Posted on

Содержание

Микросхемы стабилизаторы напряжения. Главная ошибка при использовании.

В данной статье рассказано как правильно использовать характеристики микросхем линейных стабилизаторов напряжения 7805,7808,7812 и аналогичных КР142ЕН5,8,12.

Самые распространенные микросхемы, которые применяются в блоках питания различных устройств. Такое широкое распространение получили ввиду предельно простой схемы подключения и довольно хороших параметров при правильном использовании. Основная схема подключения выглядит так:

Микросхемы стабилизаторы напряжения выпускаются разной мощности:

Обозначения на микросхеме:

Корпуса микросхем в зависимости от мощности тоже разные:

Микросхемы стабилизаторы напряжения большой мощности выпускают на выходные напряжения от 5В до 24В:

При этом входные напряжения и температурные характеристики такие:

Характеристики для микросхем средней мощности такие:

И для микросхем малой мощности соответственно такие:

 

 

При этом ряд напряжений на выходе для микросхем малой мощности выглядит так:

3.3; 5; 6; 8; 9; 10; 12; 15; 18; 24 Вольта

Какие же параметры для микросхем стабилизаторов напряжения в основном приводят в интернете? Рассмотрим наиболее распространенные случаи на конкретном примере:

При нагрузке свыше 14 Вт, стабилизатор желательно установить на алюминиевый теплоотвод, чем больше нагрузка, тем больше нужна площадь охлаждаемой поверхности.
Производят в основном в корпусе ТО-220
Максимальный ток нагрузки: 1.5 В
Допустимое входное напряжение: 35 В
Выходное напряжение: 5 В
Число регуляторов в корпусе: 1
Ток потребления: 6 мА

Погрешность: 4 %
Диапазон рабочих температур: 0 C … +140 C
Отечественный аналог КР142ЕН5А

 

Казалось, бы, все выписано из документации (DataSheet). Как человек воспринимает такую информацию. Наибольшее напряжение 35 В, хорошо, я не буду брать предел, возьму 30В. Максимальный ток нагрузки 1,5 А. Не буду брать предельное значение, возьму 1 А. Собирает схему по этим данным, а она, проработав некоторое время выходит из строя. Некоторые не понимают, грешат на качество микросхем. Ведь не заставлял работать микросхему на предельных значениях напряжения и тока, а она вышла из строя.

А все дело в том, что многие забывают о главном параметре, который указан в документации, но как-то не привлекает внимание так как напряжение и ток. Это максимальная мощность, которую может рассеивать микросхема стабилизатор. Как правило ее указывают прямо. Например, для мощных микросхем это 1,5 Вт без радиатора и 15 Вт с радиатором.

Что же получается при выбранном токе 1А и максимальном напряжении 30В, например, для микросхемы с выходным напряжением 5В. Поскольку стабилизатор линейный то на микросхеме упадет 30 – 5 = 25 В. При токе 1А мощность, рассеиваемая на микросхеме, составит 1А × 25В = 25Вт. Это почти в два раза больше допустимой мощности с радиатором. Вот она и выходит из строя. Получается, что при входном напряжении 30 В максимальный ток в нагрузке не может превышать 15 Вт : 25 В = 0,6 А.

В таблицах, приведенных выше в этой статье, для микросхем средней мощности без радиатора предельная мощность 1,2 Вт, а с радиатором, 12 Вт. Для микросхем малой мощности установка радиаторов не предусмотрена и максимальная рассеиваемая мощность составляет 0,625 Вт.

Именно мощность является определяющей при выборе предельных значений тока и напряжения.

Для наглядности предельные значения мощности, напряжения и тока для

микросхем стабилизаторов напряжения разной мощности сведены в одну таблицу:

Минимальное падение напряжения на микросхеме 2,5В.

Если руководствоваться этим правилом, микросхемы будут работать надежно.

Материал статьи продублирован на видео:

9. Микросхемы-стабилизаторы напряжения. | Техническая библиотека lib.qrz.ru

МИКРОСХЕМЫ — СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

Одним из важных узлов любой радиоэлектронной аппаратуры является стабилизатор напряжения питания. Еще совсем недавно такие узлы строились на стабилитронах и транзисторах. Общее число элементов стабилизатора было довольно значительным, особенно, если от него требовались функции регулировки выходного напряжения, защиты от перегрузки и короткого замыкания, ограничения выходного тока на заданном уровне. С появлением специализированных микросхем ситуация изменилась. Современные микросхемы стабилизаторов напряжения выпускаются на широкий диапазон выходных напряжений и токов, они имеют встроенную защиту от перегрузки по току и от перегрева — при нагреве кристалла микросхемы свыше допустимой температуры она закрывается и ограничивает выходной ток. В табл. 2 приведен перечень наиболее распространенных на отечественном рынке микросхем линейных стабилизаторов напряжения на фиксированное выходное напряжение и их некоторые параметры, на рис. 92 — разводка выводов. Буквы хх в обозначении конкретной микросхемы заменяются на одну или две цифры, соответствующие напряжению стабилизации в вольтах, для микросхем серии КР142ЕН — на цифробуквенный индекс, указанный в таблице. Микросхемы зарубежных изготовителей серий 78хх, 79хх, 78Мхх, 79Мхх, 78Lxx, 79Lxx могут иметь различные префиксы (указывают фирму-изготовитель) и суффиксы, определяющие конструктивное оформление (оно может отличаться от приведенного на рис. 92) и температурный диапазон. Следует иметь ввиду, что сведения о рассеиваемой мощности при наличии теплоотвода в паспортных данных обычно не указаны, поэтому здесь даны некоторые усредненные величины из графиков, приведенных в документации. Отметим также, что для микросхем одной серии, но на разные напряжения, значения рассеиваемой мощности могут также отличаться друг от друга. Более подробные сведения о некоторых сериях отечественных микросхем можно найти в литературе [10 — 14]. Исчерпывающая информация по микросхемам для линейных источников питания опубликована в [15].

3-11.jpg

3-12.jpg

Типовая схема включения микросхем на фиксированное выходное напряжение приведена на рис. 93. Для всех микросхем емкость конденсатора С1 должна быть не менее 2,2 мкФ для керамических или танталовых и не менее 10 мкФ для алюминиевых оксидных

3-13.jpg

конденсаторов. Емкость конденсатора С2 должна быть не менее 1 и 10 мкФ для аналогичных типов конденсаторов соответственно. Для некоторых микросхем емкости могут быть и меньше, но указанные величины гарантируют устойчивую работу для любых микросхем. В каче

стве С1 может использоваться сглаживающий конденсатор фильтра, если он расположен не далее 70 мм от микросхемы. В [15] можно найти множество схем включения для различных вариантов использования микросхем — для обеспечения большего выходного тока, подстройки выходного напряжения, введения других вариантов защиты, использования микросхем в качестве генератора тока.

Если необходимы нестандартное напряжение стабилизации или плавная регулировка выходного напряжения, удобно использовать трехвыводные регулируемые микросхемы, поддерживающие напряжение 1,25 В между выходом и управляющим выводом. Их параметры приведены в табл. 3, а типовая схема включения для стабилизаторов положительного напряжения — на рис. 94.

3-14.jpg

Резисторы R1 и R2 образуют внешний регулируемый делитель, входящий в цепь установки выходного напряжения Uвых. которое определяется по формуле:

3-15.jpg

где Iпотр — собственный ток потребления микросхемы, составляющий 50…100 мкА. Число 1,25 в этой формуле — это упомянутое выше напряжение между выходом и управляющим выводом, которое поддерживает микросхема в режиме стабилизации.

Следует иметь ввиду, что, в отличие от стабилизаторов на фиксированное выходное напряжение, регулируемые микросхемы

3-16.jpg

без нагрузки не работают. Минимальное значение выходного тока таких микросхем составляет 2,5… 5 мА для маломощных микросхем и 5…10 мА — для мощных. В большинстве применений для обеспечения необходимой нагрузки достаточно тока делителя R1R2.

Принципиально по схеме рис. 94 можно включать и микросхемы с фиксированным выходным на

пряжением, но их собственный ток потребления значительно больше (2…4 мА) и он менее стабилен при изменении выходного тока и входного напряжения.

Для снижения уровня пульсаций, особенно при высоких выходных напряжениях, рекомендуется включать сглаживающий конденсатор С2 емкостью 10 мкФ и более. К конденсаторам С1 и CЗ требования такие же, как и к соответствующим конденсаторам для микросхем с фиксированным выходным напряжением.

Диод VD1 защищает микросхему при отсутствии входного напряжения и подключении ее выхода к источнику питания, например, при зарядке аккумуляторных батарей или от случайного замыкания входной цепи при заряженном конденсаторе СЗ. Диод VD2 служит для разрядки конденсатора С2 при замыкании выходной или входной цепи и при отсутствии С2 не нужен.

Приведенные сведения служат для предварительного выбора микросхем, перед проектированием стабилизатора напряжения следует ознакомиться С полными справочными данными, хотя бы для того, чтобы точно знать максимально допустимое входное напряжение, достаточна ли стабильность выходного напряжения при изменении входного напряжения, выходного тока или температуры. Можно отметить, что все параметры микросхем находятся на уровне, достаточном для подавляющего числа случаев применения в радиолюбительской практике.

Заметных недостатков у описанных микросхем два — довольно высокое минимально необходимое напряжение между входом и выходом — 2…3 В и ограничения на максимальные параметры -входное напряжение, мощность рассеяния и выходной ток. Эти недостатки часто не играют роли и с лихвой окупаются простотой применения и низкой ценой микросхем.

Несколько конструкций стабилизаторов напряжения с использованием описанных микросхем рассмотрено далее.

 

Микросхемы регулируемые стабилизаторы напряжения. Микросхемы стабилизаторы напряжения. Параметрические

Доброго времени суток!

Сегодня, хотелось бы затронуть тему питания электронных устройств.

Итак, прошивка готова, микроконтроллер куплен, схема собрана, остается лишь подключить питание, но где его взять? Предположим что микроконтроллер AVR и схема запитывается 5 вольтами.

Получить 5в нам помогут следующие схемы:

Линейный стабилизатор напряжения на микросхеме L 7805

Данный способ самый простой и дешевый. Нам понадобятся:

  1. Микросхема L 7805 или её аналоги.
  2. Крона 9v или любой другой источник питания (ЗУ телефона, планшета, ноутбука).
  3. 2 конденсатора (для l 7805 это 0.1 и 0.33 микроФарад).
  4. Радиатор.

Соберем следующую схему:

Данный стабилизатор основывает свою работу на микросхеме l 7805, которая обладает следующими характеристиками:

    Максимальный ток: 1.5A

    Входное напряжение: 7-36 В

    Выходное напряжение:5 В

Конденсаторы служат для сглаживания пульсаций. Однако, падение напряжения происходит непосредственно на микросхеме. То есть если на вход мы подаем 9 вольт, то 4 вольта (Разница между входным напряжением и напряжением стабилизации) упадут на микросхеме l 7805. Это приведет к выделению тепла на микросхеме, количество которого легко рассчитать по формуле:

(Входное напряжение – напряжения стабилизации)* ток через нагрузку.

То есть если мы подаем 12 вольт на стабилизатор, которым мы питаем схему, которая потребляет 0.1 Ампера, на l 7805 рассеется (12-5)*0.1=0.7 вт тепла. Поэтому, микросхему необходимо закрепить на радиаторе:


Плюсы данного стабилизатора:

  1. Дешевизна (Без учета радиатора).
  2. Простота.
  3. Легко собирается навесным монтажом, т.е. отсутствует необходимость изготовления печатной платы.

Минусы:

  1. Необходимость размещения микросхемы на радиаторе.
  2. Отсутствует возможность регулировки стабилизируемого напряжения.

Данный стабилизатор отлично подойдет как источник напряжения для простых, нетребовательных к питанию схем.

Импульсный стабилизатор напряжения

Для сборки нам понадобится:

  1. Микросхема LM 2576S -5.0 (Можно взять аналог, однако обвязка будет другой, уточните в документации конкретно вашей микросхемы).
  2. Диод 1N5822.
  3. 2 конденсатора(Для LM 2576S -5.0, 100 и 1000 микроФарад).
  4. Дроссель (Катушки индуктивности) 100 микроГенри.

Схема подключения следующая:


Микросхема LM 2576S -5.0 обладает следующими характеристиками:

  • Максимальный ток: 3A
  • Входное напряжение:7-37 В
  • Выходное напряжение: 5В

Стоит заметить что данный стабилизатор требует большего количества компонентов(А так же наличия печатной платы, для более аккуратного и удобного монтажа). Однако данный стабилизатор обладает огромным преимуществом перед линейным собратом — он не греется, да и максимальный ток в 2 раза выше.

Плюсы данного стабилизатора:

  1. Меньший нагрев (Отсутствует необходимость покупки радиатора).
  2. Больший максимальный ток.

Минусы:

  1. Дороже линейного стабилизатора.
  2. Сложность навесного монтажа.
  3. Отсутствует возможность изменения стабилизируемого напряжения (При применении микросхемы LM 2576S -5.0).

Для питания простых любительских схем на микроконтроллерах AVR , представленных выше стабилизаторов достаточно. Однако в следующих статьях, мы попробуем собрать лабораторный блок питания, который позволит быстро и удобно настраивать параметры питания схем.

Спасибо за внимание!

Выпускаемые отечественной промышленностью интегральные стабилизаторы напряжения серии КР142 позволяют простыми схемными методами получить стабилизированные напряжения в достаточно большом диапазоне — от единиц вольт до нескольких десятков вольт. Рассмотрим некоторые схемные решения, которые могут представить интерес для радиолюбителей.

Микросхема КР142ЕН5А — это интегральный стабилизатор с фиксированным выходным напряжением +5 В. Типовая схема включения этой микросхемы уже была представлена в книге (см.

рис. 105). Однако, несколько изменив схему включения, можно на базе этой микросхемы построить стабилизатор с регулируемым выходным напряжением в диапазоне от 5,6 В до 13 В. Схема представлена на рис. 148.

На вход интегрального стабилизатора (вывод 17 микросхемы DA1) поступает нестабилизированное напряжение +16 В, а на вывод 8 — сигнал с выхода стабилизатора, регулируемый переменным резистором R2 и усиленный по току транзистором VT1. Минимальное напряжение (5,6 В) складывается из напряжения между коллектором и эмиттером полностью открытого транзистора, которое равно около 0,6 В, и номинального выходного напряжения интегрального стабилизатора в его типовом включении (5 В). При этом движок переменного резистора R2 находится в верхнем по схеме положении. Конденсатор С1 сглаживает пульсации напряжения; конденсатор С2 устраняет возможное высокочастотное возбуждение микросхемы. Ток нагрузки стабилизатора — до 3 А (микросхема при этом должна быть размещена на теплоотводящем радиаторе).

Микросхемы К142ЕН6А (Б, В, Г) представляют собой интегральные двуполярные стабилизаторы напряжения с фиксированным выходным напряжением 15 В. При этом максимальное входное напряжение каждого из плеч 40 В, а максимальный выходной ток — 200 мА. Однако на базе этого стабилизатора можно построить двуполярный регулируемый источник стабилизированного напряжения. Схема представлена на рис. 149.

Изменяя напряжение на выводе 2 интегрального стабилизатора, можно изменять выходное напряжение каждого плеча от 5 В до 25 В. Пределы регулировки для обоих плеч устанавливают резисторами R2 и R4. Следует помнить, что максимальная рассеива-



емая мощность стабилизатора — 5 Вт (разумеется, при наличии теплоотвода).

Микросхемы КР142ЕН18А и КР142ЕН18Б представляют собой регулируемые стабилизаторы напряжения с выходным напряжением 1,2…26,5 В и выходным током 1 А и 1,5 А соответственно. Регулирующий элемент стабилизатора включен в минусовой провод источников питания. Корпус и цоколевка стабилизаторов этого типа аналогичны микросхеме КР142ЕН5А.

Микросхемы оснащены системой защиты от перегрузки выходным током и от перегрева. Входное напряжение должно находиться в диапазоне 5…30 В. Мощность, рассеиваемая микросхемой с теплоотводом, не должна превышать 8 Вт. Типовая схема включения микросхем КР142ЕН18А (Б) приведена на рис. 150.

При всех условиях эксплуатации емкость входного конденсатора С 1 не должна быть менее 2 мкФ. При наличии сглаживающего фильтра выходного напряжения, если длина проводников, соединяющих его со стабилизатором, не превышает 1 м, входным кон





денсатором стабилизатора может служить выходной конденсатор фильтра.

Выходное напряжение устанавливают выбором номиналов резисторов R1 и R2. Они связаны соотношением:Uвых=Uвых мин(1+R2/R1),

при этом ток, протекающий через эти резисторы, должен быть не менее 5 мА. Емкость конденсатора С2 выбирают

Интегральные стабилизаторы для микроконтроллеров

Компенсационные стабилизаторы положительного напряжения популярной серии «78хх» были разработаны в 1976 г. на фирме Texas Instruments. В дальнейшем появились их модификации (Табл. 6.3) и аналогичные разработки других фирм. Выходные напряжения стандартизованы согласно ряду: 1.5; 1.8; 2.5; 2.7; 2.8; 3.0; 3.3; 4; 5; 6; 8; 9; 12; 15; 18; 24 В. Изготовители различаются по первым буквам в названии, например, L7812 (STMicroelectronics), КА7805 (Samsung), NJM78L03 (NJRCorporation), LM7805 (Fairchild), UTC7805 (UnisonicTechnologies). Встранах СНГ эти стабилизаторы известны по микросхемам серии КР142ЕНхх.

Важный нюанс. Допустимое падение напряжения между входом и выходом стабилизатора (£/Вх-вых) зависит от тока нагрузки. Так, например, для микросхем серии «7805» оно составляет 1 В при токе 20 мА и 2 В при токе 1 А. В кратких справочных данных обычно указывают только последний параметр (2 В/1 А), а полные нагрузочные характеристики приводятся только в графиках даташитов. Следовательно, внимательно их изучая, можно избежать ненужной перестраховки.

Интегральные стабилизаторы положительного напряжения

Все современные интегральные стабилизаторы имеют защиту от короткого замыкания в нагрузке, от температурного перегрева кристалла и от выхода рабочей точки из зоны безопасной работы [6-17].

Кроме стабилизаторов фиксированного напряжения существуют интегральные регулируемые стабилизаторы. Первые их образцы разработал Роберт Добкин (Robert Dobkin) в 1977 г. на фирме National Semiconductor. Типичными представителями этого направления являются микросхемы серии «317», выходное напряжение которых определяется делителем на двух резисторах.

На Рис. 6.6, а…р показаны схемы регулируемых и нерегулируемых интегральных стабилизаторов положительного напряжения.

Интегральные стабилизаторы положительного напряжения

Рис. 6.6. Схемы компенсационных интегральных стабилизаторов положительного напряжения (начало):

а) типовая схема включения интегрального стабилизатора DAL Серия микросхем «78Lxx» идеально подходит для несложных любительских конструкций, содержащих МК и имеющих ток потребления до 100 мА. Встроенная в DA1 защита от короткого замыкания ограничивает выходной ток на уровне 0.1…0.2 А, что во многих случаях спасает МК при аварии. Входное напряжение фильтруют элементы L1, C1, С2, причём катушка индуктивности может отсутствовать. Конденсаторы C1, С4 устанавливают вблизи (0…70 мм) от выводов стабилизатора DA1, чтобы предотвратить самовозбуждение последнего. Ёмкость конденсатора С2 должна быть в несколько раз больше, чем ёмкость конденсатора СЗ, иначе надо ставить защитный диод VD1 (показан пунктиром). Главное, чтобы при выключении питания выходное напряжение +5 В снижалось по времени быстрее, чем входное +6.5…+15 В (для этого и увеличивают ёмкость конденсатора С2), иначе может выйти из строя микросхема DA1. Если нет уверенности, то подобный диод рекомендуется ставить и в других аналогичных схемах;

б) стабилизатор DA1 (фирма Maxim/Dallas) не относится к серии «78хх». Он отличается названием и функциональностью. В частности, в микросхеме DA1 имеется вход для выключения стабилизатора (вывод 4) и вход для плавного регулирования напряжения (вывод 5). Микросхемы МАХ603 и МАХ604 взаимозаменяемые и обеспечивают соответственно +5 и +3.3 В на выходе;

в) LDO-стабилизатор на микросхеме DA1 с максимальным током нагрузки 1 А (аналог К1184ЕН1). В семействе LM2940 существуют микросхемы с выходным напряжением 5; 8; 9; 10; 12; 15 В, а в семействе LP2950 — с напряжением 3.0; 3.3; 5 В;

г) UltraLDO-стабилизатор на микросхеме DA1 в SMD-корпусе. Напряжение UВХ-вых не более 0.12 В при токе нагрузки 50 мА и не более 7 мВ при токе нагрузки 1 мА. Существуют модификации данного стабилизатора с выходным напряжением согласно ряду: 1.5; 1.8; 2.5; 2.85; 3.0; 3.2; 3.3; 3.6; 3.8; 4.0; 4.7; 4.85; 5.0 В;

Интегральные стабилизаторы положительного напряжения

Интегральные стабилизаторы положительного напряжения

Рис. 6.6. Схемы компенсационных интегральных стабилизаторов положительного напряжения (продолжение):

д) регулируемый стабилизатор напряжения на микросхеме DAI серии «317». 

е) напряжение +13 В получается сложением двух напряжений стабилизаторов DAI и DA2

ж) индикатор HL1 светится зелёным цветом при нормальном напряжении батареи/аккумулятора GB1 в пределах 6.8…9 В. Ниже 6.8 В его свечение прекращается, что является сигналом к замене батареи или подзарядке аккумулятора;

з) стандартный приём увеличения выходного напряжения стабилизатора DA1 на 0.1…0.3 В. Это может потребоваться при некондиционных параметрах микросхемы DA I или для тестирования работы МК при повышенном питании. Резистором R1 в небольших пределах регулируется выходное напряжение на линейном участке ВАХ диода VD1 (ток 5… 10 мА). Резистор RI не обязателен, если микросхему DAI серии «78LC05», «78-L05» заменить аналогичной из серии «7805», имеющей потребление тока через вывод GND в пределах 3…8 мА;

и) стабилизатор напряжения DAI дополнен усилителем тока на звуковой микросхеме DA2, которая используется как повторитель напряжения с нагрузкой до 3 А. Питание микросхемы DA2должно быть повышенным +9…+12 В, хотя и не обязательно стабилизированным;

Интегральные стабилизаторы положительного напряжения

Рис. 6.6. Схемы компенсационных интегральных стабилизаторов положительного напряжения (продолжение):

к) высокое входное напряжение 60 В сначала понижается до 23 В (DA1), а затем до 5 В (DA2). Разность напряжений между входом и выходом микросхемы DAI не должна превышать 40 В. При большом токе нагрузки может потребоваться установка микросхем DAI, DA2 на радиаторы;

л) резистором RI плавно подстраивается напряжение в верхнем, более мощном канале. Если средний вывод резистора RI в результате вращения его движка электрически соединится с общим проводом, то в двух каналах будут идентичные напряжения +5 В. Стабилизаторы DAI, DA2 могут иметь как одинаковые, так и разные выходные напряжения;

м) блок питания с условным названием «Ступенька» состоит из последовательно включённых стабилизаторов напряжения DA1…DA3. Ток нагрузки, просуммированный по трём цепям + 12, +9 и +5 В, не должен превышать максимально допустимого тока для микросхемы DA1

н) получение двух одинаковых напряжений от одного общего источника +7…+15 В. Это полезно, например, для развязки аналоговых и цифровых цепей МК или для отдельного питания высокочувствительного входного усилителя;

Интегральные стабилизаторы положительного напряжения

Рис. 6.6. Схемы компенсационных интегральных стабилизаторов положительного напряжения (окончание):

о) получение трёх разных стабилизированных напряжений для питания процессорного ядра, а также внутренней и внешней периферии у новых современных МК. Помехозащитный фильтр FBI (фирма Murata Manufacturing) имеет малые габариты. Он может быть заменён однозвенным LC-фильтром на дискретных элементах;

п) получение хорошо стабилизированного напряжения +5 В и «квазистабилизированного» напряжения +2.8…+3.2 В. Диоды VD1…VD3 снижают выходное напряжение, но оно будет зависеть от протекающего через них тока и температуры окружающей среды. Диодов может быть не три, а два, причем как обычных, так и диодов Шоттки. Резистор R1 служит для начальной нагрузки потоку, чтобы зафиксировать рабочую точку диодов на крутой вертикальной ветви ВАХ, начиная с 10 мА;

р) двухканальный стабилизатор напряжения DA1 (фирма STMicroelectronics) обеспечивает питанием сразу два выходных тракта +5.1 и +12 В. Ток нагрузки в каждом канале может составлять 0.75… 1 А.

Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.

Микросхемы стабилизаторов напряжения и DC/DC преобразователей

Маркировка микросхемы стабилизатора напряжения Произв. Назначение Выходн. напряж., (В) Макс. входн. напр., (В) Вых. ток, (мА) Паден. напр., (В) При токе, (мА) Рассеив. мощн., (мВт) Потр. ток, (мкА) Корпус Описан.СкладЗаказ
MIC5233YM5 Micrel Микропотребляющий 1,24 … 20 36 100 0,27 100 18 SOT23-5
NJM2871BF33-TE1 New Japan Radio Прецезионный с малым падением напряжения 3,3 14 150 0,10 60 200 SOT23-5
MC78LC33NTR Motorola Микропотребляющий 3,3 ± 2,5% 10 80 0,22 10 150 1,1 SOT23-5
MC78LC50NTR Motorola Микропотребляющий 5 ± 2,5% 10 80 0,22 10 150 1,1 SOT23-5
Купить
Упаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 штук. SOT89_5

Стабилизаторы с малым падением напряжения в SOT89-5

Маркировка микросхемы стабилизатора напряжения Произв. Назначение Выходн. напряж., (В) Макс. входн. напр., (В) Вых. ток, (мА) Паден. напр., (В) При токе, (мА) Рассеив. мощн., (мВт) Потр. ток, (мкА) Корпус Описан.СкладЗаказ
NJM2880U1-33-TE1 New Japan Radio Прецезионный с малым падением напряжения 3,3 ± 1% 14 300 0,1 100 350 120 SOT89-5
NJM2880U1-05-TE1 New Japan Radio Прецезионный с малым падением напряжения 5 ± 1% 14 300 0,1 100 350 120 SOT89-5
Купить
Упаковка: В блистр-ленте на катушке диаметром 330 мм по 3000 штук.

Линейные стабилизаторы напряжения в SOT89 на ток 100 мА

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 1000 штук.

Линейный стабилизатор напряжения в TO-252 на ток 0.5А

Упаковка: В блистр-ленте на катушке диаметром 330мм по 3000 штук.

Линейный стабилизатор с малым падением напряжения на ток 1А

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 штук.

ПараллельныЙ стабилизатор напряжения в SOT89

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 1000 штук для NJM431U.

Понижающие импульсные DC/DC преобразователи

Типовая схама включения MIC5233BM5

SOT89_5

Схема регулируемого стабилизатора напряжения с ультранизким током потребления

Типовые схемы включения MIC4685BR

SOT89_5

Преобразователь 1,8 В

SOT89_5

Преобразователь 5/3,3 В

Электронный каталог Корзина

Корзина пуста

1117 стабилизатор — регулируемый миниатюрный стабильник

Конструкция микросхем серий AMS 1117, IL 1117 A (аналог К 1254 ЕН) является стабилизаторами напряжения с полюсами положительного значения с малым напряжением насыщения, изготавливаются в корпусах. Выполняются на стандартные напряжения 1,2 — 5,0 В.

Ток выхода микросхем до 1 ампера, максимальная мощность рассеивания 0,8 ватта для микросхем, изготовленных в корпусе. В микросхемы вмонтирована система защиты по нагреву и мощности рассеивания. Встроенная защитная система от перегревания снижает напряжение выхода и ток, не давая повысится температуре микросхемы более 150 градусов. Система защиты от температуры не может заменить теплоотвод.

Вместо него можно применить медную полоску, маленькая медная пластинка из латуни, керамика, проводящая тепло. Микросхема фиксируется к теплоотводящему радиатору при помощи пайки теплопроводящего радиатора, либо приклеивается корпусом при помощи теплопроводящего клея. Использование микросхем таких марок дает возможность увеличить стабильность напряжения выхода, малые коэффициенты токовой нестабильности напряжению (меньше 10 милливольт), повышенный КПД, что дает возможность уменьшения напряжения входа питания прибора. Микросхемы марки 1117 работают в компьютерной технике: в комплекте схем, системных блоков, тюнерах, разных контроллерах.

На рисунке дается схема блока – стабилизирующего устройства «плюсовой» полярности на стандартное напряжение выхода 3,3 вольта. Входное значение напряжения стабилизатора определено в пределах до 12 вольт.

Это стабилизирующее устройство идеально сочетается с питанием разных мобильных гаджетов с отдельным питанием величиной в 3 вольта. На нем можно выполнить маленький блок питания, и применить его в качестве подключаемого устройства стабилизации к адаптерам — обычным трансформаторным и новым импульсным, используемым в качестве зарядных устройств смартфонов. Этот стабилизатор тоже возможно подключать к автомобилю + 12 вольт через фильтр помех прибора. Диод VD 2 служит для защиты стабилизатора от ошибочного подключения прибора. Дроссель L1 и емкости служат для подавления сильных помех в сети.

Если вам необходим стабилизатор, имеющий значительную величину мощности, то схему соединений надо слегка сделать сложнее, путем добавления в схему транзистора и сопротивления.

Транзистор марки КТ 818 в пластиковой оболочке имеет возможность рассеивать мощность 1 ватт, в корпусе из металла – мощность до 3 ватт. Если необходима большая мощность, значит, транзистор нужно подключить на теплоотводящий радиатор. Оптимальным решением будет установка микросхемы вместе с транзистором на общий теплоотводящий радиатор, максимально рядом один корпус с другим. Так как, при таком подключении защита микросхемы от чрезмерной нагрузки не будет действовать, чтобы слишком не делать сложной схему устройства, подключать стабилизатор лучше по самовосстанавливающемуся предохранителю.

Если применен транзистор в пластмассовой оболочке, например КТ 818А, то наибольший ток нагрузки допускается до 8 А, если корпус металлический, например, КТ 818 БМ, то допустимый ток до 12 ампер. Если необходимо построить свой вариант стабилизатора с помощью микросхемы 1117, то возможно использование данных из таблицы.

Маркировка микросхемы изображена на рисунке. Теплоотводящий фланец подключен к выходу микросхемы. Когда нужно увеличить напряжение на выходе стабилизирующего устройства на 0,6 вольта, в разъем цепи питания и главного вывода микросхемы устанавливают соответствующий слабый кремниевый диод, к примеру КД 521 А, анодом к микросхеме, подключенный с шунтом электролитическим конденсатором.

В этом случае нестабильность микросхемы сильно возрастет, но остается вполне допускаемой для множества применений.

Схемотехника микросхем импульсных стабилизаторов напряжения – Полупроводниковая силовая электроника

Схемотехника и особенности применения отечественных микросхем для источников питания достаточно широко освещены в литературе [19, 21, 23, 25, 26]. Описание особенностей работы импульсных источников питания также можно найти в специальной литературе, например, [15, 18]. Как известно, в импульсных источниках питания входное нестабилизированное напряжение преобразуется в достаточно высокочастотное (более 20 кГц). При этом, чтобы получить требуемый уровень стабилизации, необходимо провести регулирование коэффициента заполнения импульсного напряжения и затем осуществить процесс выпрямления, что и обеспечивает стабильное постоянное выходное напряжение источника питания. В понижающих импульсных стабилизаторах значение выходного напряжения (£/вых) всегда ниже входного (ί/χ) и определяется простым выражением [26, 61]:

I

где t — время открытого состояния выходного ключевого транзистора; Т— период следования импульсов.

Коэффициент полезного действия (КПД) преобразования таких микросхем достаточно высокий — 70—95%, поскольку их входная цепь «развязана» с выходной по постоянному току.

Как известно, импульсные стабилизаторы напряжения могут работать с использованием как релейного (гистерезисного) способа преобразования, так и путем широтно-импульсной модуляции (ШИМ) (с регулированием по напряжению или по току) [27].

На рис. 3.31 приведена структурная схема релейного импульсного понижающего стабилизатора напряжения, построенная на основе микросхемы IL34063, которая может применяться в понижающих, повышающих и инвертирующих импульсных стабилизаторах.

Здесь рабочая частота колебаний задается выбором соответствующих численных значений емкости конденсатора СЗ и сопротивления резистора R1. Кроме того, рабочая частота стабилизатора повышается с ростом входного напряжения, поскольку при этом увеличивается скорость нарастания тока в индуктивности L1. Когда напряжение на выводе 5 цепи обратной связи достигает значения, равного значению опорного напряжения, компаратор через логический элемент и триггер закрывает выходной каскад и прерывает прохождение импульсов на выход 2 микросхемы. Стабилизатор работает в режиме генерации пакетов импульсов, т.е. когда величина напряжения на выводе 5 больше величины опорного напряжения 1,25 В, на выходе присутствуют импульсы, а когда ниже — импульсы отсутствуют. Наличие пульсаций на входе обратной связи — обязательное условие нормальной работы импульсного гистерезисного стабилизатора. Так, на выходе представленного на рис. 3.31 понижающего стабилизатора значение пульсаций напряжения составляет 120 мВ. Для того чтобы его уменьшить до 40 мВ, к выходу стабилизатора дополнительно подключается фильтр L2, С4. КПД такого стабилизатора составляет -80%.

Рис. 3.31. Структурная схема релейного импульсного стабилизатора напряжения с микросхемой IL34063, где: С1 — конденсатор электролитический емкостью 100 мкФ ± 10%; С2 — конденсатор емкостью 470 пФ ± 10%; СЗ — конденсатор электролитический емкостью 470 мкФ ± 10%; С4 — конденсатор электролитический емкостью 100 мкФ ± 10%; R1 — резистор сопротивлением 0,33 Ом ± 5%; R2 — резистор сопротивлением 1,2 кОм ± 5%; R3 — резистор сопротивлением 3,6 кОм ± 5%; L1 — индуктивность 220 мкГн; L2 — индуктивность 1,0 мкГн; VD1 — диод

Максимальное численное значение величины выходного тока микросхемы импульсного стабилизатора напряжения IL34063 составляет от 0,8 до 1,5 А.

Как известно [27], более качественные характеристики имеют импульсные стабилизаторы, использующие метод широтно-импульсной модуляции (ШИМ). Их рабочая частота, как правило, постоянна, что позволяет оптимизировать параметры индуктивности и емкости выходного фильтра и упрощает решение задачи фильтрации помех. Численные значения пульсаций выходного напряжения таких стабилизаторов значительно меньше, чем в релейных. Недостаток ШИМ-стабилизаторов с управлением по напряжению — реакция на скачкообразное изменение тока нагрузки или входного напряжения. Для обеспечения их устойчивости обязательно использование частотной коррекции в цепи отрицательной обратной связи.

Более совершенные динамические характеристики по сравнению со стабилизаторами с управлением по напряжению имеют ШИМ-стабилизаторы с управлением по току. Они же обладают и лучшей устойчивостью. В дополнение к цепи отрицательной обратной связи по напряжению их структурная схема включает и быстродействующую цепь обратной связи по току. Как правило, сигнал обратной связи по току поступает отдатчика тока выходного ключа, выделяется на токоизмерительном резисторе и суммируется с сигналом обратной связи по напряжению.

В отечественном серийном производстве выпускается широкий спектр микросхем для понижающих импульсных стабилизаторов с ШИМ-регулированием — IL2576, IL2596,1L1501, ΙΖ1583, ΙΖ1591, ΙΖ1412 и ΙΖ2307. Рассмотрим более подробно схемотехнику и особенности применения этих наиболее распространенных ИМС.

Так, микросхемы IL2576, IL2596, IL1501 предназначены для импульсных стабилизаторов напряжения с фиксированным выходным напряжением 3,3; 5,0 и 12 В, а также для стабилизаторов с регулируемым внешним резистивным делителем на напряжение в диапазоне 1,2—37 В. Их выходной ток достигает 3 А. Рабочая частота фиксирована и составляет 52 кГц для IL2576 и 150 кГц для IL2596 и IL1501.

Рассмотрим более детально работу импульсного стабилизатора, построенного на основе микросхемы IL1501 (рис. 3.32, 3.33). Микросхема имеет встроенный источник опорного напряжения, примерно равного ширине запрещенной зоны полупроводника — 1,235 В. Опорное напряжение подается на неинвертирующий вход усилителя ошибки А1, на инвертирующий вход усилителя через резистивный делитель R1/R2 подается часть выходного напряжения. Усиленная разность напряжений через блок частотной компенсации поступает на инвертирующий вход ШИМ-компаратора А2. На его неинвертирующий вход подается пилообразное напряжение внутреннего генератора на частоту 150 кГц. Ширина импульса на выходе ШИМ-компаратора тем больше, чем меньше напряжение на выходе стабилизатора, причем коэффициент заполнения может регулироваться от 0 до 100%. Рассмотренная цепь обеспечивает регулирование по напряжению.

Рис. 3.32. Функциональная схема микросхемы IL1501, где: А1 — усилитель; А2—А4 – компараторы; G1 – источник постоянного напряжения 200 мВ; G2 – источник постоянного напряжения 220 мВ; Rl — R3 — резисторы; VT1, VT2 — транзисторы

В микросхеме предусмотрена защита от превышения рабочего тока выходного транзистора и критической температуры кристалла. При превышении тока резистора R3 компаратор АЗ автоматически выключает внутренний генератор, а компаратор А4 — драйвер выходного транзистора. В результате транзистор отключается, и на выходе импульсы отсутствуют. При превышении температуры кристалла Т > 150 °С срабатывает встроенный блок температурной защиты и блокируется прохождение импульсов на выходной транзистор. Микросхема также имеет вход управления SD с ТТЛ уровнями управляющего напряжения. Подача на этот вход напряжения меньше 0,6 В разрешает работу стабилизатора, выше 2,0 В — блокирует его работу. В рабочем состоянии типовое значение тока потребления составляет 5 мА, в режиме сброса — 150 мкА.

Рис. 3.33. Блок-схема импульсного стабилизатора напряжения с микросхемой IL1501, где: Cl, С2 — конденсаторы электролитические; L1 — катушка индуктивности; VD1 — диод Шоттки 1Ν5825

Отечественные микросхемы ΙΖ1583, ΙΖ1591, ΙΖ1412, ΙΖ2307 — это регуляторы с управлением по току. Предназначены они для проектирования энергосберегающих импульсных стабилизаторов напряжения с регулируемым выходным внешним резистивным делителем напряжения от 1,2 до 21 В (ΙΖ1583 и ΙΖ1591), от 0,92 до 16 В (ΙΖ1412) и от 0,925 до 20 В (ΙΖ2307). Значение выходного тока у ΙΖ1583 и 1Ζ2307 достигает величины 3 А и 2 А, соответственно, у ΙΖ1591 и ΙΖ1412. Рабочая частота этих микросхем фиксирована и составляет 330—385 кГц.

В микросхеме ΙΖ2307 (рис. 3.34), кроме того, предусмотрена возможность синхронного выпрямления — вместо внешнего выпрямляющего диода Шоттки используется внутренний МОП-транзистор, падение напряжения которого во включенном состоянии меньше, чем у открытого диода Шоттки. Пониженное значение опорного напряжения (0,92—0,925 В) у ΙΖ1412, ΙΖ2307 и синхронное выпрямление у ΙΖ2307 позволяют создавать на их основе импульсные стабилизаторы с высоким КПД. Это особенно важно для источников питания с низким выходным напряжением.

На рис. 3.35 представлена блок-схема малогабаритного энергосберегающего импульсного стабилизатора напряжения, построенного на базе микросхемы ΙΖ2307.

Как видно из этого рисунка, для построения стабилизатора требуется минимальное количество внешних дискретных элементов. Даже любой радиолюбитель легко может построить это энергосберегающее устройство для использования в бытовой аппаратуре.

Рис. 3.34. Функциональная схема микросхемы ΙΖ2307

Алгоритмы работы микросхем ΙΖ1583, ΙΖ1591, ΙΖ1412 и ΙΖ2307 достаточно близки. Рассмотрим для примера работу стабилизатора, построенную на основе микросхемы ΙΖ1412 (рис. 3.36). Величина напряжения на выводе СОМР микросхемы всегда будет пропорциональна значению пикового тока индуктивности стабилизатора. В начале рабочего цикла микросхемы верхний транзистор VT4 закрыт, нижний транзистор VT5 открыт.

Значение напряжения на выводе СОМР выше, чем на выходе усилителя токового сигнала, и, следовательно, на выходе ШИМ-компаратора присутствует низкий уровень напряжения. Высокий уровень тактирующего сигнала внутреннего генератора переключает RS-триггер, выходы которого закрывают транзистор VT5 и открывают VT4. В индуктивности через транзистор VT4 начинает протекать ток от входного источника. Возрастающий ток индуктивности создает падение напряжения на резисторе R2, которое усиливается усилителем токового сигнала. Пилообразное напряжение внутреннего генератора суммируется с выходным напряжением усилителя токового сигнала и сравнивается ШИМ-компаратором с выходным напряжением усилителя ошибки.

Когда сумма напряжений усилителя токового сигнала и генератора пилообразного сигнала превышает напряжение на выводе СОМР, RS триггер переключается и транзисторы VT4 и VT5 возвращаются в исходное состояние. Суммирование значений выходного напряжения усилителя токового сигнала и генератора пилообразного сигнала приводит к тому, что к управлению по напряжению добавляется управление по току. Если суммарное напряжение меньше напряжения на выводе СОМР, то низкий уровень напряжения на выходе внутреннего генератора тактирующего сигнала «сбрасывает» RS-триггер. Выход усилителя ошибки усиливает разницу напряжений между входом обратной связи FB и опорным напряжением, равным 0,92 В.

Рис. 3.36. Функциональная схема микросхемы IZ1412

Если напряжение на входе FB меньше 0,92 В, напряжение на выводе СОМР увеличивается и наоборот. Таким образом, ширина импульса на выходе ШИМ- компаратора тем больше, чем меньше напряжение на выходе стабилизатора.

Выходное напряжение импульсного стабилизатора определяется резистивным делителем R3/R2 по формуле

где UFB = 0,92В — напряжение обратной связи на выводе FB.

Типовое значение R2 = 10 кОм. Частота работы микросхемы — 380 кГц. Однако в режиме короткого замыкания (t/FB = 0) частота уменьшается до 240 кГц.

Микросхема имеет вход управления EN, который работает следующим образом: если напряжение на нем меньше 0,4 В, то работа стабилизатора блокируется, а выше 3,0 В — его работа разрешается. В рабочем состоянии типовое значение тока потребления составляет 1,1 мА, в режиме сброса — всего 23 мкА. Необходимо отметить то, что низкие значения токов потребления достигнуты благодаря изготовлению микросхемы по совмещенной комбинированной БиКДМОП-технологии, позволяющей реализовать достоинства биполярных, пМОП, рМОП (КМОП) и высоковольтных ДМОП-транзисторов. Микросхема также имеет регулируемую подключаемую внешней емкостью к выводу SS функцию «мягкого старта», которая позволяет минимизировать ток потребления и исключить вероятность перегрузки выхода при старте микросхемы, что существенно повышает ее надежность.

На рис. 3.37 представлена блок-схема энергосберегающего импульсного стабилизатора напряжения, построенного на базе микросхемы IZ1412 и одиннадцати «внешних» по отношению к микросхеме дискретных элементов.

Как известно, характеристики импульсного стабилизатора напряжения определяются не только электрическими параметрами используемой микросхемы, но и параметрами схемы «обвязки» — емкостей, индуктивности, диода. На примере определения параметров «внешних» компонентов микросхемы IZ1412 покажем основные правила их выбора [28].

Так, индуктивность L1 обеспечивает постоянное численное значение тока в нагрузке даже при допустимых изменениях входного напряжения. Чем больше индуктивность, тем меньше будут пульсации тока и, как результат, меньше и пульсации выходного напряжения.

Однако существенное увеличение значения индуктивности приведет к увеличению габаритов стабилизатора, последовательного сопротивления и/или к уменьшению тока насыщения. Поэтому на практике рекомендуется применять следующее правило: пульсации тока в индуктивности Δ/L не должны превышать 30% максимального ограничения тока выходного ключевого транзистора (для IZ1412 это 3,4 А). Тогда значение индуктивности может быть рассчитано по формуле:

где fs = 380 кГц — рабочая частота микросхемы.

Индуктивность не будет насыщаться при достижении максимального тока. Максимальный ток индуктивности /Ыакс может быть рассчитан по формуле:

Выходной выпрямительный диод проводит ток индуктивности, когда верхний транзистор VT4 закрыт. Для повышения КПД импульсного стабилизатора рекомендуется использовать диод Шоттки, обратное пробивное напряжение которого больше, чем максимальное входное напряжение стабилизатора UBX МАКС, и максимальный ток больше тока нагрузки стабилизатора /вых.

Входное напряжение стабилизатора может изменяться, поэтому на входе необходим конденсатор С1. Лучше всего использовать керамический конденсатор, поскольку у него небольшое эквивалентное последовательное сопротивление Resr. Можно также применять электролитический или танталовый конденсатор с низким значением /?ESR. Действующее значение тока конденсатора С1 можно определить с помощью уравнения:

В худшем случае, когда UBX = 2 t/Bblx, /С1 = /вых/2. Необходимо выбирать конденсатор, диапазон токов которого превышает половину максимального тока нагрузки стабилизатора /вых. Пульсации входного напряжения Δί/ΒΧ определяются выражением:

В отличие от релейного стабилизатора, для работы импульсного стабилизатора с ШИМ-регулированием не требуется наличия пульсаций выходного напряжения. Значение пульсаций напряжения на выходе А1/вых определяется в основном типом используемого конденсатора и вычисляется по формуле:

Применять можно керамический, танталовый или электролитический конденсаторы с низким значением эквивалентного последовательного сопротивления Resr. Самые низкие значения Resr у керамических конденсаторов, поэтому для них выражение (3.19) упрощается:

При С6 = 22 мкФ, LI = 15 мкГн,/5 = 380 кГц, UBX = 5 В, UBb]X = 3,3 В значение пульсаций выходного напряжения составляет всего 2,9 мВ.

Значения эквивалентного последовательного сопротивления Resr у электролитических и танталовых конденсаторов больше, чем у керамических. Для них выражение (4.19) имеет следующий вид:

При С6 = 560 мкФ, Resr = 0,03 Ом (использован электролитический конденсатор с низким Resr), L\ = 15 мкГн,/5 = 380 кГц, UBX = 5 В, £/вых = 3,3 В значение пульсаций выходного напряжения будет составлять 5,9 мВ.

Таким образом, при выборе выходного конденсатора следует иметь в виду, что для уменьшения пульсаций выходного напряжения необходимы конденсаторы с малым последовательным сопротивлением Resr.

Устойчивость работы стабилизатора обеспечивают внешние элементы коррекции С4, СЗ, R1. Схема коррекции наклона пилообразного напряжения устраняет возможность самовозбуждения стабилизатора на субгармониках, особенно при коэффициенте заполнения более 50%, который присущ стабилизаторам с обратной связью по току. Используется коррекция по типу «полюс—нуль» частотной характеристики [16] с несколькими полюсами и нулями. Как известно, для обеспечения устойчивости систем с отрицательной обратной связью необходимо, чтобы фазовый сдвиг был меньше 180е на всех частотах, на которых коэффициент передачи цепи обратной связи превышает единицу. Для этого проще всего включить в схему емкость, с помощью которой можно задать частоту (полюс) и наклон характеристики, равный —6 дБ/октава (20 дБ/декада). За счет этого в большей части полосы пропускания фазовый сдвиг будет равен 90°. Иногда лучший результат можно получить, если использовать схему коррекции, которая сначала обеспечивает спад усиления с наклоном 6 дБ/октава (20 дБ/декада), а затем, начиная с некоторой частоты, — ровную характеристику (нуль характеристики). Схема коррекции, применяемая для микросхемы IZ1412, имеет несколько «полюсов» и «нулей» характеристики.

Коэффициент усиления петли обратной связи определяется выражением

где RBb]X – значение сопротивления нагрузки; Gcs = 1,95А/В – крутизна усилителя тока; ΛνΕΑ = 400 В/В — коэффициент усиления усилителя ошибки.

Микросхема ΙΖ1412 имеет два полюса характеристики. Один определяется компенсирующей емкостью С4 и выходным сопротивлением усилителя ошибки. Второй — выходным конденсатором С6 и резистором нагрузки ЛВЬ|Х:

где Gea = 830 мкА/В — крутизна усилителя ошибки.

Система имеет один «нуль» характеристики, обусловленной компенсирующей емкостью С4 и компенсирующим резистором RI

Если емкость выходного конденсатора С6 большая и/или сопротивление Resr велико, возможны и другие «нули» характеристики системы. «Нуль», определяемый Resr и С6, равен

Для обеспечения устойчивости системы важно правильно выбрать частоту единичного усиления петли обратной связи (fc). Слишком низкая частота приводит к медленной реакции микросхемы на изменения нагрузки, слишком высокая частота может привести к нестабильности системы. На практике лучше использовать частоту единичного усиления петли обратной связи, не превышающую одну десятую рабочей частоты микросхемы (fc < 0,l/s). Сопротивление компенсирующего резистора R\ задает частоту единичного усиления и определяется по формуле:

Значение компенсирующей емкости С4 определяет запас по фазе. Желательно, чтобы частота/21 была меньше одной четвертой частоты единичного усиления (fZ] < 0,25/с). Тогда значение емкости будет определяться следующим выражением:

В случае, когда последовательное сопротивление Resr выходной емкости С6 велико и частота/ESR меньше половины рабочей частоты/s, т.е.

требуется вторая компенсирующая емкость СЗ, и необходимо добавить третий полюс характеристики, определяемый значениями емкости СЗ и сопротивлением резистора R\:

Таблица 3.7. Основные технические характеристики базовой серии микросхем управления импульсными источниками питания

имс

Напря жение питания

ЧсВ

Ток потребления, мА

Частота работы, кГц

Обратная связь по току

Защиты

Технология

от перегрузок по току (ОСР, OLP)

гистерезис по питанию (UVLO)

от повышенного напряжения питания (OVP)

от пониженного напряжения питания

от перегрева кристалла (ОТР)

IL494

7,0-40,0

< 50

1-300

Биполярн.

ILA4605-2,

КР1087ЕУ1

7,5-15,5

< 16

10-100

+

+

+

+

+

Биполярн.

ILA3842A,

IL3844

12-25

< 17

10-500

+

+

+

+

+

Биполярн.

IL44608N40

< 500 В при запуске, 6,6-15 В рабочее

< 3,6

40 ± 4

+

+

+

+

+

+

БиКДМОП

IL44608N75

< 4,0

75 ±7

IL44608N100

< 4,5

100 ± 10

ILP223

36-700

1,1-1,6

100

+

+

+

+

+

+

БиКДМОП

ΙΖΡ233

36-700

1,0-2,0

132/66

+

+

+

+

+

+

БиКДМОП

ΙΖΥ266

50-700

0,32

132

+

+

+

+

+

+

БиКДМОП

Значение СЗ задается выражением:

Приведенные практические рекомендации и теоретические выражения для определения параметров компенсирующих элементов применимы как для микросхем IZ1583, IZ1591, 1Z1412, IZ2307, так и для других микросхем импульсных стабилизаторов с управлением по току.

Представленные серии микросхем импульсных понижающих стабилизаторов напряжения представляют собой современную элементную базу для экономичных малогабаритных источников питания портативной вычислительной, промышленной и бытовой техники.

Приведенные выше схемотехнические особенности организации, практические рекомендации по их применению, а также представленные математические выражения и формулы для выбора и расчета параметров элементов обрамления позволят специалистам более эффективно использовать все возможности этих микросхем при построении широкого спектра энергосберегающих источников питания различного назначения.

В табл. 3.8 представлены основные технические характеристики базовой серии отечественных микросхем импульсных стабилизаторов напряжения.

Таблица 3.8. Основные технические характеристики базовой серии микросхем импульсных стабилизаторов напряжения

Источник: Белоус А.И., Ефименко С.А., Турцевич А.С., Полупроводниковая силовая электроника, Москва: Техносфера, 2013. – 216 с. + 12 с. цв. вкл.

Guard — Руководство по покупке стабилизатора напряжения

Колебания напряжения в наших линиях электропередач — обычное дело и довольно высокие. Они повреждают ваши электрические приборы, такие как телевизор, холодильник, кондиционер и т. Д., И серьезно влияют на ваше ценное оборудование, даже оставляя его в необратимом состоянии. Правильно подобранный стабилизатор поможет вам решить эту проблему. Он предотвращает попадание нежелательных колебаний напряжения в электроприборы, тем самым облегчая их работу.Компания V-Guard, имеющая более чем тридцатилетний опыт работы в отрасли, предлагает серию стабилизаторов, тщательно разработанных для удовлетворения различных требований повседневной жизни. Наши стабилизаторы разработаны и изготовлены с использованием новейших технологий и строгих мер по обеспечению качества, чтобы защитить все типы ваших электроприборов от серьезных колебаний напряжения. Это никогда не будет зарплатой, когда дело доходит до вашего ценного оборудования, вы шокируете поломки.

Для чего нужен стабилизатор напряжения? Как он защищает вашу технику?
Стабилизаторы (часто называемые автоматическими и безопасными регуляторами напряжения) представляют собой статические устройства для стабилизации напряжения в сети перед подачей на подключенное оборудование.Он распознает колебания напряжения в сети и регулирует их внутренне, чтобы обеспечить постоянный диапазон выходного напряжения, если напряжение в сети низкое; ваш стабилизатор распознает его, повышает его до необходимого уровня напряжения, а затем подает питание на подключенное оборудование, чтобы оно работало без проблем. И наоборот, если в электросети появляется высокое напряжение.

В стабилизаторах это достигается за счет использования электронной схемы, которая изменяет требуемые отводы встроенного автотрансформатора с помощью высококачественных электромагнитных реле для генерирования желаемого напряжения.Если подаваемое напряжение выходит за пределы допустимого диапазона, механизм переключает требуемый ответвитель трансформатора, тем самым переводя напряжение питания в безопасный диапазон.

Таким образом, стабилизатор действует как надежная защита между вашим оборудованием и сетью, непрерывно отслеживая и стабилизируя колебания напряжения, возникающие в электросети. Это гарантирует, что ваше ценное устройство будет получать постоянный стабилизированный диапазон напряжения на входе для бесперебойной работы и длительного срока службы.

Как выбрать стабилизатор подходящего размера для моего приложения?
Выбор правильного стабилизатора, подходящего для ваших приложений, имеет решающее значение. Ключевыми областями, которые следует рассматривать критически, являются характер, диапазон энергопотребления вашего приложения и уровень колебаний напряжения, которые наблюдаются в вашем районе. Вам необходимо знать номинал оборудования, которое необходимо защитить — номиналы обычно указываются как кВт , кВА или ампер .Вам также необходимо знать номинальное напряжение и частоту сети.

Вот несколько простых советов по выбору стабилизатора:

  • Проверьте напряжение, ток и номинальную мощность устройства. Это написано на наклейке со спецификацией рядом с розеткой питания, в противном случае обратитесь к руководству пользователя.
  • В Индии стандартное рабочее напряжение составляет 230 В переменного тока, 50 Гц.
  • Чтобы получить максимальную мощность — умножьте «230 x Максимальный номинальный ток» всего оборудования, которое должно быть подключено к стабилизатору.Добавьте 20-25% запаса прочности, чтобы получить номинал стабилизатора. Если вы планируете добавить другие устройства позже, вы можете оставить для них буфер.
  • Следует также учитывать импульсный ток, который протекает при включении устройства.
  • Если стабилизатор напряжения также имеет номинальную мощность в ваттах, примите коэффициент мощности 0,8 (Вт = В * A * pf) .

Самое главное знать характер нагрузки, подключенной к стабилизатору.Сначала вы должны записать мощность (или ватты) всех устройств, которые будут подключены к стабилизатору. Сумма потребляемой мощности (или ватт) даст вам нагрузку на стабилизатор в ваттах. Но большинство размеров стабилизаторов указаны в ВА (вольт-ампер) или кВА (киловольт-ампер, что равно 1000 вольт-ампер). Хотя, чтобы получить фактическую ВА (или вольт-ампер) из ватт (Вт), вам придется провести некоторые измерения, но для грубого приближения вы можете увеличить значение ватт на 20%, чтобы получить приблизительный размер ВА, который вам может понадобиться. .

Так, например, Если сумма ватт, подключенных к вашему стабилизатору, равна 1000, вы можете взять стабилизатор на 1200 ВА или 1,2 кВА. (Обратите внимание, что 20% подходит для жилых систем и может не работать в промышленности, если у вас плохой коэффициент мощности).

Обычно стабилизатор имеет разные рабочие диапазоны (рабочий диапазон — это диапазон напряжения, в котором стабилизатор работает / стабилизирует входное напряжение электросети и обеспечивает желаемое выходное напряжение). Важно выбрать стабилизатор, соответствующий колебаниям напряжения в вашем районе.

Составьте представление об уровне перепадов напряжения, типичных для вашего местоположения. (Например, области очень низкого / высокого напряжения, области среднего высокого / низкого напряжения и т. Д.). Вы должны выбрать рабочий диапазон ваших стабилизаторов, который будет соответствовать требованиям вашего местоположения. Например, вам может потребоваться выбрать стабилизатор с широким рабочим диапазоном, если в вашем регионе очень низкие / высокие колебания напряжения.

Какие основные особенности вам следует искать в стабилизаторе напряжения?

а.Монтаж
Поскольку стабилизатор напряжения работает с электричеством, всегда существует риск намокания или повреждения стабилизатора при размещении на земле или в небезопасном месте. Вот почему большинство стабилизаторов можно закрепить на стене или разместить на более высоком уровне, чтобы не только защитить их от любых повреждений, но и защитить вашу семью, особенно маленьких детей, от риска поражения электрическим током.

г. Показатели
Индикаторы отображают напряжение, отрегулированное для подачи питания на прибор.Новые модели также оснащены светодиодными индикаторами.

г. Системы задержки времени
Эта функция позволяет использовать интервал времени, чтобы встроенный компрессор (в случае холодильника, кондиционера и т. Д.) Получил достаточно времени для балансировки тока, когда происходит кратковременное отключение электроэнергии.

г. Оцифрованное
Чтобы сделать работу стабилизатора более точной и надежной, многие новейшие модели оцифрованы.Что интересно в этих новых моделях, так это то, что они не только оцифрованы, но и адаптируются к различным устройствам. Итак, все, что вам нужно сделать, это перенести стабилизатор с одного устройства на другое, чтобы он заработал. Большинство из них также подключаются и адаптируются к генераторам, если они установлены.

e. Защита от перегрузки
Функция защиты от перегрузки полностью отключает выход стабилизатора в случае короткого замыкания или любого вида перегорания из-за перегрузки.

На большинство наших стабилизаторов предоставляется гарантия 3-5 лет, поэтому вы можете дольше пользоваться надежной и достаточной защитой своих приборов. Всегда не забывайте выбирать стабилизатор, специально созданный для вашей бытовой техники. Надеемся, вы примете правильное решение.

Есть ли в современных холодильниках / кондиционерах встроенная стабилизация напряжения?
Современные приборы (в основном холодильники и кондиционеры) имеют больший диапазон напряжения для работы, т.е.е. Если раньше холодильники хорошо работали только между 200-240В, то теперь у них более широкий диапазон 170-290В. Холодильник поставляется со встроенным отсечкой высокого и низкого напряжения, но не имеет встроенных стабилизаторов напряжения . Использование стабилизатора напряжения с такими приборами может не потребоваться, если напряжение в вашем районе не поднимается или опускается намного выше или ниже предела, в котором может работать прибор.

Существуют ли разные стабилизаторы для разных приборов?
Стабилизаторы напряжения оптимально спроектированы в зависимости от устройства, для которого они будут использоваться.Они классифицируются на основе лимита энергии и характеристик конкретного прибора. Каждый прибор в нашем доме имеет определенный лимит энергии. Принимая во внимание эти конкретные ограничения, разрабатываются соответствующие стабилизаторы. Различные типы стабилизаторов:

а. Стабилизатор кондиционера
б. Цифровой стабилизатор (LCD TV / LED TV / Музыкальные системы)
c. Стабилизатор для холодильников
d.Стабилизаторы для ЭЛТ ТВ, Музыкальные Системы
е. Стабилизаторы для стиральной машины, беговой дорожки, духовки
f. Основные стабилизаторы

Щелкните здесь, чтобы просмотреть наш ассортимент стабилизаторов напряжения, классифицированных в соответствии с типом использования и оборудованием.

Как выбрать стабилизатор, соответствующий вашим потребностям?
Прежде всего, вам необходимо рассчитать общую мощность, потребляемую вашими приборами при подключении к стабилизатору, особенно при включении.Важно понимать мощность, потребляемую при включении приборов, подключенных к стабилизатору, потому что при запуске приборы или устройство потребляют вдвое больше энергии, чем при работе.

Вот таблица, в которой указаны требования к мощности некоторых часто используемых электроприборов.

Подкатегория
Модель Мощность, ВА Рабочий диапазон Приборы
Стабилизатор для AC ВГ 400 2700 170В — 270В AC До 1.5 тонн переменного тока или 18 000 британских тепловых единиц / час.
ВГ 500 3350 170В — 270В переменного тока до 2 тонн или 24 000 британских тепловых единиц / час.
VS 400 2700 170В — 280В AC до 1.5 тонн переменного тока или 18 000 британских тепловых единиц / час.
VS 500 3350 170В — 280В переменного тока до 2 тонн или 24 000 британских тепловых единиц / час.
400 донгов 3000 150В-285В AC до 1.5 тонн или 18000 британских тепловых единиц / час.
500 донгов 3700 150В-285В переменного тока до 2 тонн или 24 000 британских тепловых единиц / час.
VND 400 Digital 2800 150V-290V AC до 1.5 тонн или 18000 британских тепловых единиц / час.
VD 400 Digital 2800 150V-290V переменного тока до 1,5 тонны или 18 000 БТЕ / час.
VWR 400 3000 130В-300В AC до 1.5 тонн или 18000 британских тепловых единиц / час.
VGB 500 3800 130В-300В переменного тока до 2 тонн или 24 000 британских тепловых единиц / час.
VEW 400 Цифровой 3000 90–300 В переменного тока до 1,5 тонны или 18 000 БТЕ / час.
VGX 400 3000 130В-300В переменного тока до 1,5 тонны или 18 000 БТЕ / час.
Цифровые стабилизаторы (LED / LCD TV) Мини-кристалл 320 90V-290V Один ЖК-телевизор До 81.3 см и DVD / DTH
VG Кристалл 480 90V-290V Один ЖК-телевизор / LED / 3D-телевизор до 107 см и домашний кинотеатр, DVD / DTH
Кристалл Плюс 720 90V-290V Один ЖК-телевизор / LED / 3D-телевизор до 117 см и домашний кинотеатр, DVD / DTH
Digi 200 1380 140V-295V LCD / LED / 3D / Plasma TV + DVD / DTH + Домашний кинотеатр или фотостат
Стабилизаторы для холодильников ВГ 50 500 135V-280V Один холодильник до 300 литров
VGSD 50500 130V-290V Один холодильник до 300 литров
VGSJW 50 500 90В-260В Один холодильник до 300 литров
VEW 50 500 90V-280V Один холодильник до 300 литров
ВЭБ 50 500 70В-300В Один холодильник до 300 литров
ВГ 100 1000 135V-280V Одна морозильная камера до 4 А / холодильник до 600 литров
ВГСД 100 1000 130V-290V Одна морозильная камера до 4 А / холодильник до 600 литров
VGSJW 100 1000 90В-260В Одна морозильная камера до 4 А / холодильник до 600 литров
ВГ 150 1500 150V-280V Одна морозильная камера до 6 ампер / холодильник / воздухоохладитель / 0.ЦИФРОВОЙ ИБП 5 ТОНН ПЕРЕМЕННОГО ТОКА / 800 ВА
VEW 150 1500 100–300 В Одна морозильная камера до 6 ампер / холодильник / воздухоохладитель / 0,5 тонны переменного тока / ЦИФРОВОЙ ИБП 800 ВА
Стабилизаторы для ЭЛТ-телевизоров, музыкальных систем VGD 20 200 90–300 В Один телевизор 63 см или Один телевизор до 53 см + DVD / DTH
VG 30 250 135V-290V Один телевизор 73 см или один телевизор до 63 см + DVD / DTH и музыкальная система
VGD 30 250 90V-300V Один телевизор 73 см или один телевизор до 63 см + DVD / DTH и музыкальная система
Стабилизаторы для стиральных машин, беговых дорожек и духовок ВМ 300 2000 150–280 В Одна микроволновая печь / беговая дорожка / стиральная машина
ВМ 500 3500 150–280 В Одна микроволновая печь / беговая дорожка / стиральная машина
Стабилизаторы магистральные VGMW 500 Цифровой 3700 90–300 В Основная линия
VGMW 200 1500 100 В — 300 В Основная линия
VGMW 300 2300 100 В — 300 В Основная линия
VGMEW 500 3800 70 В — 280 В Основная линия
VGMW 1000 7300 120–280 В Основная линия

Артикул:
У вас могут возникнуть дополнительные вопросы о приобретении подходящего стабилизатора напряжения для вашего дома.Пожалуйста, посетите наш раздел часто задаваемых вопросов на сайте V-Guard, чтобы узнать больше. По любым дополнительным вопросам, пожалуйста, напишите в нашу службу поддержки клиентов.

Вот и все! Наше полное руководство по покупке стабилизатора напряжения. Мы уверены, что с его помощью вы сможете принять мудрое решение о покупке стабилизатора напряжения, который наилучшим образом соответствует вашим потребностям.

.

Китай Стабилизатор напряжения, Производители стабилизаторов напряжения, Поставщики, Цена

21 825 найдено товаров из 2182

Цена FOB для Справки: 200 долларов США.0-2000,0 / шт.
Мин. Заказ: 1 шт.

Цена FOB для Справки: US $ 200,0-60000,0 / шт.
мин. Заказ: 1 шт.

Цена FOB для Справки: US $ 12.0-13,0 / шт.
Мин. Минимальный заказ: 50 Штука

Цена FOB для Справки: US $ 1440,0-1450,0 / шт.
мин. Заказ: 1 шт.

Цена FOB для Справки: 150 долларов США.0-800.0 / шт.
Мин. Заказ: 1 шт.

Цена FOB для Справки: US $ / шт.
мин. Минимальный заказ: 500 Штука

Цена FOB для Справки: US $ / шт.
мин.Заказ: 100 Штука

Цена FOB для Справки: US $ / шт.
мин. Заказ: 1 шт.

.

Voltage Performance Chip Модуль батареи Raizin

✔ Совместимость со всеми другими модификациями, включая мелодии производительности
✔ Подключается к аккумулятору

Voltage

Представляем стабилизатор напряжения Raizin Performance. Современная электронная технология регулирования напряжения! Увеличьте общую производительность вашего автомобиля менее чем за 20 минут. Поставляется в комплекте с 5 проводами заземления. Правильно заземлите свой автомобиль и улучшите его электрическую систему на шасси.Включает в себя все оборудование для установки и руководство, сделанные в Японии.

    • Помогает Увеличивает крутящий момент на низких и средних скоростях

    • Стабилизирует холостой ход

    • Помогает улучшить реакцию двигателя

    • Увеличивает яркость и затемнение фар

    • Помогает повысить экономию топлива

    • Увеличивает срок службы батареи

    • Улучшает звучание низких частот с меньшим затемнением низких нот

    Стабилизатор напряжения в сочетании с дополнительным заземлением повышает электрический КПД.

    Raizin предлагает вам не только идеальный электрический КПД и стабилизацию напряжения питания, но и благодаря нашей оригинальной схемотехнике и нашему специальному шумоподавляющему конденсатору вы можете наслаждаться уменьшенным шумом и уменьшенным высокочастотным сопротивлением.
    • Экономия топлива до 5%!

    • Увеличьте мощность на 7% больше!

    • Простота установки — занимает менее 20 минут!

    • Подходит для всех марок и моделей легковых и грузовых автомобилей!

    • Работает на карбюраторных и инжекторных двигателях!

    • Для бензиновых и дизельных двигателей!

    supercharger

    supercharger

    Насколько сложно установить?

    Очень просто! Мы даже включаем видео, показывающее установку на Toyota.Прокрутите вниз.

    Почему производители не устанавливают аналогичные продукты на своих заводах?

    Наш продукт требует многолетних разработок и исследований. Производители автомобилей не включают этот тип модулей в транспортные средства, поскольку это увеличивает стоимость транспортных средств. Даже при дополнительных затратах на производство в 40 долларов это может означать миллионы затрат на производство в год.

    Для чего нужны дополнительные провода?

    Это провода заземления, предназначенные для установки в различных местах в моторном отсеке для увеличения контакта заземления с вашим шасси.Многие автомобили старше 5 лет могут начать ржаветь и ржаветь на проводах, соединяющих генератор с шасси. В комплекте 5 проводов, которые можно использовать для большего количества точек контакта. Больше точек контакта с землей означает более плавную подачу энергии.

    Как модуль по сравнению с другими чипами производительности?

    Этот продукт улучшает общие характеристики автомобиля, решая другие проблемы. Это работает в источнике многих проблем, связанных с автомобилями. Весь ваш автомобиль — это электронное устройство, от стереосистемы до свечей зажигания и фар.Обеспечивая наилучшее напряжение для этих устройств, они могут работать с максимальным потенциалом.

    Voltage

    В комплект входит инструкция. Требуется подключение к аккумулятору, возможно, в багажнике какая-то батарея. Посмотрите видео ниже, демонстрирующее подключение.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *