Posted on

Содержание

Какие лампы наиболее приближены по спектру излучения к дневному свету?

В компанию «СТК Системы освещения» обратился клиент с запросом относительно ламп наиболее приближенных по спектру к дневному свету. На первый взгляд в самом вопросе кроется ответ — так называемые «лампы дневного света». Однако, давайте разберемся в этом вопросе более детально.

Что такое спектр излучения? Это энергия излучаемая источниками, в том числе источниками света, в различных диапазонах, длинах волн. Длина волн определяется в нанометрах, нм. Илучение энергии световыми приборами называют также оптическим излучением. Диапазон длин волн включает в себя воспринимаемый человеческим глазом видимый диапазон и два смежных: инфракрасный и ультрафиолетовый.

Видимое излучение определяется в диапазоне 380-780 нм. Ультрафиолетовое излучение имеет 3 диапазона: УФ-С 100-280 нм, УФ-В 280-315 нм, УФ-А 315-380 нм. Инфракрасное излучение имеет длину волн свыше 780 нм.
Самое вредоносное для человека УФ-С, хотя, при этом оно обладает бактерицидным эффектом. Лампы УФ-С используются в медучреждениях для обеззараживания помещений. УФ-В вырабатывает витамин Д, а УФ-А придает коже загар. При этом в неумеренных дозах они также опасны для человека. Поэтому и придумали солнцезащитные средства с УФ-А и УФ-В фильтрами.

Обычно, в лампах, используемых в помещениях, за исключением специальных, также есть УФ-фильтры для предотвращения вредного воздействия на кожу человека.
Солнце — естественный источник оптического излучения. Однако спектр такого излучения не постоянен. Состав спектра может меняться в зависимости от времени суток, времени года, местности. Именно поэтому точно определить спектр солнечного света невозможно. Для каждого случая он свой.
Конечно, солнечный или дневной свет всеже имеет более-менее определенный спектральный состав. В сети Интернет можно встретить несколько иллюстраций спектра солнечного света.

 

Недостаток этих картинок в ограниченности диапазонов 400-700 нм. Нет ни ультрафиолетовых диапазонов, которые как вам известно присутствуют в солнечном свете. Иначе, как бы мы с вами загорали, сгорали и зачем мазались бы солнцезащитными кремами.


В этой картинке уже больше правды. Слева — спектр солнечного света. Справа — спектр ламп дневного света.

Не знаю какие именно лампы дневного света брались за основу и откуда получена данная информация, но она отчасти совпадает с данными PHILIPS.
Как видите, спектр люминесцентных ламп отчасти повторяет спектр солнца, но солнечный спектр более ровный и насыщенный.

Примерно такая же ситуация и с газоразрядными лампами. Спектр некоторых из них распространяется на все видимые диапазоны и отчасти захватывает смежные ултрафиолетовый и инфракрасный.

Почему вопросу соответствия спектра искуственных источников света с естественным солнечным уделяется много внимания? Исследования в области физиологии человека доказали влияние спектрального состава света на жизнедеятельность и показатели нашего организма.

Именно поэтому нашему клиенту после проведения аттестации рабочих мест в помещениях без естественного освещения были предложены следующие мероприятия: использовать газоразрядные источники света со спектральным составом, близким к спектру естественного света; для компенсации ультрафиолетовой недостаточности предусматривать использование ультрафиолетовых облучательных установок длительного действия(совмещенных с осветительными установками).

С.Исполатов
СТК Системы освещения.

www.svetstk.ru

GREENERGY » Люминесцентные лампы

Это весьма распространенный тип газоразрядных ламп, используемых для облучения растений. Впервые люминесцентные лампы были созданы в СССР в конце 30-х годов коллективом физиков под руководством акад. С. И. Вавилова.

Люминесцентные лампы низкого давления представляют собой тонкие белые стеклянные трубки, диаметр и длина которых зависит от мощности ламп.

На обоих концах стеклянной трубки укреплены двухштырьковые цоколи, которые служат для крепления ламп в специальных патронах. Цоколи соединены с электродами, находящимися внутри трубки. Электроды представляют собой двойную вольфрамовую спираль, покрытую слоем окиси бария или других щелочноземельных металлов. Электрическая энергия, подводимая к люминесцентной лампе, вызывает электрический разряд в парах ртути, которыми наполнена лампа.

Мощность, Вт

Напряже­ние, В

Размеры ламп, мм

внешний диаметр

полная длина

длина без штырьков

диаметр цоколя

15

127

27±0

451,6

437,4

27

30

220

26 ±3

908,8

894,6

27

40

220

40 ±4

1213,6

1199,4

40

80

220

40±4

1514,2

1500,0

40

Ультрафиолетовое излучение ртутного разряда поглощается тонким слоем люминофора (тонкокристаллический порошок), нанесенного на внутренние стенки трубки, и вызывает его свечение (фотолюминесценцию). Таким образом, светящийся состав (люминофор) превращает невидимое ультрафиолетовое излучение в видимое излучение. Небольшая часть ультрафиолетового излучения (длиннее 300 нм) проходит через стекло и попадает на растения.

В зависимости от химического состава люминофора излучение ламп может быть разного цвета: белого, синего, зеленого, розового, красного.

В последнее время были изменены названия отдельных люминесцентных ламп, отличающихся по цветности излучения. Так, лампы ДС (дневной свет) теперь называют ЛД, а с улучшенной цветопередачей — ЛДЦ; ХБС (холоднобелый свет) — ЛХБ; ВС (белый свет) — ЛБ; ТБС (теплобелые) — ЛТБ.

Спектр излучения люминесцентных ламп: слева — ЛДЦ, справа — ЛБ

Лампы ЛД имеют цветовую температуру 6500 К — их цветность соответствует цвету голубого неба без солнца; лампы ЛХБ — 4800 К, что соответствует небу, покрытому тонким слоем белых облаков; ЛБ — 4200 К, что соответствует яркому солнечному дню; ЛТБ — 2800 К, что соответствует цветности ламп накаливания.

Однако надо помнить, что совпадение цветовой температуры не означает полного совпадения со спектральным составом излучения.

В светокультуре растений большое распространение имеют лампы дневного и белого света, в спектре излучения которых варьируют различные оттенки рассеянного дневного света в летний день.

Для зажигания люминесцентной лампы необходимо устройство, обеспечивающее предварительный подогрев электродов. Таким устройством служит стартер, т. е. маленькая неоновая лампочка в металлическом или пластмассовом футляре. В момент включения лампы в сеть стартер находится под полным напряжением и в нем возникает тлеющий разряд. Электроды стартера нагреваются, и один из них, сделанный из биметалла, изгибается до соприкосновения с другим. В результате этого они замыкаются, и катоды ламп накаливаются проходящим через них током.

Люминесцентные лампы чутко реагируют на падение напряжения в сети. Например, лампы с номинальным напряжением 220 В не загораются при падении напряжения в сети до 190 В, что иногда бывает в тепличных хозяйствах, удаленных от магистральных линий энергопередачи. В то же время при изменении напряжения в сети на 1 % лучистый поток люминесцентных ламп также изменяется на 1%. У ламп накаливания это изменение составляет около 3,0%. При этом световая отдача у люминесцентных изменяется на 0,44%, а у ламп накаливания — почти на 2%.

Срок службы люминесцентных ламп по ГОСТ 6825—70 составляет 10000 ч. Частое включение и выключение ламп быстро сокращает его. В тепличных хозяйствах условия эксплуатации более благоприятны, так как там лампы обычно горят без перерыва по 10—12 ч в сутки и более. По мере эксплуатации ламп их световой поток постепенно уменьшается. По этой причине в последние годы в исследовательских организациях для поддержания постоянной высокой облученности опытных растений через каждые 1000 ч горения примерно одну пятую часть ламп заменяют в определенной последовательности новыми. Для лучшей работы ламп рекомендуется температура воздуха 20—25° С. При температуре около 5° С лампы зажигаются плохо, а светоотдача уменьшается. При температуре выше 35°С их эксплуатация не допускается.

Относительная влажность воздуха свыше 65% ухудшает условия зажигания люминесцентных ламп. Для устранения этого поверхность ламп рекомендуется покрывать гидрофобной защитной пленкой. Температура стекла лампы, непрерывно горящей 15—20 ч, не превышает 45—50° С.

Световой поток люминесцентных ламп увеличивается с повышением их мощности. При равных затратах электроэнергии крупные лампы излучают больше света, чем мелкие.

Светотехнические и электрические характеристики люминесцентных ламп

Мощность ламп, Вт

Напряжение, В

Сила тока ламп, А

Световой поток, лм

Световая отдача, лм/Вт

в сети
в лам­пе

лдц

ЛБ

лдц

ЛБ

15127540,334607103047
302201040,351320I9604465
402201030,43175028004470
802201020,88322548804061

За последние годы мощность люминесцентных ламп значительно возросла. В США начали выпускать лампы мощностью 400 Вт. Длина каждой лампы около 2,5 м. Такие лампы обеспечивают световой поток до 20 тыс. лм.

Применение крупных ламп (при создании облучательной установки, равной удельной мощности) позволяет сократить число пусковых приспособлений (стартеров и дросселей) и значительно уменьшить расходы на монтаж установок. При светофизиологических исследованиях иногда используют цветные люминесцентные лампы с широким спектром излучения. К ним относятся: красные (Л-37) с максимумом излучения 560—620 нм, синие (Л-30) с максимумом излучения 430—540 нм, зеленые (К-35) с максимумом излучения 530 нм и др.

За последние годы в ряде стран на базе обычных люминесцентных ламп начали выпускать специальные лампы для выращивания растений с особым люминофором — фитолампы. Спектральные кривые излучения этих ламп близки к спектральным кривым фотосинтеза и синтеза хлорофилла, особенно в зонах 400—500 и 600— 700 нм. У нас, люминесцентные лампы подобного типа— ЛФ-40-1 и ЛФ-40-2 созданы и изготовлены Всесоюзным научно-исследовательским светотехническим институтом (ВНИСИ), а затем совместно с Институтом электрификации ВАСХНИЛ (ВИЭСХ) испытаны в лаборатории искусственного климата Тимирязевской академии. Предварительные исследования показали, что эффективность фитоламп на 20—30% выше, чем у серийно выпускаемых осветительных ламп типа ЛДЦ или ЛБ той же мощности.

Спектры излучения люминесцентных фитоламп: А — ЛФ-40-1; Б — ЛФ-40-2; В — L. Fluora

Аналогичные по устройству и спектральному составу излучения лампы выпускаются и в других странах: ГДР (Lumoflor), США (Grolux), Японии (Plantalux), Финляндии (Floralux). На рисунке изображена кривая распределения излучения лампы фирмы Osram (ФРГ) — «L. Fluora».

Дроссели, необходимые для поддержания нормально го режима горения ламп, обычно монтируют в отдельном железном ящике со сквозными отверстиями для вентиляции и уменьшения нагрева. Ящик соединяют с облучательной рамой гибким резиновым шлангом, внутри которого находятся провода, соединяющие дроссели с лампами. Длина шланга не ограничена. Поэтому ящики с дросселями можно помещать в стороне на любом расстоянии от рам.

В облучательных установках для теплиц, изготовляемых в ГДР (Praxisaggregat), — РА-57 и РА-62 — дроссели смонтированы над осветительной рамой с лампами, что в значительной степени повышает вес установки и может вызвать перегрузку конструкции теплицы.

Быстрое и надежное зажигание обеспечивается у ламп, у которых поверхность стеклянной трубки покрыта пленкой из четыреххлорного олова (ЛБ-40 бп). Прозрачность пленки достигает 94%. Лампы этого типа могут применяться в районах с пониженным напряжением сети.

Чтобы растения максимально использовали излучение ламп, их обычно монтируют параллельно на металлической или деревянной прямоугольной раме с интервалами между продольными осями трубок от 35 до 90 мм. Размер рамы определяется длиной лампы и площадью, которую надо облучать. Рамы с люминесцентными лампами помещают горизонтально над растениями или вертикально между рядами растений. Горизонтально их располагают при выращивании рассады или низкорослых растений; вертикально — при выращивании на плодоношение более высоких растений (томаты, кукуруза, пшеница).

В помещениях без естественного излучения или при слабой облученности в теплицах применяют отражающие экраны (один на раму) из полированного алюминия, жести или окрашенного железа. Невысокая температура на поверхности люминесцентных ламп допускает также использование в качестве экрана белого картона, бумаги или побеленной фанеры, которые необходимо пропитать огнестойким раствором. Особенно высокое отражение дает экран, покрытый специальным раствором: BaS04 — 1000 вес. ед.; кинопленка — 26; ацетон— 1300 вес. ед.

Для повышения коэффициента отражения и улучшения вентиляции экран рекомендуется помещать на расстоянии 2—3 см от ламп.

Облученность и освещенность под горизонтальной рамой с люминесцентными лампами ДС-30 при удельной мощности 450 Вт/м2: 1- с белым экраном; 2 — без экрана

Применение отражающих экранов позволяет увеличить облученность и освещенность растений на 30—40% . Чем выше будет коэффициент отражения экрана, тем больше лучистой энергии попадет на растение. В последнее время в теплицах стали применять полуавтоматические экраны из мягких материалов, свертывающихся в трубку, что позволяет ими пользоваться в зависимости от наличия или отсутствия солнечного излучения (полиэтиленовая пленка, покрытая алюминием). Экранированные рамы, приближенные к растениям до 5 см, повышают около них температуру воздуха на 2— 5° С по сравнению с температурой помещения. Поэтому общую температуру воздуха в помещении надо соответственно понижать.

По мере удаления растений от горизонтальных или вертикальных рам облученность и освещенность уменьшаются, но значительно слабее, чем при удалении от ламп накаливания, так как источником излучения в данном случае является плоскость, а не точечный источник.

Облученность н освещенность растений под люминесцентными лампами ДС-30, смонтированными на раках с интервалами 60 мм

Расстояние между растениями и рамой, см

Без экрана

С экраном

облученность в области ФАР, Вт/м2

освещенность, клк

облученность в области ФАР, Вт/м2

освешенность клк

2

30,0

7,5

48,0

12,0

5

28,0

7 0

44,0

11,0

10

25,0

5,5

40,0

10,0

15

24,4

6,1

35,0

9,0

25

22,0

5,5

30,0

7,5

50

14,0

3,5

18,0

4,5

Суммарная облученность и освещенность растений, находящихся между вертикальными рамами, зависит от частоты размещения рам и количества ламп. При расстоянии между рамами 50 см (удельная электрическая мощность 450 Вт/м²) освещенность на поверхности листьев колеблется от 5 до 7 клк, а фотосинтетически активная облученность — от 20 до 28 Вт/м². При расположении рам на расстоянии 100 см одна от другой освещенность растений снижается до 3,5—5 клк, а облученность — до 14—20 Вт/м².

Облученность и освещенность между вертикальными рамами с люминесцентными лампами. Расстояние между рамами 100 см. Удельная мощность 300 Вт/м2.

При культуре растений с боковым облучением между вертикальными рамами с люминесцентными лампами достигается равномерное облучение верхних и нижних листьев. В этом случае лучистая энергия ламп используется полнее, результатом чего является хорошее состояние растений и более высокий урожай. Боковое облучение люминесцентными лампами теперь широко распространено.

Кроме стандартных рам с люминесцентными трубками, предложены оригинальные системы расположения их между растениями как горизонтально, так и вертикально.

В безрамном облучателе, предложенном Ю. М. Жилинским и В. Д. Куминым (Московский институт инженеров сельскохозяйственного производства), люминесцентные лампы соединены между собой металлическими шарнирами, которые позволяют изменять расстояние между ними, т. е. менять удельную мощность. Вертикальное размещение каждой лампы отдельно между растениями позволяет наиболее полно использовать их лучистую энергию. Предварительные испытания в теплицах совхоза «Марфино» (Москва) дали весьма положительные результаты.

Для некоторых декоративных культур с успехом применяют облучение растений снизу, когда люминесцентные лампы располагаются ниже листьев. В отдельных случаях рамы помещают и сверху, и с четырех сторон вокруг растений, создавая так называемые «световые ящики». Такие установки позволяют выращивать до плодоношения светолюбивые южные культуры: баклажаны, перец и др. Удельная мощность установки достигает 2 кВт/м².

Передвижение рам по мере роста растений осуществляется либо с помощью блоков и противовесов, либо скольжением вдоль направляющей вертикальной оси с закреплением положения специальными барашками.

Другой способ повышения эффективности люминесцентных ламп — создание ламп с направленным светораспределением. В СССР такие лампы выпускались под маркой ЛБР-40. Верхний полуцилиндр каждой трубки покрыт отражающим слоем из двуокиси титана и имеет направленное вниз выходное окно с размахом в 130°. Световой поток — 3460 лм.

Чтобы одним количеством установок облучать два или три участка теплицы по 8—12 ч в сутки, рамы с люминесцентными лампами поочередно передвигаются по горизонтали на довольно большие расстояния (5—10 м и более). Надо сказать, что для выращивания хороших растений этот прием требует строгого соблюдения определенных условий. Облучаемая часть теплицы должна быть наглухо закрыта от той, где растения не облучают. Это требование вызвано биологическими особенностями тепличных культур (томатов, огурцов и др.). Каждое растение для нормального развития и роста должно в течение суток не менее 6—8 ч находиться в темноте при одновременном понижении температуры воздуха на 5-7 °С.

Выдерживать эти требования, т. е. устраивать светонепроницаемые занавески и понижать температуру в части теплицы, довольно сложно. Поэтому в последнее время ряд хозяйств отказывается от такого способа использования облучательных установок.

В исследовательских целях горизонтальные рамы с люминесцентными лампами иногда монтируют на каретку, постоянно движущуюся над растениями вперед и назад со скоростью 10—15 м/мин. Переменное облучение растений способствует их росту и активизирует физиологические процессы.

Малая единичная мощность люминесцентных ламп, недостаток в их излучении оранжево-красной части спектра, необходимой для более интенсивного фотосинтеза и правильного формирования растений, побудили к созданию ряда установок, в которых люминесцентные лампы и лампы накаливания смонтированы совместно, но в самостоятельных электрических схемах. Как показали многочисленные исследования, объединение этих двух типов ламп способствует успешному росту растений только в том случае, если облученность от ламп накаливания будет примерно в 3—5 раз слабее, чем от люминесцентных ламп.

На основе благоприятного влияния на растения добавления небольшого излучения ламп накаливания было сделано предложение заменить дроссели лампами накаливания, включив их в одну электрическую схему, мотивируя эту замену удешевлением конструкции, уменьшением ее веса, меньшим расходом меди и трансформаторной стали. Таким образом, лампы накаливания иногда стали использовать в качестве балластного сопротивления, необходимого для зажигания и горения люминесцентных ламп. При этом для нормальной работы люминесцентных ламп мощностью 30 Вт вместо дросселя применяли лампы накаливания мощностью 40 Вт, а для люминесцентных ламп мощностью 40 Вт — лампу 60 Вт на напряжение 127 В.

Авторы предложенных конструкций (например, облучатель типа ОСТ-10-40), к сожалению, упустили из виду, что совмещенная электрическая схема, помимо указанных преимуществ, имеет ряд серьезных недостатков. К последним относится прежде всего большая затрата электроэнергии во время эксплуатации облучательных установок. Вместо дросселя, в котором потери составляют 7—9 Вт, приходится ставить лампу накаливания мощностью 40—60 Вт. В современных теплицах, где число люминесцентных ламп при выращивании рассады достигает иногда нескольких тысяч, такой прием вызывает колоссальный перерасход электроэнергии и значительно повышает себестоимость единицы продукции. Кроме того, лампы накаливания, работающие с перекалом, быстро выходят из строя, что уменьшает и без того небольшой срок их службы (1000 ч). У люминесцентных ламп ухудшаются условия зажигания и приходится помещать вдоль лампы узкую металлическую полосу, соединенную с каким-либо электродом лампы.

При совмещенной схеме светоотдача люминесцентных ламп падает на 25—38% (Рохлин), т. е. аннулируется основное преимущество люминесцентных ламп. И самое главное, в таких установках значительно увеличивается количество оранжево-красного и инфракрасного излучения. Качество растений, выращенных под комбинированной установкой, значительно хуже, чем под люминесцентными лампами той же мощности.

По расчетам Ф. Казанцева и А. Басова, чтобы получить освещенность рассады огурцов порядка 7 клк, требуется следующая удельная мощность: люминесцентные лампы (ЛЛ) —480 Вт/м²; ЛЛ + ЛН — 770 Вт/м² и ЛП — 1200 Вт/м². При этом готовность рассады к первой прищипке под ЛЛ + ЛН или ЛН всего только на 1—3 дня опережает рассаду под ЛЛ. Урожай плодов в варианте ЛЛ + ЛН был на 8% выше, зато затрата электроэнергии на 43% больше, чем при облучении рассады люминесцентными лампами.

Весьма перспективный прием повышения эффективности люминесцентных ламп — питание их током высокой частоты. Под руководством Л. Г. Прищепа разработаны и испытаны схемы включения ламп на повышенной частоте (2650 Гц).

Люминесцентные облучательные установки, работающие на повышенной частоте, имеют следующие преимущества:

  • на 10—30% повышается светоотдача ламп;
  • на 10—15% увеличивается срок их службы;
  • на 10 -20% снижаются потери электроэнергии на балласте;
  • в 3— 5 раз уменьшаются размеры пусковой аппаратуры; упрощается включение ламп.

Другой прием, значительно снижающий расход электроэнергии на выращивание растений, — импульсный способ излучения. Автор (О. И. Кузнецов, Ленинградский сельскохозяйственный институт) получил короткие импульсы (1 —10 мс) с помощью специальных генераторов на полупроводниковых управляемых вентилях — тиристорах, обладающих высоким КПД. Досвечивание огуречной рассады импульсным методом значительно ускорило ее выгонку и сократило расход электроэнергии в два раза. Испытания в теплицах Ленинграда (фирма «Лето») подтвердили перспективность предложения.

greenergy.org.ua

Спектр люминесцентных ламп дневного света. Энергосберегающие источники света от Osram. Какие бывают разновидности ламп

В январе нынешнего года компания General Electric (GE) объявила о прекращении выпуска в США компактных люминесцентных ламп к концу 2016-го. Новая светодиодная технология смела со своего пути успевшую стать привычной люминесцентную, как когда-то она сама свергла «правление» ламп накаливания, изобретённых основателем GE Томасом Эдисоном.

Так что же собой представляет люминесцентная лампа?

Люминесцентные лампы — это ртутные газоразрядные осветительные приборы низкого давления, в которых для излучения видимого света используется флюоресценция. Электрический ток в газе возбуждает пары ртути, которые начинают излучать свет в ультрафиолетовом диапазоне, что вызывает свечение внутреннего фосфорного покрытия.

Различают следующие типы люминесцентных ламп: с холодным катодом, горячего запуска и электролюминесцентные.

Горячий запуск

Наиболее распространёнными являются лампы горячего запуска. Источник света такого типа состоит из стеклянной колбы, наполненной инертным газом (как правило, аргоном) низкого давления. С каждой стороны колбы расположен электрод из вольфрама. Балласт регулирует мощность электродов. В старых лампах для их запуска использовался стартёр. В современных используются электронные пускорегулирующие аппараты.

Они в чём-то напоминают лампы накаливания. Начальное свечение производится разогретой спиралью из вольфрама, но затем электрический разряд в смеси паров ртути и инертных газов вызывает Особый состав, который покрывает стенки колбы, поглощает ультрафиолет и излучает видимый свет. Называется он люминофором и является смесью соединений на основе фосфора. Благодаря ему таких ламп превосходит мощность излучения ламп накаливания в несколько раз. Нить накаливания продолжает светиться и по окончании розжига, но только для поддержания разряда.

Для создания электрического разряда необходимо высокое напряжение. Чем холоднее колба, тем выше этот параметр. Но, поскольку высокие показатели опасны, были разработаны средства «разогрева» колбы для снижения напряжения.

Один из методов разогрева заключается в использовании стартера. При подаче напряжения зажигается разрядная лампа, нагревающая биметаллические контакты. Контакты замыкаются, шунтируют её, и электрический ток нагревает которые, в свою очередь, нагревают и ионизируют инертный газ. Остыв, биметаллические контакты размыкаются, подавая всё напряжение, а также энергию дросселя на электроды. Если разряда не произойдёт, то процесс повторится снова. После зажигания лампы стартер отключится, так как его сопротивление намного превышает сопротивление плазмы.

В современных системах быстрого старта электроды постоянно подогреваются, а дуга инициируется заземлённым рефлектором или стартовой полосой.


Люминесцентные лампы с холодным катодом

Холоднокатодные люминесцентные лампы — это приборы, температура катода которых не превышает 150 °C по сравнению с 900 °C ламп горячего запуска. Рабочее напряжение — 600-900 В, пусковое — 900-1600 В. Свет излучается ионизированным газом, для создания которого необходимо высокое напряжение. Разряд возникает при пробое пространства между электродами. Газ в лампе в нормальных условиях является диэлектриком, но в электрическом поле ионы и электроны приходят в движение. При подаче высокого напряжения электрическое поле настолько разгоняет заряженные частицы, что они, сталкиваясь с молекулами газа, выбивают из них электроны. Вновь созданные ионы и электроны также задействуются в ионизации: процесс становится лавинообразным.

В лампах горячего пуска разряд является дуговым, а источниках света холодного разряда — тлеющим. Постепенно ртуть переходит из жидкого состояния в газообразное. Электроны, сталкиваясь с атомами ртути, инициируют выделение энергии и интенсивное излучение в ультрафиолетовой области. Свет излучается люминофорным покрытием внутри колбы. Ртуть излучает фотоны, которые возбуждают атомы фосфора, увеличивая энергию его электронов. При возвращении электронов в начальное состояние атомы фосфора излучают световую энергию.


Электролюминесцентные лампы

Излучение света в электролюминесцентных лампах происходит благодаря прохождению электрического тока прямо через фосфоросодержащие материалы с эффектом нетермического преобразования электроэнергии в световую. Данный эффект также используется в светодиодах (LED) и органических светодиодах (OLED). Электролюминесцентные лампы отличаются от светодиодов тем, что в последних свет излучается в p-n переходе — месте соединения двух полупроводников, а у первых свет излучается всем слоем-активатором.

Высоковольтный переменный электрический ток проходит через тонкий слой фосфора или полупроводника, что имеет следствием излучение им света. Два слоя твёрдого вещества, один из которых прозрачен, действуют подобно электродам, а порошкообразный фосфор или проводник между ним

papeleta.ru

Спектр для растений — подбор ламп и цветовой температуры

Для комнатных растений не всегда достаточно освещения. Из-за его недостатка побеги могут развиваться медленно. Чтобы исправить эту оплошность, нужно всего лишь установить лампу для растений. Именно такой осветительный прибор может создать нужный спектр цвета.

Светодиодные осветительные приборы получили широкое применение для освещения оранжерей, в открытых садах и так далее. Они являются отличной альтернативой солнечному свету, не связаны с большими расходами и имеют длительный период эксплуатации.

Фотосинтез растений является процессом, проходящим во время достаточного освещения. Кроме того, растение может правильно развиваться благодаря необходимой окружающей температуре, достаточной влажности, спектру освещенности, продолжительности суток, наличию необходимых химических веществ.

Не существует цветов, способных полноценно расти в темное время суток. Непременно нужно кое-какое освещение. Разница состоит в его интенсивности. В основном световой день длится примерно 15 часов и не имеет значения, благодаря чему он может поддерживаться – солнечным лучам, искусственным лампам, либо и тому, и другому. Существуют виды растений, для которых определение нужного им света зависит от изменяющихся условий. Хотя есть такие, которым необходимо лишь определенное освещение. Оно не нужно цветам, которые отдыхают в ночное время суток. Для некоторых сортов рекомендовано принимать солнечные лучи и зимой.

На полноценный рост и развитие растительности влияют следующие факторы: грамотный полив, необходимая температура, оптимальная влажность, достаточная подкормка, выбор необходимых ламп для растений. Последнее нужно для выращивания с помощью искусственного света. И это отличное решение для тех видов растений, которые уже смогли адаптироваться к неяркому свету, к примеру, бегонии.

Как определить достаточность света?

Установку осветительного прибора для комнатных растений рекомендуется выполнить правильно. Поэтому вначале выясняем, необходимо ли сильное освещение для конкретной посадки.

Дополнительное освещение для растенийДополнительное освещение для растений

Затем определяем число светодиодов. Можно их подсчитать с помощью люксметра. Вы можете и самостоятельно вычислить их количество.

  1. Спектры света для развития растений.

Рассмотрим, какие нужны спектры света для растений:

  • Хлорофилл – зеленый.
  • Каротины – желтый и красный спектры.

Кроме того, разнообразные пигменты могут поглощать свет по-разному, все лишнее они отражают.

Как утверждают ученые, источник энергии для фотосинтеза – это в основном лучи красного цвета спектра.

Фотоморфогенез является процессом, который протекает в растении под влиянием света с разным спектральным составом и насыщенностью. Тут свет – сигнальное средство, которое регулирует рост рассады. К тому же в растении имеется и пигмент фитохром. Пигмент является белком, который имеет чувствительность к некоей области белого спектра.

Особенности фитохрома состоят в том, что он принимает 2 формы с разнообразными характеристиками, под влиянием красного оттенка с длиной волны 660 нм он отличается способностью фотопревращения. К тому же поочередное свечение на короткий промежуток времени красным светом аналогично манипулированию им с помощью любого выключателя.

Эта характеристика фитохрома может обеспечить слежение за временем дня, чтобы управлять периодичностью произрастания семян. Сделать нужную лампу достаточно трудно.

Фитохром имеется также в листочках и в рассаде. Красные лучи стимулируют прорастание рассады, а дальний оттенок этого же цвета ее рост подавляет. Вероятно, по этой причине она и прорастает в ночное время суток. Однако это не закономерность для всех видов растений. Тем не менее красный свет является полезным, потому что стимулирует в растении активные жизненные процессы.

Как стало очевидно из результатов многочисленных экспериментов, красного цвета должно быть больше. Для различной рассады оптимальные пропорции могут быть самые разные. Так выясняется, что если помидоры хорошо произрастают при изобилии красного, то огурцы могут погибнуть.

Адениумы, например, представляют собой растения, которые в родных краях растут, получая достаточно много красного цвета спектра. На африканских территориях и на территории арабских стран рассвет и закат не продолжаются длительное время, солнце очень быстро заходит и встает. Кроме того, эти регионы отличаются немногочисленными пасмурными днями. То есть там мало синего света.

Светолюбивые растенияСветолюбивые растения

Результаты многочисленных экспериментов позволили прийти к выводу, что соотношение 2 красных и 1 синего светодиодов лучше для вегетационного периода созревания растений. При этом благодаря такому соотношению света вы можете намного увеличить количество плодов.

Кроме того, учитываем, в каких условиях растет растение, попадают ли на него прямые лучи солнца. Если растения выращиваются в специальном гроубоксе либо в подвальных условиях, то для их выращивания придется использовать и иные спектры. Такие спектры можно получить, если монтировать определенное количество белых светодиодов, можете добавить и ультрафиолетовые, если вы выращиваете экзотические сорта. Произрастать без ультрафиолетовых лучей способны практически все растения, однако выделить, к примеру, эфирное масло – не все. Можем посмотреть на примере укропа, который без УФ не такой ароматный.

В тепличных условиях в некоторых случаях выбирают одновременно 2 вида искусственных осветительных приборов – это натриевая лампа, в которой изобилие красного спектра, и светодиод. Чтобы монтировать на большую площадь нужное число светодиодов, потребуются огромные вложения.

Однако необходимо учитывать и такие важные моменты, как то, что в тепличных условиях доступен еще и обычный свет, который и способен компенсировать недостаток освещения.

Чтобы выращивать в закрытой почве, можно использовать соотношение 1:2 – 1:4 в зависимости от растущего растения. Выращивать можно и под единственным синего цвета спектром.

Также благодаря сочетанию разных спектров вы можете заметить проявление половых особенностей растений.

Основные цветовые температуры лампОсновные цветовые температуры ламп
  1. Цветовая температура ламп.
  • 2 700 К относится к теплому свету – тут больше красного спектра, который можно получить от ламп накаливания. Иные виды ламп могут дать свечение, которое близко к свету ламп накаливания. Эта разновидность свечения применяется в период цветения.
  • 4 100 К – белый свет.
  • 6 400 К – холодный белый свет – тут преобладает излучение синего спектра. Это может привести к наилучшему результату в течение вегетативного роста. Поэтому холодный свет так востребован.
  • 8 000–25 000 K – ультрафиолет.
  1. Выбор мощности.

Определить мощность можно благодаря месту, условиям и культуре, которую вы собираетесь выращивать дома. Растения бывают светолюбивые и плодоносящие. Среди последних можно отметить помидоры и клубнику. Они нуждаются в изобилии света, от этого зависит урожайность. К нетребовательным относятся салат, тропические сорта растений и большинство комнатных.

Светодиоды могут находиться довольно близко к растению, на расстоянии примерно 5 сантиметров, при этом они не опаляют растение. Если листочки очень нежные, лампы рекомендуется установить на расстоянии около 10 см. Если вы выращиваете высокие сорта растений, то лучше обеспечить и боковое освещение, потому что нижние листья могут недополучить свет.

  1. Длина световых волн.

В спектре лучей солнца имеются и синий, и красный оттенки. Они дают возможность растениям приобретать больше массы, а также лучше плодоносить. Если облучать лишь с помощью синего спектра, у которого длина волны примерно 450 нм, ваша рассада вырастет низкорослой. Она не порадует изобилием зеленой массы. Также вероятно, что растение не будет давать плоды.

Если обеспечить красный диапазон света с длиной волн примерно 620 нм, то хорошо начнет развиваться корневая система растения, оно будет цвести и отлично плодоносить. Из всего вышесказанного можно сделать вывод, какой свет нужен для определенных растений.

Светодиодные лампы для растенийСветодиодные лампы для растений

Выбираем лампу для освещения растений

  1. Светодиодные лампы.

Если вы выбрали светодиодные лампы для освещения растений, то они помогут вашей флоре не только хорошо расти, но и отлично плодоносить. В одно и то же время при освещении люминесцентным прибором имеет место и цветение. Светодиоды не будут нагреваться, по этой причине не требуется проветривание комнаты. К тому же нет теплового перегрева растений. Такие фитолампы являются отличным выбором для выращивания семян. Благодаря направленности спектра излучения побеги могут окрепнуть даже за непродолжительный отрезок времени.

Среди преимуществ стоит отметить и низкое потребление электричества. Светодиоды могут уступить лишь натриевой лампе. Однако они в 9 раз экономичнее ламп накаливания. Срок их эксплуатации может достигать даже 10 лет. Гарантия предоставляется на срок примерно 4 года. Если выбрать такие осветительные приборы, можно надолго забыть об их замене. Они не накапливают вредных веществ. Хотя их использование в теплице довольно широко распространено. Рынок сегодня переполнен такими светильниками: их можно прикрепить как на стену, так и на потолок.

Лампы дневного света  для выращивания растенийЛампа дневного света для выращивания растений

Чтобы увеличить интенсивность излучения, лампы объединяют в одну конструкцию. Среди минусов можно отметить высокую цену, если сравнивать с люминесцентными лампами. Разница очень большая. Однако диоды могут себя окупить после пары лет эксплуатации. С их помощью вы можете значительно сэкономить электроэнергию. После завершения гарантийного периода можно наблюдать понижение свечения. Если площадь теплицы большая, то потребуется установить как можно больше точек освещения.

  1. Радиатор для светильника.

Такие приборы требуются в случаях, если нужно отвести тепло. Радиаторы отлично с этим справляются. Светодиоды для растений рекомендуется чередовать по цветам. Так у вас выйдет равномерное освещение.

  1. Фитосветодиоды.

Новое изобретение под названием фитосветодиод может прийти на замену обычным аналогам, которые светят лишь в единственном цвете. Новая техника в чипе собрала в себе нужный спектр светодиодов для прорастания растений. Он необходим для различных этапов роста. Конструкция простейшей фитолампы состоит из блока, где установлены и светодиоды, и вентиляторы. Последние можно отрегулировать по высоте.

  1. Лампы дневного света.

Долгое время люминесцентные лампы были довольно востребованы в приусадебных участках и в теплицах. Однако такие приборы для растений – не самое верное решение по цветовому спектру. Им на смену пришли новейшие фитосветодиодные лампочки особого назначения.

  1. Натриевые лампы.

Такие приборы отличаются очень насыщенным светом и их лучше не устанавливать в помещении. Рекомендуется применять их в большой теплице, в саду и оранжерее, где нужно тщательное освещение растений. Недостатком этих ламп считается их небольшая производительность.

lampagid.ru

Почему дешевые люминесцентные лампы плохо подходят для фотосъемки (+ немного теории о спектре): dmitry_novak — LiveJournal

   Газоразрядные трубки (люминесцентные лампы) используются повсеместно. Раньше мы только работали и учились при таком свете, а сегодня государство позиционирует энергосберегающие лампы как стандарт и для домашнего освещения.

Это прискорбно, потому что многие такие лампы не только пульсируют с частотой полупериода переменного тока (в силу малой инерционности свечения), но и обладают прерывистым спектром, что в совокупности утомляет зрение и не обеспечивает корректной цветопередачи.

   Сегодня многие фирмы предлагают фотографам комплекты для предметной съемки на основе энергосберегающих ламп. И можно со 100%-й уверенностью сказать, что используемые там лампы не являются полноспектральными высококачественными источниками света с колориметрической точки зрения.

   Почему это важно и зачем вообще я завел речь о спектре?

   Многие считают, что если свет источника визуально белый, а серая карта после тыканья пипеткой становится нейтрально серой, то мы имеем точную цветопередачу. Но это заблуждение.

   Давайте оттолкнемся от нашего главного, эталонного светила.

   В природе существует лишь один естественный источник света, достаточно яркий и неизменный во времени в рамках существования человека как вида, чтобы можно было считать его эталонным — это Солнце.

   Вот спектр солнечного света (здесь и далее спектры схематичны):

   Смесь раскаленных элементов и ионизированных газов, из которых состоит Солнце и его корона, своим свечением заполняет видимый спектр и даже выходит за его пределы в ультрафиолетовом участке.

   С точки зрения колориметрии и цветовосприятия это означает, что предметы любых цветов, лежащих в пределах этого спектра, и освещенные солнечным светом, будут восприниматься как одинаково интенсивные (естественно, в отрыве от особенностей психологии восприятия цвета, которая изначально наделяет одни цвета более темным «характером», а другие — более светлым). Теоретически это обеспечивает спектральную линейность в системе «Солнце — предмет – глаз (камера)».

   Это во многом объясняет то, что большинство фотокамер обеспечивает наилучшую цветопередачу при солнечном освещении (и не забываем, что на матрице еще байеровская мозаика фильтров со своими кривыми характеристиками).

   Близка к солнечному свету фотовспышка. В их колбах обычно используется газ ксенон, имеющий вот такой спектр:

   Спектр линейчатый, но линии достаточно часты и равномерны, чтобы считать его условно непрерывным. Избыток холодной синей части спектра частично отсекается специальным покрытием желтоватого цвета, нанесенным на колбу вспышки. Кстати сказать, качество вспышки можно легко определить именно по качеству этого покрытия и по точности цветовой температуры.

   В результате получается почти непрерывный спектр, очень близкий к солнечному. Поэтому вспышку можно также приближенно считать колориметрически корректным источником света.

  Лампы накаливания считаются практически стопроцентными по показателю CRI (Color Rendition Index). Вот спектр лампы накаливания:

   Он также непрерывен, но в нем преобладает желто-красное излучение и не хватает синего. Цветовая адаптация зрительного аппарата человека позволяет это частично компенсировать, хотя цвета от фиолетовых до зеленых будут восприниматься темнее и теплее, чем они есть в действительности. В фотографии низкая цветовая температура легко компенсируется при обработке пропорциональным сдвигом всех цветов в холодную часть спектра.

   Можно использовать и конверсионные светофильтры. Важно, что при этом все равно диапазон воспроизводимых цветов остается непрерывным, как и при солнечном освещении.

   Итак, мы рассмотрели три источника, каждый из которых дает условно непрерывный спектр и потому сохраняет отношения, пропорции цветов в целом(хотя они все вместе могут сдвигаться в теплую или холодную сторону). Для таких источников света цветовая температура полностью или почти полностью характеризует оттенок и то, какое влияние они будут оказывать на цветопередачу при просмотре или при фотосъемке.

   Соответственно, такой спектральный сдвиг легко компенсируется настройкой баланса белого (а именно — цветовой температуры). Разумеется, это может сделать более заметными фотонные шумы, но данный вопрос лежит уже в совершенно иной области, и сегодня мы об этом не будем говорить.

   А теперь давайте посмотрим, к какому свету нас хотят приучить экологи и государство (а также изготовители дешевых наборов постоянного света для фото и видео).

 

   Итак, барабанна дробь! Дешевая энергосберегающая люминесцентная лампа:

   Странная картина, не правда ли?

   Излучаемый свет кажется белым, потому что действительно при сложении цветных полос в спектре получится белый. Но представьте себе, что мы освещаем таким светом фотографируемую сцену — получится, что многие цвета в ней вообще не будут освещены, банально «выпадут». Между прочим, именно этим обусловлено то, что под люминесцентными лампами так заметны дефекты кожи на портретах — просто как бы теряются промежуточные участки градиентов, яркие линии спектра «высвечивают» узкие области оттенков, а провалы затемняют такие же узкие области.

   Возьмем энергосберегайку подороже:

   В целом ситуация лучше, но все равно спектр имеет почти глухие провалы, где цвет будет искажен, а переходы потеряют пластичность.

   Причем эти провалы невозможно исправить настройкой баланса белого, здесь даже профилирование толком не поможет.

Понятно, что для качественной съемки такие источники света использовать нельзя. И что-то мне подсказывает, что и для глаз они как минимум некомфортны.

 

   Впрочем, есть очень качественные и очень дорогие люминесцентные лампы, которые имеют ровный спектр и высокий показатель CRI и используются например как эталонное освещение в полиграфии. Качественные лампы ставят и в качестве подсветки в дорогих мониторах. Но это скорее исключение, чем правило.

Еще одним серьезным недостатком люминесцентных ламп является то, что они имеют низкую инерционность свечения и при этом питаются переменным током, а значит в большей или меньшей степени «моргают» с частотой полупериода осветительной сети. Во-первых, это вредно для глаз. Во-вторых, это создает два неприятных эффекта. Первый из них — строб при видеосъемке, когда частота развертки матрицы приближается к частоте сети, и на изображении появляются бегущие полосы или мерцание. Второе явление — это «прыгающий» баланс белого между соседними кадрами, обусловленный тем, что выдержка может быть короче, чем период пульсации и захватывать момент угасания свечения, при котором цветовая температура сильно отличается от исходной.

   Недавно в широкой продаже появился и еще один очень перспективный вариант — светодиодные лампы:

   Спектр у них почти сплошной, хотя есть небольшой провал, но в целом вполне адекватно.

Многое зависит от производителя, но в целом этот вид источников света представляется очень перспективным, особенно учитывая малую потребляемую мощность и, как следствие, возможность экономичного питания от батарей на выезде.

   Серьезным преимуществом светодиодных ламп является то, что, в отличие от люминесцентных, они работают от постоянного тока в силу своего принципа действия и потому не пульсируют полупериодом переменного тока, а значит свет их постоянен и подходит для видеосъемки без эффекта строба, а также нет проблемы с различным балансом белого от кадра к кадру, как у люминесцентных ламп.

  UPD: Настоятельно рекомендуется прочитаться и вот этот аддендум, где я разъясняю некоторые возникшие вопросы.

<br><br>

dmitry-novak.livejournal.com

подходит ли и как выбрать фитолампу для подсветки комнатных растений

Может ли растительный мир существовать без солнца? Конечно нет. И самый выносливый дуб, и самый неприхотливый кактус – все они тянутся к свету, а недостаток его – губителен. Взращивая и пестуя зеленые насаждения в собственном доме или квартире, помните не только о поливе, подкормке и рыхлении. Организация искусственной подсветки – первостепенная задача любого ответственного хозяина.

Что представляют собой фитолампы дневного света для подсветки

Люминесцентная лампа – искусственный источник освещения, свет которого максимально приближен к естественному. Такое приспособление помогает цветоводу создать для своих питомцев приемлемые условия для роста в то время, когда естественного освещения явно недостаточно. По времени – с ноября по март. Без люминесцентной лампы процесс фотосинтеза у растения застопорится, собьются его естественные ритмы, ростки начнут хиреть.

СПРАВКА! Если у вашего питомца начали желтеть и опадать листья (в первую очередь нижние), они бледнее и меньше, чем обычно, а ствол резко идет в длину – это сигнал о том, что пора переставить горшок на более освещенное место, либо установить над подоконником дополнительную подсветку.

Фитолампа дневного света подходят для использования в тепличных хозяйствах, оранжереях, как аквариумный светильник, для освещения частных коллекций декоративных растений и подсветки проклюнувшейся рассады.

Внешне такая лампа выглядит, как длинная трубка из плотного стекла. Внутри – пары ртути и инертного газа. Между электродами, установленными внутри, при включении прибора возникает дуговой разряд, который способствует возникновению ультрафиолетового излучения.

Но, поскольку человек не может его увидеть невооруженным глазом, внутреннюю сторону колбы покрывают специальным веществом – люминофором. Он поглощает ультрафиолет и излучает уже видимое нам свечение.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Оттенок освещения и спектр можно регулировать изменением состава люминофора. В продаже есть разные виды ламп с такой регулировкой: общего назначения (в которых на внутреннюю поверхность колбы нанесен один слой вещества), специальные (спектр красного и синего цвета, приобретаемые для организации осветительной системы больших площадей) и лампы усиленного свечения (для этого наносят несколько слоев люминофора).

Как выбрать?

Выбор образца зависит от целей, которые ставит перед собой цветовод. Мало купить лампу и периодически ее включать – нужно отталкиваться от потребностей растений.

Растения условно можно поделить на 3 группы.

  1. Длиннодневные – это обитатели северных и умеренных широт. Досвечивание является для них жизненной необходимостью, в противном случае они не будут ни цвести, ни плодоносить. Время досвечивания -14 часов и более.
  2. Нейтральные – развиваются без ярко выраженной зависимости от длительности светового дня.
  3. Растения короткого дня – гости из южных широт. Требуемая продолжительность светового дня – более 12 часов.

Отталкивайтесь при выборе от следующих параметров:

  • Напряжение в сети. Почти все люминесцентные лампы подключается к розеткам мощностью 220 В.
  • Мощность осветительного прибора. Имейте ввиду, что существует прямая зависимость между габаритами и мощностью (например, у колбы длиной 450 мм мощность 15 Вт, а у лампы в 1500 мм – 58 Вт). Стандартные образцы: 15, 18, 30, 36 и 58 Ватт.
  • Тип цоколя. Конструкций держателя может быть несколько, это зависит от типа лампы. Наиболее часто встречаются типы Е14 и Е27, штырьковые реже – G, G2, G24 (G24Q1, G24Q2, G24Q3), G53, G23.
  • Срок службы. Средняя продолжительность, указываемая в инструкции к большинству приборов – до десяти тысяч часов. В идеальных условиях эксплуатации (и, конечно, если лампа была сделана с учетом всех необходимых норм и с использованием качественных материалов) конструкция может прослужить в два раза дольше. Так утверждают изготовители. Однако практика говорит о другом: 7500 часов – тот потолок, выше которого «перепрыгнуть» описываемым осветительным приборам не удается.
  • Дополнения. Если вы планируете освещать лампой несколько горшков на подоконнике – можно не утруждаться поиском сложных модификаций. А вот для оранжерей и теплиц, а также для аквариумов, следует выбрать модель с повышенным уровнем защиты от влаги. Не помешает и таймер автоматического включения выключения.

Люминесцентные лампы могут быть:

  • Линейные. Самые первые и самые крупные в линейке люминесцентных ламп. В настоящее время редко применяются в быту, в основном – для освещения магазинов, складских и производственных помещений.
  • Компактные. Удобные лампы, работающие по тому же принципу, что и линейные, но имеют вкручивающийся цоколь и встроенный пускатель. Они отлично решают проблему нехватки места в помещении. Газовой смеси в них содержится меньше, чем в линейных, однако не качестве это не отражается. Выпускаются в 3-х цветовых температурных диапазонах: холодном, красном и дневном. Ресурса таких ламп хватает примерно на 8000 часов работы.
  • Энергосберегающие. Дают больше света на единицу мощности прибора, долговечны и имеют широкий выбор оттенков спектра.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Срок службы лампы сокращается от нестабильности питающего напряжения в сети, повышенной или пониженной температуры окружающей среды, частотой включения и выключения механизма.

Чаще всего из строя выходят компактные лампы.

Обзор модели Osram Fluora для подсветки растений

фото 2фото 2Osram Fluora выделяются в линейке осветительных приборов и ценой, качеством. На прилавки магазинов выложен один тип ламп, но представители его отличаются друг от друга размерами, мощностью и силой потока света.

  • Спектр излучения: 440 и 670 нм.
  • Самое маленькое изделие – 438 мм в длину, самое длинное – 1500 мм.
  • Заявленный срок эксплуатации – 13000 часов.

Этот тип используется повсеместно: в жилых домах и офисах, гостиницах и торговых центрах, декоративных выставках и оранжереях, хорошо подходят также для террариумов и аквариумов. Лампы Osram Fluora не только стимулируют рост растений, но и имеют эстетичный внешний вид, потребляют мало электроэнергии и не мерцают.

ВНИМАНИЕ! Некоторые пользователи жалуются на то, что свет этой лампы вызывает резь в глазах и головную боль. Ультрафиолет действительно способен доставить некоторые дискомфорт, если находит под ним долго, и, тем более, смотреть на яркий свет устройства.

Читайте также! О .

Поэтому, если вам нравятся товары этой марки, но вы боитесь неприятного эффекта – обратите внимание на прибор Osram Natura. Его белый свет не раздражает глаза, а свечение, помимо красных и синих волн, обладает еще и волнами зеленого спектра.

Подходит ли лампа дневного света для комнатных насаждений?

Подходят, но не все. Лучше всего приобрести компактные люминесцентные лампы полного спектра: с теплой температурой свечения – для цветения комнатных растений и с холодной – на период роста до цветения. Выбирайте мощные приборы (50–100 ватт).

Стандартные типы дают достаточную дозу ультрафиолета, но их синий цвет отрицательно сказывается на цветении.

Читайте также! .

Как рассчитать количество?

Садоводы рекомендуют следующее – на 1 дм. кв. площади растения должно быть:

  • не менее 2,5 Вт для теплолюбивых растений;
  • от 1,5 до 2,5 Вт – для растений, требующих умеренную подсветку;
  • 0,5-1,5 Вт – для теневыносливых.

ВАЖНО! Подсветка будет эффективна только в том случае, если вы будете включать лампы регулярно и в одно и тоже время. Делая это время от времени вы, скорее, навредите растениям, сбивая их биоритмы.

Рекомендации по установке

Выбирайте спектр правильно. Оранжевый и красный цвета стимулируют фотосинтез и помогают выработке энергии, но притормаживают процесс цветения. Оттенки от сиреневого до зеленого оказывают положительное влияние на цветение, а вот желтые цвета в процессе роста практически не участвуют.

Расстояние от тенелюбивого растения до лампы должно составлять не более 50 см, от светолюбивого – не более 15 см. Если у вас есть возможность, установите ваших питомцев на стеллаж так, чтобы на одной полке стояли растения примерно одной высоты – это весьма удобно. Растения, более других любящие свет, ставьте в середину, остальные – по краям. Крепление для ламп должно быть подвижным.

Эффективнее всего включать освещение не ночью или вечером, как многие ошибочно думают, а днем, когда еще есть естественный поток света.

Установите в боковой и верхней частях ламп специальные рефлекторы: они помогут не потерять даже самые незначительные лучи света. Отражатели могут быть разные: из фольгированной или зеркальной пленки, фарфоровой эмали. Не забывайте время от времени их протирать чистой тряпкой.

СПРАВКА! Самые популярные торговые марки – Philips , Osram, Narva и Sylvania.

Разобраться в изобилии осветительных приборов сложно, но реально. Уделите время и тщательно изучите технические характеристики, особенности использования нюансы установки таких ламп – потраченное время с лихвой окупится. Ваши растения будут благодарны вам за уход и внимание к себе!

Рейтинг автора

Автор статьи

Доцент кафедры энергетики. Автор статей по осветительным приборам.

Написано статей

Следующая

ЛюминесцентныеКак устранить опасность от разбитой люминесцентной лампы

osvescheniepro.com

Светлое будущее. Часть 4: здоровье / Offсянка

В предыдущих эпизодах (часть 1, часть 2, часть 3) мы рассматривали различные источники света (ИС) с точки зрения их технических характеристик и особенностей эксплуатации. Пора изучить, как ИС влияют на зрение и вообще на здоровье человека. Этот аспект — наиважнейший: потеря и даже простое ослабление зрения от сколь угодно эффективного освещения вряд ли может считаться приемлемым даже в таком не слишком развитом обществе, как наше.

Медицина восстанавливать зрение еще не слишком умеет. Максимум — удаление катаракты да коррекция роговицы, но и там масса ограничений (узнайте для интереса стоимость операции). Все остальное — очки, контактные линзы, искусственные хрусталики и тому подобное — не более чем протезы, сильно уступающие биологическим прототипам. Повреждения сетчатки и вовсе в массовом порядке не лечатся. «Запчасти для глаз» практически не вышли из экспериментальной стадии, да и разрешение невелико.

Среди характеристик ИС, так или иначе влияющих на организм, можно выделить следующие: спектр излучения, качество цветопередачи, пульсации светового потока, наличие побочных излучений, присутствие вредных соединений (экологичность). Рассмотрим в этом плане наших постоянных участников — лампы накаливания (ЛН), компактные люминесцентные лампы (КЛЛ) и светодиодные лампы (СДЛ).

Разговор о влиянии источников света на здоровье мы начнем с разбора двух параметров: спектра излучения и цветовой температуры.

Спектр — важнейшая характеристика любого источника света, непосредственно влияющая на (дис)комфорт зрительного восприятия. По этому показателю новые ИС кардинально отличаются как от Солнца, так и от привычных «накалок», подтверждением чему служат хорошо известные графики. Напомним, что быстро оценить спектр любого ИС можно с помощью подручного средства — диска DVD. Его дорожки образуют отличную дифракционную решетку, в которой видны основные пики излучения (CD для этого грубоваты).

Спектр ламп накаливания естественно-непрерывен, в отличие от дискретных, с резкими пиками графиков КЛЛ. Он ближе всего к природному солнечному свету, хотя и смещен в красно-желтую область (это, кстати, хорошо соответствует вечернему освещению на закате — вот почему свет ЛН непроизвольно расслабляет). Именно к Солнцу в ходе эволюции адаптировалось все живое, в том числе — и человеческий глаз. Если бы мы располагали материалом, выдерживающим нагрев до 5800 К (температура фотосферы), проблема искусственного освещения была бы решена раз и навсегда. Увы, таких материалов на Земле нет и не предвидится, а применяемый в ЛН вольфрам плавится при 3690 К, не дотягивая до идеала более двух тысяч градусов. Так что тепловые источники света, лучшие, чем ЛН, нам недоступны. Что же дают новые технологии?

ЛН и КЛЛ в отражении от DVD. Так выявляется линейчатый спектр

Спектр КЛЛ имеет три резко выраженных пика, что определяется свойствами используемой люминофорной смеси. Варьируя соотношение различных компонент в ней, можно влиять на величину тех или иных пиков и тем самым получать результирующий свет более теплого или холодного оттенка (подробнее об этом далее). В соответствии с общепринятой трехкомпонентной теорией цветового зрения, он будет восприниматься как белый, с удовлетворительной, но не более того, цветопередачей. Ведь если предмет отражает свет с длиной волны, попадающей в провал между пиками, то в свете КЛЛ он будет выглядеть более темным, чем на самом деле.

Спектр двух разных КЛЛ и одной ЛН (черная линия). Местоположение пиков одинаково, варьируется лишь их интенсивность

Важно отметить, что линейчатый спектр КЛЛ вызывает повышенное зрительное утомление при чтении и других точных работах. Окулисты давно заметили, что измеренная острота зрения при люминесцентном освещении оказывается существенно ниже, чем при эквивалентном освещении ЛН или Cолнцем. Дело в том, что глаз наиболее чувствителен к желто-зеленому цвету (555 нм) и фокусируется по нему, а как раз в этом месте у люминофора провал. Зато в спектре много синего, по которому фокусировка значительно хуже (хроматическая аберрация хрусталика, ничего не поделаешь). Все это формирует на сетчатке размытую картинку. Буквы в свете КЛЛ будут казаться менее четкими, поэтому чтение будет сильнее утомлять. Заядлые читатели, молодого и не очень возраста, часто жалуются: «От «сберегаек »глаза болят».

Спектральная чувствительность глаза различается для дневного и ночного зрения. В сумерках изумрудно-зеленый цвет кажется ярче, чем все остальные (это легко заметить по светофорам). Дневной пик в желто-зеленой зоне выражен менее резко

Чтобы исправить положение, приходится поднимать освещенность практически вдвое — тогда зрачок сокращается, аберрации уменьшаются и картинка становится четче. Налицо «инфляция света»: люмен от КЛЛ менее ценен для глаз, чем люмен от ЛН. В этой валюте за зрительный комфорт расплачиваются энергосбережением — вот к чему приводит несовершенный спектр КЛЛ!

У светодиодных ламп спектр существенно отличается. В нем присутствуют два компонента: острый синий пик от самого диода и второй, «размазанный» по всему спектру — от люминофора, которым покрыт кристалл (отсюда, кстати, желтый цвет выключенного светодиода). Как видно, его качество гораздо выше, чем у люминофоров, применяемых в КЛЛ, что определяется как технологией, так и экономикой (в СДЛ люминофора требуется несравненно меньше, чем в КЛЛ). Соотношение между синим цветом диода и полосой эмиссии люминофора определяет результирующий свет лампы. Эмиссию же легко регулировать толщиной слоя люминофора. Понятно, что СДЛ холодного света всегда будут дешевле и ярче, чем теплого, — вот в чем причина засилья «синюшных» лампочек в бюджетном (читай: китайском) сегменте рынка.

Спектр трех разных СДЛ и одной ЛН (черная линия). Пики излучения смещаются, что свидетельствует о разном составе люминофора

Интегральная характеристика спектра любого источника света — его цветовая температура (ЦТ). Она определяется как температура абсолютно черного тела, при которой оно испускает излучение того же цветового тона, что и рассматриваемый ИС.

Для ЛН цветовая температура совпадает с нагревом нити накала и колеблется в диапазоне 2200-3250 К. Первое значение характерно для маломощных лампочек 10-25 Вт, которые безбожно желтят, а последнее — для специальных киносъемочных ламп (они горят с сильным перекалом и служат всего несколько десятков часов). Ходовые ЛН 60-100 Вт имеют температуру 2700-2800 К — это и стало ориентиром при последующих разработках КЛЛ и светодиодов. Все шире используемые галогенки отличаются повышенной ЦТ: 2800-2900 К для ламп сетевого напряжения и 2900-3100 К для низковольтных. В обоих случаях более высокое значение характерно для фирменных ламп старших серий. Другими словами, качественные низковольтные ГЛН — самый лучший из доступных тепловых источников света, это стоит запомнить.

Лет 40 назад (когда об энергосбережении мало кто задумывался) широко использовались ЛН «дневного света» с исправленным спектром. Их колба имела бледно-голубой оттенок, вырезающий избыточные красно-желтые тона спирали. Результирующий свет был весьма приятным, но сильно ослабленным: для сохранения освещенности мощность лампочки приходилось практически удваивать (с 60 до 100 Вт в настольной лампе, например). Подобное излишество вроде бы кануло в Лету вместе с прожорливыми шестилитровыми авто, но парадоксальным образом возродилось как раз в автомобильной отрасли. Заметная часть продаваемых нынче галогенок для фар (стандарт 12 В, 55 Вт) окрашена в более или менее густой синий цвет, долженствующий приблизить спектр к модным «ксенонкам» (на самом деле — металлогалогенным лампам с небольшой добавкой ксенона для быстрого запуска). Так — заметим в сторону — безопасность движения приносится в жертву дешевым «понтам».

Даже крупные фирмы идут на поводу у спроса и выпускают такое. Синие галогенки светят, может быть, и красиво — прямо как ксенонки, но дорогу толком не освещают

Синие ЛН до сих пор выпускаются, но уже в немассовых количествах. Эта предназначена для обогрева рептилий в террариуме, а также подпитки их мягким УФ

Цветовая температура КЛЛ и СДЛ лишь приблизительно описывает их свечение, поскольку спектр этих ламп не гладкий. У КЛЛ он вообще линейчатый с несколькими резкими люминофорными пиками, а светодиоды при более размытом спектре сохраняют базовый пик в синей области, весьма вредный для глаз. Правильнее говорить о коррелированной цветовой температуре (CCT), поскольку полного соответствия с излучением черного тела здесь нет, и приходится выбирать температуру, ближайшую к кажущемуся цвету ИС.

Спектральные кривые абсолютно черного тела. Температура 3000-4000 К дает оранжево-желтые тона, при 5000-7000 К свет относительно ровный во всем спектре (нейтрально-белый тон), при 9000 К и выше преобладают короткие волны (голубоватые тона)

КЛЛ выпускаются с цветовой температурой из устоявшегося ряда, основанного на стандартизированных люминофорных смесях. Это 2700 К (торговое обозначение «теплый белый»), 4200 К («холодный, или нейтральный белый») и 6500 К («дневной белый»). В последнее время ряд пополнился: появились лампы на 2500 К («комфорт») и на 3300 К («релакс»), а также варианты на 4000/4500 К и на 6000 К. Последние — скорее маркетинговый ход: по технологическим нормам ЦТ может отклоняться от номинала на 10%, а реальный разброс бывает еще больше (влияет чистота люминофора и другие случайные факторы). Так что лампы на 6000 К практически не отличаются от 6500 К.

Но что касается ламп на 2500 К (Osram), то здесь свет уже другой — ближе к свечам, с заметной желтизной. Такие изделия вполне уместны в интерьерной подсветке. Те КЛЛ на 3300 К, которые довелось видеть (марка Uniel), не впечатляют: это те же 4200 К, только с колбой бледно-желтого стекла, порождающей неестественный оттенок свечения. Лампы Nakai класса 833, на те же 3300 К, сделаны «честно» — их чисто-белый свет весьма приятен, но мало распространены и сравнительно дороги (250-300 р.).

КЛЛ Uniel на 3300К. Подкрашенная колба доводит ЦТ до желаемого значения, но портит цветопередачу

Важно отметить, что весь ряд цветовых температур получается с помощью одних и тех же люминофоров, с одинаковыми пиками и провалами в спектре. Различается лишь доля синего: для теплых тонов его меньше, для холодных — больше. Поэтому идея «зарядить» в один светильник КЛЛ разной цветности (чаще всего теплого и холодного белого) результирующий спектр не сглаживает и цветопередачу не улучшает, хотя смешанный свет бывает субъективно приятен.

В ходе эксплуатации КЛЛ люминофор деградирует, что отражается не только на световом потоке, но и на спектре: он становится более грязным, с желтым оттенком. Дрейф ЦТ можно заметить уже через год-полтора эксплуатации, это порой вынуждает заменить еще исправную лампу.

СДЛ тоже выпускаются теплого, нейтрального и холодного свечения, вот только стандарты ЦТ здесь соблюдаются довольно слабо. Виной тому, видимо, несовершенство белых светодиодов, где используется сложный по технологии люминофор.

Честные производители, такие как Cree, приводят для своих чипов следующую градацию: 2600-3700 К — Warm White, 3700-5000 К — Neutral White, 5000-8300 К — Cool White. Разброс, как видим, весьма значительный — чуть ли не 50%. Лампы формально одной и той же цветности, но купленные в разных местах, скорее всего, будут заметно различаться по свечению. Отсюда практический совет: закупать сразу столько СДЛ из одной партии, сколько необходимо по проекту освещения, возможно, с запасными экземплярами. Разнобой в оттенках как минимум неэстетичен, а как максимум — бьет по глазам, вынужденным все время перестраиваться.

Положение СДЛ теплого и нейтрально-белого света на цветовой диаграмме. В конкретных образцах отклонения могут быть значительны

Кроме того, цветовая температура СДЛ непостоянна во времени. Люминофор в мощных кристаллах сильно нагревается, что способствует его быстрой деградации. По мере старения световой поток диодов смещается в синюю область, так что общая ЦТ растет. Лампы начинают светить сначала слишком холодным, а потом неприятным синюшным светом, который еще и вреден для глаз и всего организма (об этом поговорим в следующей части). Это тоже надо учитывать при эксплуатации, особенно на втором-третьем году.

«Синят» прежде всего дешевые лампочки с интернет-барахолок, но и фирменные модели порой огорчают (виноват старый тип люминофора, а также плохое охлаждение и прочие «нарушения режима»). Так, в одном тесте СДЛ Osram их цветовая температура за 12000 ч поднялась на 2500 К. Сегодня долговечные, стабильные диоды делают Cree и Nichia, но цены на эту продукцию немаленькие.

В следующем материале мы продолжим тему влияния различных источников света на здоровье и поговорим о цветопередаче и уровне пульсаций.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *