равенства E=U0+U1{\displaystyle E=U_{0}+U_{1}} следует, что U1=E−U0{\displaystyle U_{1}=E-U_{0}}, то есть падение напряжения на внешнем участке цепи меньше электродвижущей силы источника электрической энергии на величину падения напряжения на внутреннем участке цепи.
Следовательно, чем больше падение напряжения внутри источника электрической энергии, тем меньше при всех прочих равных условиях падение напряжения на зажимах источника электрической энергии.
Так как падение напряжения имеет одинаковую размерность с электродвижущей силой, то есть выражается в джоулях на кулон, или, иначе, в вольтах, то за единицу измерения падения напряжения (электрического напряжения) принят один вольт.
- Электрическое напряжение на зажимах источника электрической энергии (падение напряжения на внешнем участке цепи) равно одному вольту, если источник электрической энергии совершает работу, равную одному джоулю, при переносе электрического заряда в один кулон по внешнему участку цепи.
Напряжение на участках цепи измеряется вольтметром, он всегда присоединяется к тем точкам цепи, между которыми он должен измерить падение напряжения, то есть параллельно.
- Постоянный ток широко используется в технике: подавляющее большинство электронных схем в качестве питания используют постоянный ток.
- Постоянный ток, вырабатываемый химическими источниками тока (гальваническими элементами, аккумуляторами), применяется для автономного электропитания многочисленных электрических и электронных устройств: электрофонарей, игрушек, аккумуляторного электроинструмента, средств связи, и т. п.
- Постоянный ток применяется в электролизе: на установках промышленного электролиза из растворов или расплавов солей получают алюминий, магний, натрий, калий, никель, медь, хлор и другие вещества.
- Постоянный ток применяется в гальванизации и гальванопластике — на электропроводящей поверхности какого-нибудь предмета электрохимическим путём осаждается защитное или декоративное металлическое покрытие, например, бронзовый корпус наручных часов покрывается тонким слоем золота.
- Постоянный ток в ряде случаев используется при сварочных работах (электрическая дуговая или электрогазовая сварка), например, сварить деталь из нержавеющей стали специальным сварочным электродом можно только постоянным током.
- В некоторых устройствах постоянный ток преобразуется в переменный ток преобразователями (инверторами), например, в компьютерных бесперебойных блоках питания при работе в автономном режиме.
- В бортовых сетях автомобилей традиционно применяется постоянный ток, потому что при неработающем двигателе все основные потребители получают питание от автомобильного аккумулятора. На старых автомобилях (ГАЗ-51, ГАЗ-69, ГАЗ-М-20 «Победа» и многих других), другой мото- и сельскохозяйственной технике устанавливались автомобильные генераторы постоянного тока. Развитие полупроводниковой техники привело к тому, что с 1970-х годов их вытеснили трёхфазные генераторы переменного тока как более лёгкие, компактные и надёжные.
- На некоторых типах судов используется электрическая передача (дизель-электроходы, ледоколы, подводные лодки).
- Электрофорез — введение лекарственных веществ в организм с помощью постоянного тока или разделение смеси веществ в научных или промышленных целях, например электрофорез белков.
Постоянный ток на транспорте[править | править код]
Широкое применение постоянного тока на транспорте обусловлено тем, что электродвигатели постоянного тока с последовательным возбуждением имеют оптимальную для транспортных средств тяговую характеристику — большой крутящий момент при малом числе оборотов в минуту, и наоборот, относительно малый крутящий момент при номинальной скорости вращения якоря. Число оборотов легко регулируется последовательным включением реостата или изменением напряжения на зажимах двигателя (путём переключения нескольких двигателей с последовательного на параллельное соединение). Направление вращения легко меняется (как правило, переключается полярность обмотки возбуждения). В силу этого электродвигатели постоянного тока с последовательным возбуждением нашли широкое применение на электровозах, электропоездах, тепловозах, трамваях, троллейбусах, подъёмных кранах, подъёмниках и так далее.
Исторически сложилось, что линии трамвая, троллейбуса и метрополитена электрифицированы на постоянном токе, электрическое напряжение составляет 550—600 вольт (трамвай и троллейбус), метрополитен 750—900 вольт.
На тепловозах до 1970-х годов основным типом тягового генератора был генератор постоянного тока (тепловозы ТЭ3, ТЭ10, ТЭП60, ТЭМ2 и др.), стояли коллекторные тяговые электродвигатели. С развитием полупроводниковой техники с 1970-х годов на магистральных тепловозах начали устанавливаться трёхфазные генераторы переменного тока (которые имеют лучшие массо-габаритные показатели по сравнению с генераторами постоянного тока) с полупроводниковой выпрямительной установкой (электрическая передача переменно-постоянного тока, тепловозы ТЭ109, ТЭ114, ТЭ129, ТЭМ7, ТЭМ9 и другие), а с 1990-х гг, с развитием силовой электроники, применяются асинхронные тяговые двигатели (тепловозы с электропередачей переменно-переменного тока 2ТЭ25А, ТЭМ21).
В России и в республиках бывшего СССР около половины электрифицированных участков железных дорог электрифицированы на постоянном токе 3000 вольт.
Электрификация на постоянном токе 3 кВ не является оптимальной по сравнению с электрификацией на переменном токе 25 кВ промышленной частоты (50 Гц), сравнительно мало́ напряжение в контактной сети и велика сила тока, однако технические возможности электрификации на переменном токе появились только во второй половине XX века. Например, два электровоза имеют равную мощность 5000 киловатт. У электровоза постоянного тока (3 кВ) максимальный ток, проходящий через токоприёмник составит 1667 ампер, у электровоза переменного тока (25 кВ) — 200 ампер. В 1990-е — 2000-е годы ряд участков переведён с постоянного на переменный ток: Слюдянка—Иркутск—Зима, Лоухи—Мурманск, Саратовский и Волгоградский железнодо
Обозначение постоянного и переменного тока на схемах
Содержание:
- Как обозначаются различные токи
- Обозначения токов в измерительных приборах
- Видео
Каждый домашний мастер и начинающий электрик при выполнении электромонтажных работ пользуется специальными схемами. Для того чтобы правильно прочитать любую из них, необходимо знать все значки и символы, в том числе обозначение постоянного и переменного тока. Эта символика присутствует на корпусах большинства современных измерительных аппаратов, позволяющих определять значение всех основных электрических параметров.
Как обозначаются различные токи
По своим специфическим качествам электрический ток разделяется на два основных типа:
- Постоянный ток. Обозначается прямой линией (—). Кроме того, используются символы DC – Direct Current, которые переводятся как постоянный ток.
- Переменный ток. Известен под собственным обозначением в виде змейки (~) и символов АС, означающих Alternating Current.
Отличительной особенностью постоянного тока является его направленность. Он протекает лишь в одном определенном направлении, условно принимаемое от положительного контакта «+» к отрицательному контакту «-». От этого свойства и происходит наименование этого тока DC, который присутствует в солнечных панелях, всех типах сухих батареек и аккумуляторах, предназначенных для питания маломощных потребителей.
В некоторых технологических процессах, таких как дуговая электросварка, электролиз алюминия или электрифицированный железнодорожный транспорт, необходим постоянный ток DC с высоким значением силы. Чтобы его создать, необходимо выпрямить переменный или воспользоваться любым из генераторов постоянного тока.
Переменный ток AC, в отличие от постоянного, способен к изменению своего направления и величины. Существует параметр, известный как мгновенное значение переменного тока, определяемое в конкретный момент времени. Частота, с которой изменяется направление тока, составляет 50 Гц, то есть данная перемена происходит 50 раз в течение одной секунды.
Переменный ток AC может быть однофазным или трехфазным. В первом случае необходимо только два провода: основной и дополнительный, он же обратный. Именно по основному проводнику протекает электрический ток, а обратный считается нулевым проводом.
Трехфазное переменное напряжение вырабатывается соответствующим генератором тока AC. В этом процессе участвуют три обмотки, каждая из которых является своеобразной однофазной электрической цепью. Между собой они сдвинуты по фазе под углом 120 градусов. Благодаря данной системе электроэнергией могут быть обеспечены сразу три сети, независимые друг от друга. Для этого понадобится уже порядка шести проводов – трех прямых и трех обратных.
При необходимости дополнительные провода возможно соединить между собой и получить в итоге общий проводник, называемый нулевым или нейтральным. В этом случае проводники переменного тока на схемах обозначаются символами L1, L2, L3, а нулевой провод – буквой N.
Обозначения токов в измерительных приборах
Общепринятое обозначение постоянного и переменного тока нашло свое отражение в различных измерительных приборах, в том числе и на мультиметре. Вся необходимая символика наносится на лицевую панель того или иного устройства. Это позволяет измерить именно тот параметр, который необходим в данный момент.
Например, если на шкале выставлено положение АС, в этом случае можно проводить измерение значения переменного тока. Как правило, такие приборы предназначены для работы в электросетях с обычными напряжениями 220 или 380 вольт. Существуют модели с рабочими режимами в пределах 600 В и выше.
Если же мультиметр выставлен напротив отметки DC, то рабочий режим аппарата станет соответствовать постоянному току. В этом положении замеряется ток на аккумуляторах, батарейках и других источниках питания, вырабатывающих постоянный ток. В данном режиме требуется непременно соблюдать полярность полюсов. Диапазон измерений обычно составляет от нуля до нескольких тысяч вольт, в зависимости от характеристик конкретной модификации устройства.