Posted on

Содержание

Виды люминесцентных ламп: конструкция и маркировка

Содержание:

  1. Конструкция люминесцентной лампы
  2. Классификация газоразрядных приборов с люминофором
  3. Особенности маркировки
  4. Параметры и технические характеристики
  5. Цветопередача и цветность излучения
  6. Достоинства и недостатки
  7. Критерии выбора

Сегодня газоразрядным лампам низкого давления, с люминофорным покрытием практически нет конкурентов, за исключением светодиодных ламп. С самого начала производились различные люминесцентные лампы, виды и типы которых не соответствовали каким-либо установленным стандартам. Постепенно этот процесс перешел в управляемое русло и все изделия стали привязываться к определенным светильникам. На данный момент существует строгая классификация люминесцентных ламп, на основании их основных параметров и электротехнических характеристик.

Конструкция люминесцентной лампы

Прежде чем приступать к классификации, следует рассмотреть внутреннее устройство люминофорной лампы, которая служит конструктивной основой для любых приборов, относящихся к этой категории.

Данные осветительные устройства относятся к типу газоразрядных. Лампы дневного света — люминесцентные работают от электрического тока и отличаются повышенными сроками эксплуатации. Используются в осветительных сетях жилых зданий, помещений офисов и торговых центров, объектах промышленного производства. Выпускаются в различных вариантах, отличающихся цоколями, формами стеклянных колб, цветовым излучением и другими параметрами.

Несмотря на такое разнообразие, каждая люминесцентная лампа имеет общие конструктивные элементы. Основой служит стеклянная трубка или колба, запаянная с двух сторон. Ее длина может быть разной, внутренняя поверхность покрыта специальным веществом – люминофором, а пространство заполнено инертным газом, с добавлением небольшого количества ртути. По краям расположены катоды, покрытые активным веществом. К ним подключены контактные штыри, выведенные наружу.

После подачи напряжения между электродами образуется электрический разряд. Он воздействует на смесь газа и ртутных паров, в результате чего возникает ультрафиолетовое излучение. В свою очередь, оно оказывает влияние на люминофор и, взаимодействуя с ним, превращается в видимый свет. Корректировка световых оттенков осуществляется с помощью люминофоров различного химического состава.

Все эти процессы осуществляются с использованием специальных пускорегулирующих устройств, без которых невозможен пуск и работа люминесцентной лампы. Данная аппаратура называется балластом и применяется для регулировки электрического разряда.

Балласт может быть электромагнитным, со стартером и дросселем, и электронным, на основе полупроводниковой схемы. Первый вариант считается устаревшим образцом, во время работы создает посторонний шум, имеет большие размеры. Более современные электронные устройства отличаются компактностью, работают тихо, практически без шума, мгновенно выполняют все переключения.

Классификация газоразрядных приборов с люминофором

Все лампы люминесцентного типа делятся на определенные виды и категории, в соответствии со своими параметрами и техническими характеристиками.

По спектральному излучению разновидности люминесцентных лампочек бывают:

  • Стандартные. В них используется один слой люминофора, образующий различные тона и оттенки белого цвета. Именно они используются в системах освещения жилых, административных и производственных объектов.
  • Усовершенствованные. В таких лампах внутренняя сторона колбы покрывается люминофором в 3-5 слоев. Подобная структура существенно повышает качество оттенков, а световая отдача на 12% выше, чем у стандартных изделий. Применяются для подсветки и освещения выставочных залов, торговых витрин и других аналогичных объектов.
  • Специального назначения. Здесь изменяется химический состав газовой смеси и ртути, после чего получается спектр с заданной частотой. Используются в специфических светильниках больниц, концертных залов и других мест, где требуется ровный устойчивый свет с заданными параметрами.

По внутреннему давлению источники света могут быть с высокими и низкими показателями. Лампы с невысоким давлением устанавливаются в жилых, административных и производственных помещениях. Приборы высокого давления применяются в уличном освещении и мощных светильниках.

Внешний вид люминесцентных ламп представлен двумя типами:

  • Линейные. Имеют удлиненную цилиндрическую конструкцию с разным диаметром и длиной трубки.
  • Компактные. Выполнены в виде тонких стеклянных трубок, свернутых в спираль или разделенных на секции.

По типу цоколя разделяются на штырьковые и традиционные резьбовые. Первый вариант используется преимущественно в линейных изделиях, а второй – в компактных.

Существует множество других отличительных признаков, по которым осуществляется классификация. Это показатели мощности, распределения света, разряда дугового или тлеющего. Лампы могут использоваться для внутреннего или наружного применения, некоторые из них являются взрывозащищенными. Устройства консольного типа монтируются на специальные крепления в обособленном корпусе.

Маркировка

Основные данные о конкретной люминесцентной лампе указываются на ее упаковке. Часть сведений в виде маркировки наносятся непосредственно на изделие, в том числе и длина. Сюда входит фирма-производитель, мощность источника света, тип цоколя, оттенок свечения, срок эксплуатации и т.д.

Первая буква – Л – обозначает люминесцентные лампы, далее идут виды. Следующий символ обозначает оттенок излучаемого цвета: Б – белый, Д – дневной, ХБ – холодно-белый и т.д. Для обозначения конструктивных особенностей существует следующая маркировка: У – U-образная конфигурация; К – кольцевая; Р – рефлекторного типа; Б – изделия с быстрым запуском.

Отдельно обозначаются показатели свечения, измеряемые в Кельвинах (К), известные еще как цветовая температура. Например, 2700 К эквивалентно свету, излучаемому обычной лампой накаливания, 6500 К соответствует белоснежному холодному тону. Мощность обозначается в ваттах (Вт), а сам показатель – цифрами от 18 до 80.

Диаметр стеклянной трубки обозначается буквой Т8, Т12 и т.д. Цифра 8 соответствует 8/8 дюйма и составляет 26 мм, 12 соответствует 12/8 дюйма и будет уже 38 мм. Так же маркируются и другие. Резьбовые цоколи маркируются буквой Е, цифры означают диаметр резьбы, штырьковые обозначаются символом G, а цифра соответствует расстоянию между штырьками (например, Е27, G24).

Параметры и технические характеристики

Несмотря на разнообразие моделей и модификаций, существуют определенные показатели, характерные для всех люминесцентных ламп. К ним относятся следующие:

  • Характеристики излучаемого света: яркость, световой поток, цвет и область спектра, пульсации светового потока.
  • Параметры электрического плана, связанные с мощностью, питающим током, рабочим напряжением. Учитывается тип разряда и область свечения, непосредственно участвующая в процессе освещения.
  • Эксплуатационные качества, определяемые сроком службы, световой отдачей, размерами и конфигурацией люминесцентных лампочек. Следует учесть, что две первые группы параметров во многом зависят от питающего напряжения и внешних условий окружающей среды.

Одним из основных признаков, по которым различаются лампы дневного света, считается напряжение горения, напрямую связанное с используемым разрядом.

Они разделяются следующим образом:

  • Лампы до 220 вольт с дуговым разрядом, с оксидным катодом накаливающимся самостоятельно. Он предварительно нагревается, после чего загорается сама лампа.
  • Лампы до 750 вольт с дуговым разрядом. Этим устройствам не требуется предварительный нагрев катодов, их мощность составляет свыше 60 Вт, используются преимущественно за рубежом.
  • Лампы с тлеющим разрядом. Используют в работе холодные катоды, функционируют от малых токов, не более 200 мА. Используются в рекламном и сигнальном освещении.

В большинстве областей и систем освещения применяются светильники первой группы. Мощность люминесцентных ламп этого типа составляет 15-80 Вт, а средний срок эксплуатации составляет более 12 тысяч часов. При этом каждая лампа должна суммарно проработать минимум 4800-6000 часов. За этот период допустимое снижение светового потока составляет 40% и менее от первоначального. Допустимый температурный режим – 5-55

0С, наиболее благоприятные условия эксплуатации – при температуре 5-250С.

Цветопередача и цветность излучения

Данные показатели следует рассмотреть отдельно, поскольку от них напрямую зависит выполнение той или иной лампой своего прямого назначения. Они выражаются в специальных значениях, показывающих, насколько качественно отображение освещаемого предмета по сравнению с естественным освещением.

Излучение, производимое люминесцентными лампами, обладает различными оттенками, получившими название цветовой температуры.

Температура измеряется в градусах Кельвина и на практике выглядит следующим образом:

  • Белый свет теплых тонов 2700-3200 К.
  • Белый свет с нейтральным оттенком – 3300-3700 К.
  • Белый свет холодных тонов – 4000-4500 К.
  • Максимально близкий к дневному свету – 6000-6500 К.

Люминесцентные источники света и лампы накаливания по-разному передают цвета. У них неодинаковые спектры излучения, поэтому освещаемые ими предметы при одной и той же световой температуре выглядят каждый по своему. Опытным путем был создан параметр – индекс цветопередачи Rа. С его помощью выполняется определение, насколько световой поток лампы соответствует естественному освещению. Это относительная величина, поэтому у эталонного источника света индекс условно равен 100. Наиболее комфортным будет значение в пределах 80-100.

Примером такого света служит 60-ваттная лампочка накаливания с индексом Rа – 80 и цветовой температурой 2680 К. Данный параметр для конкретной лампы определяется путем сдвига цветов при освещении эталонных цветных образцов в количестве 8 шт. Чем меньше отклонений, тем лучше показатели проверяемой лампы.

Достоинства и недостатки

К несомненным плюсам люминесцентных ламп можно отнести следующие:

  • Высокая световая отдача. Лампы с люминофором на 20 Вт, выдают столько же света, как лампочки накаливания в 100 Вт.
  • Высокий КПД и сроки эксплуатации, составляющие до 20 тысяч часов.
  • Наличие рассеивающего освещения, который во многих случаях бывает значительно эффективнее направленного.
  • Разнообразные конструктивные решения и конфигурации позволяют использовать такие типы люминесцентных ламп в дизайнерских решениях, касающихся архитектуры жилых и общественных зданий.

Отрицательные качества также присутствуют и нередко они становятся важным фактором в принятии решения об использовании люминесцентных лампочек.

В первую очередь, это:

  • Содержание ртути требует специальной утилизации, хотя в процессе эксплуатации — ртуть не представляет опасности для человека.
  • Обязательное использование пускорегулирующей аппаратуры.
  • Стеклянная конструкция довольно хрупкая.
  • Постепенная выработка люминофора вызывает заметные изменения цветовых качеств.
  • Повышенная чувствительность к влажности.
  • Включение осуществляется с задержкой, требуется некоторое время для разогрева.

Критерии выбора

Выбирая наиболее подходящее изделие, необходимо учитывать где будут применяться люминесцентные лампы. В прихожих рекомендуется использовать изделия повышенной мощности, способным выдавать интенсивный, но вместе с тем и рассеянный свет. В светильниках бра для освещения обычно устанавливаются компактные лампы с теплыми световыми тонами и высококачественной цветопередачей.

В целом, для помещений жилого назначения должны выбираться лампы с цоколями, имеющими резьбу, оборудованные электронным балластом. Они работают очень тихо, без излишних резких мерцаний, вредных для глаз.

При подборе нужно учесть параметры и характеристики люминесцентных ламп, а также условия эксплуатации. Источники света должны совпадать с сетевым напряжением и температурным режимом, световой поток – обеспечивать нормальное освещение заданной площади. Проверяется совпадение цоколей и патронов светильников, высоты лампы и плафона.

Люминесцентные лампы виды. Характеристики люминесцентных ламп и светильников

Люминесцентная лампа является газоразрядным источником света, которая сегодня широко применяется для освещения не только в офисах и производстве, а так же в домах, квартирах и гаражах. Главные достоинства по сравнению с обычными лампами накаливания- это продолжительный срок службы (до 20 раз выше) и в несколько раз больше энергоэффективность (они в разы меньше потребляют электроэнергии при том же световом потоке).

Но есть недостатки:

  1. Чувствительны к качеству электропитания и количеству включений и выключений. При несоблюдении этих условий- быстро выходят из строя.
  2. Внутри стеклянной колбы содержится ртуть опасная для здоровья человека.
  3. Отсутствие возможности регулирования при помощи димеров яркости свечения, кроме КЛЛ (компактной люминесцентной лампы) особой конструкции и с специфическим подключением, требующим прокладки дополнительных проводов для этого.
  4. Не рекомендуется использовать вместе с выключателем, имеющим встроенную подсветку , что может приводить к неправильной ее работе с кратковременными зажиганиями лампы.
  5. Период между включениями люминесцентной лампы должен составлять более 2 минут. Поэтому не рекомендуется использовать совместно с датчиком, звука, движения и т. п. Если это проигнорировать, то она быстро выйдет из строя.
  6. Не рекомендуется компактный тип люминесцентных ламп использовать в герметичных светильниках с высокой степенью защиты IP для помещений с высокой влажностью, запыленностью, пожароопасностью и т. д.
  7. Рабочая температура не ниже -25 градусов по Цельсию, при достижении этого порога она проста не сможет засветится при включении.

Виды люминесцентных ламп.

Для дома и квартиры в основном применяются компактные люминесцентные лампы (далее ККЛ) под обычный цоколь, которые подключаются на прямую к электрической сети 220 Вольт. Довольно редко встречаются компактные 4- штырьковые люминесцентные лампы, для работы которых необходим светильник со специальным пуск-регулирующим блоком, с которым также работают так называемые лампы дневного света трубчатой (очень редко дугообразной формы). Последние в основном применяются для освещения административных и промышленных помещений.

Технические характеристики ламп дневного света.

  • Они работают все на напряжении 220 Вольт, реже при последовательном подключении двух на 127 Вольтах.
  • Маркировка из трех букв. Первая означает Л- люминесцентная, вторая оттенок свечения. Д — дневной, Б — белый, Е — естественно-белый, ТБ — тепло-белый, ХБ — холодно-белый; К, 3, Ж, Г, С — соответственно красный, зеленый, желтый, синий, голубой, синий, УФ означает — ультрафиолетовый. Третья буква Ц (или две ЦЦ) после первых двух свидетельствует о цветопередаче высокого качества. И в самом конце стоят буквы подчеркивающие конструктивные особенности: У — U-образная, К — кольцевая, Р — рефлекторная, Б — быстрого пуска. Цифры указывают мощность в Ваттах. Потребляемая мощность находится в пределах от 18 до 80 Вт.
  • В зависимости от конструкции лампы встречаются с разными типами и размерами держателей (цоколей)Диаметр трубки обозначается Т- размером, после которого идет значение в восьмых частях дюйма. Так маркировка T8 свидетельствует об диаметре в 26 милиметров, а T12 — в 38 мм. Будьте внимательны, а то приобретите лампу, не подходящую к вашему светильнику. Более подробно читайте в .
  • Кроме цоколя лампа должна походить и по длине, так Вы не вставите 18 Вт лампу в 32 Вт светильник, потому что их длина почти в 2 раза отличается.

Технические характеристики компактных люминесцентных ламп.

Все технические характеристики легко найдете на упаковке или на корпусе лампы. Обычно там указывается срок службы, потребляемая мощность в Ваттах (Watt) и сравнение по аналогичной эффективности с лампой накаливания. Всегда обращайте внимание на тип цоколя. Встречаются в продаже с цоколем Е14 уменьшенного размера и обычного- Е27, предназначенного для прямой замены ламп накаливания. Еще одним важным параметром является цветопередача, которая показывает какого оттенка будет искусственный свет, указываемый в Кельвинах от 2700К (теплый оттенок, как у лампы накаливания) до 6500К (холодный).
Более подробно об этом читайте в нашей статье «

Газоразрядный источник света, на стенках колбы которого нанесено специальное люминофорное покрытие называется люминесцентной лампой. Она выполняется в форме стеклянной трубки. На торцах установлены специальные электроды, которые зажигают эту лампу. Всё пространство внутри колбы заполняется парами ртути и инертным газом. Именно они после зажигания начинают излучать свет.

После включения устройства, внутри происходит газовый разряд. Именно этот разряд зажигает пары ртути и заставляет их излучать невидимое для человеческого глаза ультрафиолетовое освещение.

Принцип работы и виды изделия

После зажигания ртути, ультрафиолет начинает взаимодействовать с нанесённым на стенки люминофором, что провоцирует его излучать уже видимый спектр света. Таким образом, люминофор исполняет функцию преобразователи, или конвертора, и позволяет нам ощущать уже тот свет, который легко воспринимается человеческим глазом и способен освещать окружающую среду.

Благодаря уникальному свойству стекла не пропускать ультрафиолетовые лучи, оно защищает нас и полностью блокирует выход их в окружающую среду и предохраняет наши глаза от его прямого воздействия, которое губительно.

Но существуют лампы, которые не препятствуют такому излучению. Их изготавливают из увиолевого и кварцевого стекла, такие виды материалов способны пропускать ультрафиолетовые лучи. Как правило, такие лампы используют для очистки и дезинфекции разных приспособлений. В магазине их можно встретить, как бактерицидные они имеют специально обозначение, где это указано.


Принцип работы

Для увеличения тепловой отдачи света, используют лампы малого давления с добавлением амальгамы индия и кадмия либо других подобных элементов. Таким образом, температурный диапазон способен расширяться до шестидесяти градусов, в сравнении со стандартным наполнением лампы, когда температура не более двадцати пяти градусов.

Значительное снижение производительности замечается, когда температура внешней среды находится на низком уровне, ниже минимально допустимой. При таких условиях существенно увеличивается время прогрева и зажигания лампы, интенсивность и качество свечения уменьшаются в несколько раз.

Для таких условий необходимо использовать специальные утеплители и обогреватели. В связи с этим набирают актуальности лампы, не содержащие ртутных паров, которые работают исключительно на низком давлении инертного газа внутри колбы.

Технические характеристики и классификация

Чтобы классифицировать и выделить технические характеристики люминесцентных ламп следует обратить своё внимание на такие показатели их работоспособности и конструкции:

  • Тип излучаемого света. Энергосберегающие устройства могут излучать как обычный белый, так и дневной свет. Более новой их разновидностью являются универсальные приборы.
  • Поперечная ширина колбы. Пропорционально с ростом этого показателя, увеличиваются все остальные показатели, такие мощность, температура света, спектр и длительность эксплуатации прибора. Самыми распространёнными и наиболее эффективными, считаются диаметры восемнадцать, двадцать шесть и тридцать восемь миллиметров. Диаметр и длину всей колбы часто указывают вместе, например, размеры 38\406.
  • Показатель силы излучения или простыми словами мощность устройства. Благодаря данному критерию мы способны просчитать какую площадь возможно осветить с помощью выбранной нами лампы. Также от показателя мощности зависит и коэффициент полезного действия прибо

КЛЛ лампы – устройство, принцип работы и рекомендации при выборе

Ни для кого не секрет, что люминесцентные лампы давно и прочно вошли в нашу жизнь, и это естественно, ведь экономия их, по сравнению с лампами накаливания, составляет до 85%. Единственное, что мешало их внедрению в квартиры повсеместно – это их габариты. Ведь не всегда удобно размещать светильники таких размеров, хотя в домах они и раньше присутствовали, правда, реже, чем в офисных зданиях и производственных цехах.

И вот в конце 80-х годов прошлого столетия на прилавках стали появляться энергосберегающие лампы, которые очень быстро завоевали популярность. И даже несмотря на более высокую цену, чем у ламп накаливания, спрос на них и сейчас довольно высок. Так что же это за энергосберегающие лампы?

Как известно, их настоящее название – КЛЛ, т. е. компактные люминесцентные лампы, а значит, и потребление ими электроэнергии должно быть на уровне ЛДС. Действительно, так и есть. При намного более низких энергозатратах сила светового потока их не теряется, а цветовая гамма температур довольно обширна.

Различные формы трубок КЛЛРазличные формы трубок КЛЛ

Так что же представляет собой подобная энергосберегающая лампа? Попробуем разобраться.

Устройство КЛЛ

Колба этих световых приборов устроена точно так же, как и у обычных люминесцентных. При прохождении высокого напряжения между электродами происходит воспламенение паров ртути, в результате чего возникает ультрафиолетовое свечение. Т. к. трубка изнутри покрыта специальным веществом – люминофором, то ультрафиолетовые лучи не достигают глаз человека, а преобразовываются в видимое нами свечение. В результате изменения производителем состава люминофора КЛЛ приобретает различную цветовую температуру.

Единственное отличие ЛДС от энергосберегающей – это как раз состав этого вещества, за счет чего и появилась возможность компактного исполнения лампы.

Устройство КЛЛУстройство КЛЛ

Вместо привычного ПРА люминесцентной лампы энергосберегающая получила очень компактный электронный пускорегулирующий аппарат (ЭПРА), который и позволил вырабатывать более ровное свечение. По этой же причине у КЛЛ отсутствует и гудение, которое исходило от работающей ЛДС.

Часто возникающие проблемы в работе компактной люминесцентной лампы?

Конечно, хотя энергосберегающие лампы и более высокотехнологичны, но ряд проблем при их использовании все же присутствует:

  • Подобные осветительные приборы не очень хорошо себя показали при установке выключателя с встроенной подсветкой. Возможны произвольные включения, что, естественно, сокращает срок службы лампы. Но решается такая проблема очень просто. Достаточно просто выключить подсветку из схемы прерывателя.
  • Такие приборы нежелательно подключать через всевозможные датчики и реле, реагирующие на движение, шум или свет, равно как и включающие подобную лампу по времени. Это тоже приведет к сокращению долговечности. Также нельзя с ними использовать и обычные диммеры. Все дело в том, что после выключения ей необходимо не менее 2–3 минут до следующего включения. В противном случае неминуем быстрый выход прибора из строя.
  • Не переносят такие лампы и высокую влажность, потому что электронный пускорегулирующий аппарат не имеет никакой защиты от сырости.
  • При понижении температуры менее -25 градусов Цельсия ЭПРА просто перестает работать, его мощности не хватает на пробой переохлажденных паров ртути или амальгамы.
  • Хотя теплоотдача компактных люминесцентных ламп значительно ниже, чем тот же параметр у ламп накаливания, все-таки необходима хорошая вентиляция в светильнике. Если же плафон «глухой», то неминуем перегрев и выход из строя.
  • К тому же проблему составляет и ртуть, находящаяся в колбе подобных приборов. При повреждении трубки она, естественно, попадает в воздух, а далее и в организм человека. Конечно, концентрация ее значительно меньше, чем в обычных люминесцентных лампах, однако вред такое количество также нанесет.
  • У более восприимчивых людей возможно развитие различных заболеваний при очень длительном нахождении под излучением подобных ламп.
  • Имеется, пусть и небольшая, пульсация свечения КЛЛ. Хотя электронный пускорегулирующий аппарат и снизил ее, полностью эта проблема так и не решилась.

В общем, для окупаемости подобных осветительных приборов подобные негативные факторы по возможности необходимо исключить.

Различия между КЛЛ

Между собой компактные энергосберегающие лампы могут различаться по многим параметрам, таким как:

  • цоколь;
  • мощность;
  • цветовая температура;
  • индекс цветопередачи;
  • наличие встроенного или внешнего ЭПРА (а иногда и ПРА).

Все эти данные можно найти в маркировке таких световых приборов, и на них стоит остановиться поподробнее.

Различия цоколей компактных люминесцентных лампРазличия цоколей компактных люминесцентных ламп

Цоколь

По этому параметру различают очень много подобных световых приборов. Самыми распространенными, конечно же, являются резьбовые. Они маркируются как «E» с цифровым дополнением 14, 27 или 40.

Е40 применяют в основном в промышленном освещении, диаметр резьбы подобного цоколя составляет 40 мм. Такая же резьба применена в лампах ДРЛ и ДНАТ.

Е27 – самый распространенный среди резьбовых. Это лампа под обычный патрон на 27 мм, который установлен в большинстве люстр и светильников.

Ну и самый маленький цоколь Е14 – «миньон». Такие осветительные приборы устанавливаются в небольшие люстры и бра, которые встречаются гораздо реже Е27.

Существуют также и штырьковые цоколи, лампы с которыми чаще всего работают с внешним ЭПРА (либо ПРА). Область применения их в основном в настольных светильниках или потолочных осветительных приборах.

Мощность

По этому параметру различия такие же, как и у ламп накаливания, с той лишь разницей, что показатели его у КЛЛ значительно ниже. Различия по мощности ЛН и энергосберегающих можно увидеть в таблице ниже.

Различия по мощности между КЛЛ и лампой накаливанияРазличия по мощности между КЛЛ и лампой накаливания

Как можно убедиться, потребление электроэнергии компактными люминесцентными лампами значительно ниже, чем лампами накаливания при той же силе светового потока.

Цветовая температура

КЛЛ, в отличие от своего предшественника с нитью накала, может иметь различную температуру цвета, что также является большим преимуществом. Ведь разным людям нравятся различные оттенки освещения.

Температура цвета компактных люминесцентных ламп измеряется в кельвинах и обозначается буквой «К». У КЛЛ она может быть:

  • От 2 700 К до 3 300 К – оттенок теплого, мягкого желтого цвета, который наиболее приближен к свечению ЛН. Обычно применяется в кухнях и спальнях.
  • От 4 200 К до 5 400 К – обычный белый. Область применения обширна, но наиболее подходит для прихожей.
  • От 6 000 К до 6 500 К – холодный белый, с синеватым оттенком. Наиболее подходит для офиса или рабочего кабинета.
  •  25 000 К – сиреневый цвет, который подойдет для рекламных вывесок.

Существуют и другие цвета, такие как зеленый или красный, но подобные компактные люминесцентные лампы в быту практически не применяются. Цвет создается путем изменения состава люминофора.

Цветовая температура КЛЛЦветовая температура КЛЛ

Индекс цветопередачи

По этому параметру характеризуется соответствие естественности цвета энергосберегающей лампы с эталоном, максимально приближенным к солнечному. Наибольшее значение – 100 Rа. За наименьшее же принято значение в 0 Rа, что соответствует абсолютно черному. Чем выше данный параметр, тем меньше искажаются цвета предметов, на которые падает свет от лампочки.

У компактных люминесцентных ламп данный показатель в диапазоне 60–98 Ra.

Как можно понять, выбор КЛЛ – дело непростое, и делать его нужно в зависимости от предпочтений, а потому советы здесь не слишком помогут.

Ну а теперь, суммируя всю информацию, необходимо подвести итог по всем достоинствам и недостаткам подобных приборов освещения.

Достоинства и недостатки

Достоинства:

  • Высокая сила светового потока. При одинаковом потреблении мощности яркость КЛЛ в 5 раз выше ЛН.
  • Экономичность до 80–85%. Это обусловлено более высоким коэффициентом полезного действия компактной люминесцентной лампы. В то время как у приборов с нитью накала до 95% уходит на нагрев, КЛЛ теряет всего 15%.
  • Значительно большая долговечность, которая составляет от 6 до 12 тыс. часов при условии соблюдения определенных правил использования.
  • Меньшая теплоотдача, а следовательно, возможность монтажа в светильники с ограниченной номинальной температурой.
  • Излучение освещения по всей поверхности трубки. Свет, излучаемый компактной люминесцентной лампой, идет более равномерно и мягко.

Недостатки:

  • Подобные приборы освещения не переносят кратковременных циклов «включение-выключение». Требуется интервал в 2–3 мин.
  • Для розжига нужно около секунды. В энергосберегающих лампах с содержанием амальгамы полное свечение достигается по прошествии 9–14 мин.
  • У ламп, люминофор которых содержит редкоземельные составляющие, очень глубокая пульсация, что плохо отражается на самочувствии.
  • Заметное мерцание и шум при работе в лампах с внешним ПРА.
  • При отсутствии подачи напряжения возможны резкие вспышки, особенно если подключение выключателя неправильное, и он разрывает не фазный, а нулевой провод, либо имеет подсветку.

Несколько советов

  1. При приобретении необходимо выбирать проверенный бренд и покупать компактные люминесцентные лампы только в специализированных магазинах электротехники. Не стоит экономить при этом, иначе лампы быстро выйдут из строя, и из этого ничего, кроме убытка, не получится.
  2. В разных комнатах должны быть разные световые приборы, т. к. и сила светового потока в отдельных помещениях должна быть различной.
  3. При приобретении важно учесть размер, подойдет ли лампа под требуемый светильник.
  4. Не нужно разом покупать лампочки на всю квартиру. Лучше взять 2–3 с разной цветовой температурой, а уже после определиться, что наиболее подходит.
  5. Во всех комнатах и помещениях энергосберегающие лампы не нужны. К примеру, в кладовой, где освещение зажигается на 10 минут в сутки, никакой экономии от установки подобного светового прибора не получится.
  6. Необходимо соблюдать правила эксплуатации, и тогда КЛЛ прослужит свой положенный срок, сэкономив семейный бюджет.

Виды люминесцентных ламп, устройство, применение

Люминесцентные лампы — это газоразрядные устройства, которые работают на парах ртути. Видимый свет исходит от люминографов. Люминесцентные лампы часто устанавливаются в офисных помещениях. Также их можно встретить в школах и детских садиках. К преимуществам моделей нужно отнести высокую светоотдачу и большой срок службы. Также важно отметить, что на рынке представлены устройства с разнообразными оттенками.

Однако недостатки у моделей есть. В первую очередь это химическая опасность, поскольку устройства содержат ртуть. В данном случае свет не очень приятный для человеческого глаза. Утилизация люминесцентных ламп может производиться только на специальных предприятиях. Также важно упомянуть о линейчатом спектре. Через некоторое время светоотдача лампы может значительно понизиться.

виды люминесцентных ламп

Устройство модели

Люминесцентная лампа состоит из двух или трех электродов. Соединяются они между собой при помощи дросселя. Свет люминесцентных ламп исходит от люминографов. Как правило, они используются редкоземельного типа с обмоткой. Цоколи выпускаются различного диаметра. Стеклянные трубки устанавливаются с кольцом. Для работы люминесцентной лампы требуется стартер. Также в больших помещениях они включаются через специальные пускорегулирующие аппараты.

Виды ламп

На сегодняшний день существуют различные виды люминесцентных ламп. В первую очередь выделяют модификации низкого и высокого давления. Также разделение осуществляется по типу цоколей. Производятся лампы серии Е14 и Е27. Еще разделение устройств происходит по мощности. Указанный параметр колеблется от 5 Вт до 40 Вт. В зависимости от цветопередачи выпускается множество ламп. Для того чтобы более детально разобраться в данном вопросе, необходимо рассмотреть конкретные маркировки.

ртутьсодержащие лампы

Устройства низкого давления

Эти виды люминесцентных ламп часто используются для освещения гаражей. В данном случае на рынке представлено множество модификаций с двумя электродами. Мощность моделей колеблется от 5 до 10 Вт. Ртуть используется в небольшом количестве. Люминографы устанавливаются только редкоземельного типа. К патрону крепится стеклянная трубка. По диаметру она может отличаться. Защитный слой во многих моделях отсутствует.

Световая отдача устройств зависит от мощности люминесцентной лампы. Многие потребители устанавливают модификации в офисных помещениях. На рынке представлены устройства в основном с цоколями Е14. Для их работы требуются стартеры дроссельного типа. Минимальная допустимая температура моделей не превышает -15 градусов. Таким образом, на открытых площадках их нецелесообразно использовать.

лампа люминесцентная 18w

Модификации высокого давления

Дневные лампы данного типа ценятся за высокий цветовой поток. Срок службы некоторых моделей равняется 15 тыс. часов. На рынке представлено множество устройств с тремя электродами. Люминографы в основном применяются с обмоткой. Непосредственно трубки используются с защитными кольцами. По диаметру люминесцентные лампы могут отличаться.

Защитный слой часто используется фосфорного типа. Цоколи применяются как с маркировкой Е14, так и Е27. Лампа (люминесцентная) 36Вт высокого давления минимальную температуру выдерживает в -20 градусов. Работа катода во многом зависит от цветопередачи модели. Время зажигания ламп данного типа не превышает три секунды.

Устройства с патронами Е14

Данные виды люминесцентных ламп являются востребованными на промышленных объектах. Мощность моделей в среднем равняется 15 Вт. На рынке имеется множество модификаций с двумя электродами. По компактности люминесцентные лампы отличаются. В данном случае люминограф подходит лишь редкоземельного типа. Непосредственно корпус изготавливается из стекла.

Ртуть располагается возле анода. Работа стартера зависит от стабильности сети. Минимальная допустимая температура люминесцентных ламп находится на уровне -15 градусов. Цоколи часто устанавливаются штырькового типа. Максимальная допустимая температура данных люминесцентных ламп составляет +45 градусов. Время зажигания в среднем равняется пяти секундам. Также важно отметить, что показатель предельного давления не превышает 130 Па. Защитный слой во многих лампах отсутствует.

Модели с патронами Е27

Указанные лампы освещения (люминесцентные) отлично подходят для школ и детских садиков. Производятся модификации в основном с двумя электродами. Непосредственно соединение осуществляется через дроссели различной проводимости. Люминографы устанавливаются под патронами. Цоколи используются только штырькового типа. Световой поток, как правило, не превышает 200 лм. Расход ртути у моделей довольно высокий.

Также важно отметить, что на рынке есть множество люминесцентных ламп с двойным покрытием. Стартеры часто используются дроссельного типа. Лампа люминесцентная E27 минимальную температуру допускает на уровне -15 градусов. В среднем время зажигания составляет три секунды. Срок службы моделей колеблется в районе 10 тыс. часов. Однако в данном случае многое зависит от производителя.

Устройства с мощностью 18 Вт

Лампа (люминесцентная) 18W подходит для гаражей и складских помещений. На рынке представлено множество моделей с двумя электродами. Расход ртути у них незначительный. В данном случае люминографы применятся только редкоземельного типа. Цоколь используется штырькового типа. Для работы люминесцентных ламп применяются стартеры. Также на рынке продаются для моделей специальные пускорегулирующие аппараты. Однако важно отметить, что стоят они довольно дорого. Срок службы моделей в данном случае зависит от многих факторов. Время зажигания в среднем равняется четыре секунды.

Работа катода тесно связана с люминографом. При больших морозах включать люминесцентные лампы запрещается. Защитный слой во многих моделях делается из фосфора. Дроссельные стартеры применяются довольно часто. Максимальная допустимая температура люминесцентных ламп колеблется в районе -35 градусов. Также важно отметить, что на рынке есть модификации с индукторами. Устанавливаются они селеноидального типа. Отличительной особенностью модификаций можно назвать большой срок службы. Однако у них очень маленький расход ртути. Минимальная частота люминесцентных составляет 25 кГц. По параметру цветопередачи модели отличаются.

люминесцентные лампы 20

Модели на 20 Вт

Эти виды люминесцентных ламп являются очень востребованными. В первую очередь следует отметить, что модели применяются для офисных помещений. Цоколь чаще всего устанавливается с маркировкой Е14. Минимальная допустимая температура моделей равняется -14 градусов. Стеклянные трубки производятся различного диаметра. Время зажигания в среднем составляет три секунды.

Максимальная допустимая температура люминесцентных ламп равняется 45 градусов. Индукторы на люминесцентные лампы 20 Вт устанавливаются редко. Сетевое напряжение моделей равняется 220 В. Больших перегрузок устройства не выдержат. Минимальная частота люминесцентных ламп находится на отметке в 20 кГц. Сила тока в среднем составляет 0.4 А. Защитный слой во многих моделях отсутствует.

Применение ламп на 40 Вт

Лампа (люминесцентная) 40 Вт подходит для больших помещений. Впускаются устройства с различной цветностью. Срок службы моделей в среднем равняется 15 тыс. часов. На рынке продаются, как правило, устройства с двумя электродами. Также важно отметить, что стартеры применяются только дроссельного типа. Цоколи устанавливаются серии Е 27. Световой поток модификации не превышает 230 лм. Расход ртути зависит от параметров люминографа и размеров люминесцентной лампы. Непосредственно стеклянная трубка наполняется смесью аргона и криптона.

Защитный слой используется часто фосфорного типа. Световая отдача моделей равняется 300 лм/Вт. Оболочки используются только закрытого типа. Минимальная частота моделей равняется 23 кГц. Работают устройства от сети с напряжением 220 В. Индукторы используются лишь тороидального типа. Минимальная допустимая температура, как правило, не превышает -20 градусов. Амальгама при производстве данных люминесцентных ламп не используется. Предельное давление они способны выдерживать в 130 Па.

Модели для гаражей

Люминесцентные ртутьсодержащие лампы для гаражей выпускаются различной мощности. На рынке продаются модели с двумя и тремя электродами. Стеклянные трубки используются с ферритовыми кольцами. Работают устройства от дроссельных стартеров. Расход ртути завис от параметров люминографа. Световой поток в среднем не превышает 400 лм. Срок службы данных ламп равняется 13 тыс. часов.

Также важно отметить, что устройства могут работать от пускорегулирующих аппаратов. Однако стоят они довольно дорого. Защитный слой часто используется фосфорного типа. Выносные стартеры для моделей не подходят. Минимальная частота не превышает 20 кГц. Оболочки используются лишь закрытого типа.

Устройства для кухонных помещений

Люминесцентные ртутьсодержащие лампы для кухонных помещений изготавливаются различной мощности. На рынке представлено множество модификаций с защитными слоями. По цветности устройства отличаются. Цоколь применяется штырькового типа. Работают устройства от выносных и дроссельных стартеров. В данном случае пускорегулирующие аппараты применяются очень редко. В среднем мощность моделей равняется 15 Вт. Предельное давление ни способны выдерживать на уровне 120 Па. Световой поток таких модификаций не превышает 330 лм.

Параметр предельной частоты зависит от индуктора. Используется он чаще всего тороидального типа. Минимальная допустимая температура равняется -20 градусов. Встроенные стартеры для люминесцентных ламп не подходят. Время зажигания моделей колеблется от трех до десяти секунд. Люминографы используются редкоземельного типа. Расход ртути у моделей незначительный. Непосредственно стеклянная колба в устройствах заполняется, как правило, аргоном. Однако в некоторых случаях с этой целью применяется криптон. Фосфаты в данном случае не подходят.

Модели для подсветок рекламных конструкций

Люминесцентные лампы для рекламных подсветок отличаются высоким параметром световой отдачи. Указанный показатель, как правило, составляет 120 лм/Вт. Устанавливаются устройства с двумя электродами. Люминографы в данном случае подходят только с обмотками. Непосредственно цоколи используются винтового типа. Работают модели от пускорегулирующих аппаратов. Однако если рассматривать маломощные модели, то для них подойдут стартеры выносного типа.

Трехкомпонентный слой дает возможность использовать люминесцентные лампы при любой погоде. Встроенные стартеры для устройств не подходят однозначно. Минимальная допустимая температура равняется не более -30 градусов. В среднем время зажигания равняется целых десять секунд. Однако минимальная частота составляет 26 кГц. Устройства с индукторами тороидального типа встречаются редко. Утилизация люминесцентных ламп может производиться только на специальных предприятиях.

лампа люминесцентная 640

Лампы для офисных помещений

Люминесцентные лампы для офисных помещений изготавливаются большой мощности. Патроны для них подходят только штырькового типа. Расход ртути в данном случае зависит от многих факторов. В частности, следует учитывать тип люминографа. Некоторые компании выпускают только редкоземельные аналоги. Позволительность у таких моделей довольно высокая. Цоколи применяются с маркировкой Е14 и Е27.

Трехкомпонентный слой позволяет использовать модели в различную погоду. Дроссельные стартеры хорошо подходят для этих люминесцентных ламп. Время зажигания в среднем равняется четырем минутам. Минимальная частота устройств равняется 23 кГц. Выносные стартеры на рынке встречаются редко. Также важно отметить, что световой поток зависит от мощности модели. Стеклянные трубки в данном случае делаются исключительно с зажимными кольцами.

Устройства для жилья

Люминесцентные лампы для дома производятся с индукторами. На рынке представлено множество моделей различной мощности. Для удобства патроны изготавливаются штырькового типа. Оболочки стандартно применяются закрытого типа. Максимальная допустимая температура люминесцентных ламп составляет -30 градусов. Время зажигания не превышает десять секунд. Работа катода в данном случае зависит от люминографа. Модификации с обмотками встречаются редко. Как правило, выносные стартеры не устанавливаются на люминесцентные лампы данного типа.

Модификации для ванных комнат

Люминесцентные лампы данного типа производятся только с тороидальными индукторами. На рынке представлено множество модификаций с двумя электродами. Расход ртути у них незначительный. Также важно отметить, что модели производятся с обычными стеклянными трубками. Люминографы используются редкоземельного типа. Показатель минимальной частоты равняется 34 кГц.

Выносные стартеры для моделей не подходят. Чаще всего можно встретить дроссельные аналоги. Световая отдача у них составляет 230 лм/Вт. Непосредственно в трубке используется аргон. У некоторых люминесцентных ламп имеется фосфорный защитный слой. Максимальная допустимая температура составляет 40 градусов.

Устройства внешнего освещения

Люминесцентные лампы внешнего освещения встречаются на рынке редко. Предельное давление они способны выдерживать на уровне 350 Па. Также важно отметить, что существуют модификации с двумя и тремя электродами. Если рассматривать первый вариант, то у них используются редкоземельные люминографы. В данном случае расход ртути незначительный. Цоколь чаще всего применяется серии Е14.

Если рассматривать модификации на три электрода, то они отличаются повышенной устойчивостью к морозам. Параметр минимальной частоты у них составляет 23 кГц. Оболочка применяется закрытого типа. Работа катода тесно связана со световой отдачей. Защитный слой часто делается их фосфора.

Модификации для музеев

Люминесцентные лампы для музеев выпускаются с мощностью 13 и 16 Вт. Цоколь у них применяется штырькового типа. Как правило, на рынке представлены модификации с двумя электродами. Предельное давление они способны выдерживать 100 Па. Непосредственно в трубках находится газ аргон. Срок службы у таких моделей очень большой. Минимальная допустимая температура не превышает -10 градусов. Стартеры для устройств подбираются выносного типа. Индукторы применяются редко. Также важно отметить, что люминесцентные лампы данного типа производятся с двухслойным защитным покрытием.

Модели с маркировкой 530

Дневные лампы 530 производятся с дроссельными электродами. Показатель светового потока у них находится на отметке в 200 лм. Непосредственно люминограф используется с обмоткой. Трубка в данном случае применяется небольшого диаметра. Расход ртути у модели невысокий. Непосредственно предельное давление устройства выдерживают в 130 Па. Световая отдача модификации равняется 150 лм/Вт. Цоколь в данном случае предусмотрен класса Е14. Максимальная допустимая температура равняется 45 гр. Для складских помещений эти лампы подходят хорошо.

утилизация люминесцентных ламп

Лампы 640

Лампа (люминесцентная) 640 изготавливается с редкоземельным люминографом. В данном случае используется два электрода. Непосредственно ртути имеется не так много. Цоколь предусмотрен штырькового типа. Работает эта люминесцентная лампа от выносного стартера. Пускорегулирующие аппараты применяются редко. Также важно отметить, что у модели имеется индуктор. Для гаражей и складских помещений модели подходят. Однако мощности в 10 Вт не хватает для школ и детских садиков.

Использование ламп с маркировкой 765

С маркировкой 765 лампа люминесцентная подходит для жилых помещений. Мощность моделей составляет 13 Вт. В данном случае трубки заполняются аргоном. Всего у модели имеется два электрода. Непосредственно люминограф используется с обмоткой. Цоколь предусмотрен класса Е14. Расход ртути у модели довольно большой. Для защиты трубки используется двухслойное покрытие.

Срок службы указанной люминесцентной лампы равняется 15 тыс. часов. Стартер для работы устройства потребуется дроссельного типа. Максимальная допустимая температура составляет 45 градусов. Оболочка предусмотрена закрытого типа. Подключается модификация через патрон штырькового типа.

дневные лампы

Лампы 840

Люминесцентные лампы 840 производятся с частотой 23 кГц. Работают они от сети с напряжением 220 В. Однако для включения люминесцентной лампы потребуется дроссельный стартер. Световая отдача этой модели составляет 210 лм/Вт. Параметр мощности равняется 24 Вт.

Люминограф используется с обмоткой. Световой поток указанной люминесцентной лампы равняется 240 лм. Расход ртути у модели небольшой. Срок службы составляет, как правило, 13 тыс. часов. Выносной стартер для модели не подойдет. Индуктор в представленной люминесцентной лампе не предусмотрен.

Виды ламп освещения

Содержание:
  1. Лампы накаливания
  2. Светодиодные лампы
  3. Особенности галогенных ламп
  4. Компактные люминесцентные лампы (КЛЛ)
  5. Виды обычных люминесцентных ламп

Освещение по праву считается одним из наиболее важных элементов любого современного помещения. Кроме основного назначения, осветительные приборы выполняют декоративную функцию в составе других элементов интерьера. Поэтому для того чтобы правильно и рационально использовать светильники, нужно иметь представление, какие бывают виды ламп освещения, каковы их технические характеристики и возможности. Они отличаются природой света и условиями эксплуатации. Общими элементами и параметрами являются цоколи, мощность и светоотдача, которые служат основными критериями при выборе необходимой лампы.

Лампы накаливания

В конструкцию всех лампочек накаливания входит цоколь, вакуумная стеклянная колба или баллон, а также нити накаливания, производящие световое излучение. На цоколе располагается предохранитель и контакты.

Для изготовления спиральных нитей накаливания применяются вольфрамовые сплавы. Они могут легко выдержать значение рабочей температуры горения в пределах 32000С. Чтобы исключить мгновенное перегорание нити, колбы всех современных ламп накаливания заполняются аргоном или другим инертным газом.

Лампочки накаливания отличаются очень простым принципом действия. Через проводник с малым сечением и низкой проводимостью, являющийся нитью накаливания, пропускается электрический ток. Под действием тока спираль начинает разогреваться, а затем начинает светиться.

Данный тип лампочек и в настоящее время широко применяется в быту, на производстве и в других областях, в основном из-за своей низкой стоимости, простоты монтажа и практически мгновенного получения желаемой светоотдачи. Однако такие лампочки имеют несколько серьезных недостатков:

  • Они обладают очень низким КПД, не превышающим 2-3% от количества потребленной энергии. Остальная часть электричества преобразуется в тепловую энергию.
  • Представляет определенную опасность в противопожарном отношении.
  • Короткий срок службы, составляющий от 500 до 1500 часов.

Светодиодные лампы

Все более широкую популярность приобретают светодиодные лампы, относящиеся к высокотехнологичной продукции. По своей сути каждый светодиод является обычным полупроводником, энергия которого частично сбрасывается в p-n-переходе в виде фотонов, представляющих собой видимый свет.

Данный тип лампочек обладает превосходными техническими характеристиками. Они во много раз превосходят все параметры обычных ламп накаливания, в том числе и в вопросах энергопотребления. Светодиодная лампа потребляет электроэнергии в 10 раз меньше, чем лампа накаливания. Максимальный срок службы реально составляет от 3 до 5 лет. В конструкции отсутствует ртуть, в связи с чем эти светильники отличаются безопасностью и простотой утилизации.

В качестве недостатков следует отметить очень высокую стоимость этих приборов и невозможность широкого применения в домашних условиях. Отсутствие рассеянного света требует использования большего количества светодиодных светильников.

Особенности галогенных ламп

Данный тип осветительных приборов очень похож на лампы накаливания и почти ничем не отличается от них. Иногда встречаются конструктивные особенности, но принцип работы у них один и тот же. Основным отличием является наличие в баллоне газового состава.

Помимо инертного газа в вакуумную колбу добавляется фтор, хлор, бром или йод. Это дает возможность повысить температуру нити накаливания и одновременно уменьшить испарение вольфрама. В результате, происходит существенное повышение температуры нагрева стекла, поэтому для его изготовления используется кварцевый материал. На кварцевое стекло наносится специальное покрытие, препятствующее ультрафиолетовому излучению. Галогенным лампочкам противопоказаны загрязнения колбы, в противном случае они очень быстро перегорают. Нельзя касаться баллона незащищенной рукой.

К основным преимуществам галогенных ламп можно отнести стабильный свет и повышенную яркость, а также улучшенную цветопередачу. Комбинация химических элементов позволяет добиться различных оттенков излучаемого света. Эти лампочки обладают компактными размерами и увеличенным сроком эксплуатации.

Типы и конструкции галогенных ламп:

  • Линейные, со спиральной нитью накаливания. Кварцевая трубка прозрачная. Они отличаются двухцокольной конструкцией, повышенной прочностью держателей нити и применяются для освещения поверхностей. Наибольшим спросом пользуются лампы, мощностью до 500 Вт.
  • Капсульные светильники, отличающиеся наиболее компактными размерами. Они не нуждаются в защитном стекле и внешних отражателях, уже напыленных на заднюю стенку. Используются в качестве освещения рекламы и торговой подсветки.
  • Лампочки с низким напряжением и алюминиевым отражателем. Применяются для общего освещения и декора подвесных потолков.
  • Лампы, в конструкцию которых входит параболический стеклянный отражатель, покрытый слоем алюминия. Лицевая сторона поверхности стекла слегка рифленая, за счет чего создается немного искрящий свет. При наружном использовании требуется защита от влаги.

Обычные галогеновые лампы работают непосредственно от электрической сети. Они оборудованы стандартными резьбовыми цоколями. В этих лампочках со временем не теряется яркость, а в целом получается яркий, насыщенный, ровный свет, по спектру приближающийся к солнечному. Некоторые виды ламп могут работать совместно с регуляторами освещенности.

Существенным недостатком галогенных ламп является реальная возможность их досрочного перегорания под действием перепадов напряжения. Кроме того, колба лампы в процессе работы достигает очень высокой температуры, что может привести к ее взрыву. Эксплуатация галогеновых лампочек не требует каких-либо специальных знаний и навыков. Вполне достаточно поддерживать в чистоте колбу и осветительный прибор будет работать очень долго.

Компактные люминесцентные лампы (КЛЛ)

Компактные люминесцентные лампы, появившиеся на рынке, оказались настоящим прорывом в светотехнике. В их конструкции был ликвидирован основной недостаток старых люминесцентных ламп – большие размеры и отсутствие стандартных нарезных патронов и цоколей. В новых моделях все эти недостатки были полностью ликвидированы. Пускорегулирующая аппаратура расположилась в цоколе, а длинная трубка приняла разнообразные компактные конфигурации, преимущественно спиральные. Кроме того, все КЛЛ различаются между собой по мощности и другим параметрам.

Для компактных моделей отпала необходимость в электронном балласте. КЛЛ заменили не только старые длинные лампы, но и обыкновенные лампочки накаливания.

К недостаткам этих изделий можно отнести наличие ртутных соединений, в связи с чем требуется специальная утилизация. КЛЛ плохо переносят частые включения и выключения, при использовании индикатора подсветки в выключателе, они начинают мерцать. Они отличаются продолжительным временем запуска, и неустойчивой работой при низких температурах. Свет этих ламп пока еще далек от естественного и создает нагрузку на зрение. Тем не менее, компактные люминесцентные лампы достаточно экономичные и при постоянном использовании позволяют существенно снизить затраты на электроэнергию.

Виды обычных люминесцентных ламп

Несмотря на появление компактных моделей, обычные люминесцентные лампы до сих пор пользуются широкой популярностью и применяются во многих областях.

Принцип действия этих приборов имеет существенные отличия от лампочек накаливания. Вольфрамовую нить заменяют пары ртути, находящиеся в стеклянной колбе и горящие под действием электрического тока. Получаемый свет является практически невидимым, поскольку его излучение происходит в ультрафиолете. В свою очередь, именно ультрафиолет воздействует на люминофор, покрывающий стенки стеклянной трубки, и производящий видимое свечение.

Рассматривая основные виды ламп освещения, следует отметить, что люминесцентные модели отличаются низкой рабочей температурой. Благодаря большой поверхности свечения стало возможным создание ровного рассеянного света. По этой причине они получили свое второе название – лампы дневного света, под которым известны широким массам потребителей. По сроку эксплуатации они почти в 10 раз превосходят традиционные лампочки накаливания.

Люминесцентные лампы невозможно напрямую подключить к электросети. Это является их серьезным недостатком. Для подключения обязательно требуется балласт, а также стартер, запускающий лампу в момент включения.

Люминесцентные лампы — это… Что такое Люминесцентные лампы?

Различные виды люминесцентных ламп

Люминесце́нтная лампа — газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов. Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.

Область применения

Коридор, освещенный люминесцентными лампами

Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту. Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет улучшить характеристики люминесцентных ламп — избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.

Главными достоинствами люминесцентных ламп по сравнению с лампами накаливания являются высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания) и более длительный срок службы (2000[1]-20000 часов против 1000 часов). В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.

Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.

История

Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненой газом трубки, которая была возбуждена при помощи соленоида. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синего-зелёного цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность чем лампы Гайсслера и Эдисона. В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждёной плазмой в более однородно бело-цветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.

Принцип работы

При работе люминесцентной лампы между двумя электродами находящимися в противоположных концах лампы возникает тлеющий электрический разряд. Лампа заполнена парами ртути и проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.

Особенности подключения

С точки зрения электротехники люминесцентная лампа — устройство с отрицательным дифференциальным сопротивлением (чем больший ток через неё проходит — тем меньше её сопротивление, и тем меньше падение напряжения на ней). Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это, лампы подключают через специальное устройство (балласт).

В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта должно применяться реактивное сопротивление (конденсатор или катушка индуктивности).

В настоящее время наибольшее распространение получили два типа балластов — электромагнитный и электронный.

Электромагнитный балласт
Произведёный в СССР электромагнитный балласт «1УБИ20». Недостатком являлся низкий cosф, так как реактивная мощность балласта зачастую больше мощности лампы

Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами такого типа балласта является его простота и дешевизна. Недостатки — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Дроссель также может издавать низкочастотный гул.

Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Во избежание травмирования на производстве запрещено использовать люминесцентные лампы с электромагнитным балластом для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.

Электронный балласт

электронный балласт

Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу. Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом. При использовании электронного балласта возможно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (горячий старт). Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.

Механизм запуска лампы с электромагнитным балластом

подключение 58-ваттных ламп классическим способом в рекламном щите

стартер

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампочку с неоновым наполнением и двумя металлическими электродами. Один электрод пускателя неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве. В исходном состоянии электроды пускателя разомкнуты. Пускатель включается параллельно лампе.

В момент включения к электродам лампы и пускателя прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в пускателе от приложенного напряжения возникает разряд, в результате которого ток проходит через электроды лампы и пускателя. Ток разряда мал для разогрева электродов лампы, но достаточен для электродов пускателя, отчего биметаллическая пластинка, нагреваясь, изгибается и замыкается с жёстким электродом. Ток в общей цепи возрастает и разогревает электроды лампы. В следующий момент электроды пускателя остывают и размыкаются. Мгновенный разрыв цепи тока вызывает мгновенный пик напряжения на дросселе что и вызывает зажигание лампы, это явление основано на самоиндукции. Параллельно стартеру подключен миниатюрный конденсатор небольшой емкости, служащий для уменьшения создаваемых радиопомех. Кроме того, он оказывает влияние на характер переходных процессов в стартере так, что способствует зажиганию лампы. Конденсатор вместе с дросселем образует колебательный контур, который контролирует пиковое напряжение и длительность импульса зажигания (при отсутствии конденсатора во время размыкания электродов стартера возникает очень короткий импульс большой амплитуды, генерирующий кратковременный разряд в стартере, на поддержание которого расходуется большая часть энергии, накопленной в индуктивности контура). К моменту размыкания стартера электроды лампы уже достаточно разогреты. Разряд в лампе возникает сначала в среде аргона, а затем, после испарения ртути, приобретает вид ртутного. В процессе горения напряжение на лампе и пускателе составляет около половины сетевого за счёт падения напряжения на дросселе, что устраняет повторное срабатывание пускателя. В процессе зажигания лампы пускатель иногда срабатывает несколько раз подряд вследствие отклонений во взаимосвязанных между собой характеристиках пускателя и лампы. В некоторых случаях при изменении характеристик пускателя и\или лампы возможно возникновение ситуации когда стартер начинает срабатывать циклически. Это вызывает характерный эффект когда лампа периодически вспыхивает и гаснет, при погасании лампы видно свечение катодов накаленных током протекающим через сработавший стартер.

Механизм запуска лампы с электронным балластом

В отличие от электромагнитного балласта для работы электронного баласта зачастую не требуется отдельный специальный стартер т.к. такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам. Существуют разные технологии запуска люминесцентных ламп электронными балластами. В наиболее типичном случае электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, чаще всего — переменное и высокочастотное (что заодно устраняет мерцание лампы характерное для электромагнитных балластов). В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы. Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы. Как правило это ведет и к росту тока подогрева катодов поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно выского напряжения между катодами лампа легко зажигается. После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии. Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого приложив достаточно высокое напряжение к катодам что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути этот метод аналогичен технологиям применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов которые не могут быть запущены обычными методами из-за невозможности подогрева катодов. В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминисцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить невзирая на перегорание спиралей подогрева и ее срок службы будет ограничен только временем до полного распыления электродов.

Балласт от перегоревшей энергосберегающей лампы подключён к лампе Т5

Причины выхода из строя

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный тлеющий разряд, если бы ее не было, вольфрамовые нити очень скоро перегрелись бы и сгорели. В процессе работы она постепенно осыпается с электродов, выгорает, испаряется, особенно при частых пусках, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к перегреву электрода. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы. Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать. Это приводит к тому, что начинает постоянно срабатывать стартер — отсюда всем известное мигание вышедших из строя ламп. Электроды лампы постоянно разогреваются и в конце концов одна из нитей перегорает, это происходит примерно через 2 — 3 дня, в зависимости от производителя лампы. После этого минуту-две лампа горит без всяких мерцаний, но это последние минуты в ее жизни. В это время разряд происходит через остатки перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам. Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после чего разряд начинает происходить за счет траверсы (это проволочка, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется. После этого лампа вновь начинает мерцать. Если ее выключить, повторное зажигание будет невозможным. На этом все и закончится. Вышесказанное справедливо при использовании электромагнитных ПРА (балластов). Если же применяется электронный балласт, все произойдет несколько иначе. Постепенно выгорит активная масса электродов, после чего будет происходить все больший их разогрев, рано или поздно одна из нитей перегорит. Сразу же после этого лампа погаснет без мигания и мерцания за счет предусматривающей автоматическое отключение неисправной лампы конструкции электронного балласта.

Люминофоры и спектр излучаемого света

Типичный спектр люминесцентной лампы.

Многие люди считают свет излучаемый люминесцентными лампами грубым и неприятным. Цвет предметов освещенных такими лампами может быть несколько искажён. Отчасти это происходит из-за синих и зеленых линий в спектре излучения газового разряда в парах ртути, отчасти из-за типа применяемого люминофора.

Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет, в то время как красного и зелёного излучается меньше. Такая смесь цветов глазу кажется белым, однако при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета. Однако такие лампы как правило имеют очень высокую световую отдачу.

В более дорогих лампах используется «трехполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы как правило имеют более низкую световую отдачу.

Также существуют люминисцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырехкомпонентное зрение.

Производятся лампы, предназначенные для освещения мясных прилавков в супермаркетах. Свет этих ламп имеет розовый оттенок, в результате такого освещения мясо приобретает более аппетитный вид, что привлекает покупателей[2].

Варианты исполнения

По стандартам лампы дневного света разделяются на колбные и компактные.

Колбные лампы

Советская люминесцентная лампа мощностью 20 Вт(«ЛД-20»). Современный европейский аналог этой лампы — T8 18W

Представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:

  • T5 (диаметр 5/8 дюйма=1.59 см),
  • T8 (диаметр 8/8 дюйма=2.54 см),
  • T10 (диаметр 10/8 дюйма=3.17 см) и
  • T12 (диаметр 12/8 дюйма=3.80 см).
Применение

Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах на транспорте и т. д.

Компактные лампы

Универсальная лампа Osram для всех типов цоколей G24

Представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на:

Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания. Премуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.

G23

У лампы G23 внутри цоколя расположен стартер, для запуска лампы дополнительно необходим только дроссель. Их мощность обычно не превышает 14 Ватт. Основное применение — настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат. Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.

G24

Лампы G24Q1,G24Q2 и G24Q3 также имеют встроенный стартер, их мощность как правило от 11 до 36 Ватт. Применяются как в промышленных, так и в бытовых светильниках. Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).

Утилизация

Все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью. По истечении срока службы лампу, как правило, выбрасывают куда попало. На проблемы утилизации этой продукции в России индивидуальные потребители не обращают внимания, а производители стремятся устраниться от проблемы. Существует несколько фирм по утилизации ламп, и крупные промышленные предприятия обязаны сдавать лампы на переработку.

Источники

Ссылки

Wikimedia Foundation. 2010.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *