Лампа накаливания — принцип работы, виды, характеристики
Лампа накаливания – простой и дешевый источник света с приятным для человеческого глаза цветовым оттенком
Лампа накаливания применяется как источник освещения уже более сотни лет. Это – патриарх среди других ламп, освещающих жилища человека по всему свету. Однако, ей еще далеко до выхода в тираж. Несмотря на то, что идут постоянные разговоры о неактуальности применения лампы накаливания в современном мире. Так что же из себя представляет эта лампа?
Лампа накаливания – принцип работы
Лампа накаливания состоит их соединенных между собой стеклянной колбы и цоколя. Цоколь предназначен для контакта с питающей электросетью. В стеклянной колбе расположена спираль – нить накала. Во время работы нить накала, при прохождения через нее электрического тока, разогревается до большой температуры. Как известно, она может достигать 3000°С. Поэтому спираль изготавливается из тугоплавкого металла, обычно вольфрама. Температура плавления вольфрама 3422°С, что вполне достаточно для работы лампы накаливания.
Нить накала внутри колбы обычно закреплена на двух никелевых контактах – электродах. А также дополнительно поддерживается молибденовыми крючками – держателями, расположенными на стеклянном стержне.
Электроды, контактирующие с нитью накала, соединяются с двумя контактами на цоколе лампы. Расположение и вид контактов на цоколе лампы зависит от вида применяемого цоколя.
Иногда на одном из электродов делается специальное утоньшение, заключенное в стеклянную полость. Это утоньшение служит предохранителем. В аварийной ситуации он перегорает первым, что позволяет избежать взрыва стеклянной колбы лампы.
Лампа накаливания – устройство (Нажмите для увеличения)
Из самой же колбы через стеклянную трубочку – штенгель откачивается воздух. После этого конец штенгеля запаивается. Вакуум нужен для сохранности осветительной спирали. Поскольку воздух содержит кислород, поддерживающий горение. В результате вольфрамовая спираль при работе в воздухе сгорела бы, не прослужив и секунды. В итоге создание вакуума внутри колбы значительно продлевает срок службы лампы накаливания.
Но это справедливо лишь для маломощных ламп до 25ватт. Для более мощных ламп в колбу, дополнительно с откачкой воздуха, закачивается какой-нибудь инертный газ. К примеру – это может быть ксенон, аргон или криптон. В основном применяется более дешевый, чем ксенон, криптон. Или еще более дешевый аргон, для большей экономии смешанный с азотом. Инертный газ позволяет нити накаливания прослужить более длительное время. Это общее устройство ламп накаливания лишь немного различается для разных типов ламп.
Лампа накаливания – виды и типы
Существует большое количества различных типов и видов ламп накаливания. Безусловно, это и лампы общего назначения, железнодорожные, автомобильные, а также судовые, для киноаппаратов, рудничные, маячные. И еще множество разных разновидностей. В зависимости от назначения у ламп накаливания может быть различного вида форма колба – конусная, цилиндрическая, шарообразная. Все зависит от того в каком типе светильников будет применяться лампа. Есть множество декоративных ламп накаливания, фантастичность форм которых зависит только от пределов фантазии дизайнера. Колба лампы накаливания может быть не только прозрачной, но и матовой, зеркальной или цветной.
Нить накала лампы накаливания
Различаются лампы накаливания и нитью накала. в том числе и толщиной нити. Нить накала может быть простой спиралью. А также спиралью, свернутой в спираль вторично. То есть так называемые биспиральные лампы. Двойная спираль позволяет повысить мощность и яркость лампы без увеличения толщины нити накала. Что очень полезно. Поскольку увеличение толщины нити привело бы к её перегреву. А в результате более быстрому перегоранию нити. Биспиральные лампы также дают увеличение яркости без увеличения длины спирали. Удлинение, бесспорно, привело бы к усложнению и удорожания конструкции лампы. С другой стороны, иногда нить в колбе лампы может представлять собой ажурно-скрученную, паутинообразную конструкцию. Такое устройство спирали может использоваться в декоративных целях. Например в потолочных светильниках. Существуют особо мощные лампы накаливания в несколько тысяч ватт, применяемые в прожекторах. Такие лампы имеют тройную спираль.
Цоколи ламп накаливания
Лампы накаливания могут иметь также различные виды цоколя. К примеру, резьбовые цоколи. Они обозначаются латинской буквой E (цоколь Эдисона). А также цоколи байонетного типа. Обозначаются латинской буквой B. Цоколи байонетного типа (штифтовой цоколь) имеют два боковых штырька – контакта. А также один или два дополнительных нижних контакта. Как правило применяются в автомобилях. Лампы накаливания, применяющихся для освещения дома, обычно имеют резьбовой цоколь E. Чаще всего цоколь E типа бывает двух размеров. Это Е14 (миньон) и обычный средний цоколь – Е27. Число указывает внешний диаметр цоколя в миллиметрах. Большой цоколь E40 применяется обычно в производстве, а в быту, пожалуй, только в прожекторах.
Характеристики ламп накаливания
Характеристики ламп накаливания находятся в зависимости от толщины и вида нити накала. А также колбы лампы, применяемого цоколя, отсутствия или наличия в колбе инертного газа. Чем больше толщина нити накала, тем более мощной, а соответственно и яркой будет лампа накаливания. Чем мощнее будет лампа, тем больше будет размер ее колбы. Потому при превышении границы мощности в 25 ватт понадобится добавление в колбу лампы инертного газа.
От того, какой инертный газ будет добавлен в колбу, зависит яркость лампы накаливания. Наименьшую яркость имеют лампы накаливания наполненные аргон-азотной смесью. Закачка в колбу лампы криптона немного повышает яркость свечения лампы. А добавление ксенона повышает яркость, по сравнению с аргоновыми лампами в два раза.
Лампа накаливания и напряжение
Устройство ламп накаливания для применения в сетях переменного и постоянного тока не отличается. То есть лампы для переменного тока будут работать и при постоянном токе. И соответственно наоборот. Все различие между ними в величине напряжения на которое они рассчитываются. Лампы накаливания изготавливают для работы при определенном напряжении. Если лампу включить в сеть с напряжением выше номинала данной лампы, то лампа естественно перегорит. Насколько быстро это произойдет, зависит от того, на сколько больше напряжение сети номинала лампы. Если напряжение больше номинала хотя бы раза в два, то включенная лампа разлетится на осколки. При включении лампы в сеть с пониженным напряжением, она будет светить слабее, чем ей предназначено. Или же не будет работать вовсе, если напряжение слишком мало.
Обычно лампы накаливания на напряжение ниже 220 вольт применяют в сетях постоянного тока. За некоторым исключением для специальных ламп, применяемым, например, на судах или на железной дороге.
Лампы накаливания с обозначением 220 вольт, стоит применять только в сети со стабильным напряжением. Например, при использовании хорошего стабилизатора напряжения. Если такие лампы использовать в сети с постоянными перепадами напряжения, лампы быстро выйдут из строя. При перепадах напряжения в сети применяют лампы накаливания с обозначением 230-240 вольт. По существу будет еще лучше маркировка 235-245 вольт. Такие лампы в условиях нестабильного напряжения прослужат значительно дольше. Но с другой стороны, при наличии стабилизатора, они будут светить слабее, чем рассчитаны.
Обычно цветовая температура ламп накаливания — 2200-3000 Кельвин, но это справедливо лишь для ламп с прозрачной колбой. При применении цветной колбы изменяется и цветовая температура.
Стандартный срок службы лампы накаливания – 1000 часов. Срок этот можно увеличить. При условии что будет устанавливаться блок защиты галогенных ламп и ламп накаливания. А также можно применить диммер для плавного включения лампы.
Лампа накаливания – достоинства и недостатки
Недостатки лампы накаливания
- Недолгий срок службы
- Низкий КПД (Коэффициент Полезного Действия) около 4%
- Пожароопасность при установке светильника на сгораемом основании. А также требуют установки в светильники из термостойких материалов
Достоинства лампы накаливания
- Малая цена
- Мгновенное включение и переключение (Быстрый пуск)
- Работа и от постоянного и от переменного тока
- Применение в широком диапазоне напряжений
- Отсутствие мерцания при применении в сети переменного тока
- Отсутствует гудение при работе в сети переменного тока
- Не требует пускорегулирующей аппаратуры
- Высокий индекс цветопередачи Ra 100 (Цвета окружающих предметов воспринимаются также как при солнечном свете)
- Стабильная работа как при больших морозах, так и при сильной жаре
- Возможность регулирования яркости и плавного запуска с помощью диммера
- Не содержит токсичных веществ и не требует специальной утилизации
При всех своих недостатках лампа накаливания имеет массу преимуществ и может занимать свою нишу в наших домах, совместно с другими видами ламп. Ажиотаж же вокруг чрезвычайной неэкономичности лампы накаливания и необходимостью ее полной замены на светодиоды очень сильно раздут и преувеличен. Большинство приборов и аппаратов, которыми мы пользуемся имеют низкий КПД. На самом деле, не один аппарат не имеет КПД 100%. Низкая же экономичность ламп накаливания и непродолжительность их службы с лихвой искупаются их малой ценой.
Похожие записи
Светодиодные лампы для дома
Виды ламп для освещения помещений
Цветовая температура ламп освещения
Вы можете прочитать записи на похожие темы в рубрике – Освещение
Ваш Удобный дом
Также рекомендуем прочитать
Лампа накаливания Википедия
Лампа накаливания общего назначения (230 В, 60 Вт, 720 лм, цоколь E27, габаритная высота ок. 110 мм)Ла́мпа нака́ливания — искусственный источник света, в котором свет испускает тело накала, нагреваемое электрическим током до высокой температуры. В качестве тела накала чаще всего используется спираль из тугоплавкого металла (чаще всего — вольфрама) либо угольная нить. Чтобы исключить окисление тела накала при контакте с воздухом, его помещают в вакуумированную колбу, либо колбу, заполненную инертными газами или парами.
Принцип действия[ | ]
В лампе накаливания используется эффект нагревания тела накаливания при протекании через него электрического тока (тепловое действие тока). Температура тела накаливания повышается после замыкания электрической цепи. Все тела, температура которых превышает температуру абсолютного нуля, излучают электромагнитное тепловое излучение в соответствии с законом Планка. Спектральная плотность мощности излучения (Функция Планка) имеет максимум, длина волны которого на шкале длин волн зависит от температуры. Положение максимума в спектре излучения сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура излучающего тела превышала 570 °C (температура начала красного свече
Лампа — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 сентября 2018; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 сентября 2018; проверки требуют 3 правки. Перейти к навигации Перейти к поиску Лампа:- Лампа (Чили) исп. Lampa) — город в Чили, административный центр одноимённой коммуны.
- Паяльная лампа — нагревательный прибор
- Электронная лампа, радиолампа — вакуумный электронный прибор, работающий за счёт изменения потока электронов, движущихся в вакууме или разрежённом газе между электродами.
- Синяя лампа (рефлектор Минина) — фокусирующий рефлектор с излучателем — лампой накаливания с колбой синего цвета. Терапевтическое средство для прогревания больных участков человеческого тела.
- Осветительный прибор
- Электрический источник света
- Лампа накаливания — электрический источник света, излучающий в широком диапазоне (в том числе видимый свет) за счёт нагрева до высокой температуры тела (нити) накала из сплавов на основе вольфрама при протекании через него электрического тока.
- Лампочка Ильича — разговорное название бытовой лампы накаливания, использовавшейся без плафона.
- Галогенная лампа — разновидность лампы накаливания, в баллон которой добавлен буферный газ: пары галогенов (брома или йода)
- Светодиодная лампа — осветительный прибор с использованием светодиода в качестве излучателя.
- Ксеноновая лампа-вспышка.
- Газоразрядная лампа — источник света, излучающий энергию в видимом диапазоне за счет электрического разряда в газах
Лампы накаливания — история создания
Сегодня сложно встретить человека, который бы ничего не знал о лампах накаливания, даже несмотря на прогресс и на изобилие других видов осветительных приборов. «Лампы Ильича» — так в народе прозвали самые обыкновенные и популярные осветительные приборы, которые по сей день пользуются большим спросом у народа. Безусловно, современный рынок светотехники предлагает огромный ассортимент альтернативных ламп, но даже новые устройства не могут в некоторых параметрах превзойти лампы накаливания.
Процесс возникновения и распространения лампочек накаливания был довольно долгим и запутанным, а вклад в изобретение вложил не один ученый-изобретатель. Принятая с течением времени история появления повествует о том, что возникновение «лампочек Ильича» произошло в 1872 году благодаря русскому ученому Александру Николаевичу Лодыгину. Именно он впервые провел ток сквозь стержень из угля, который размещался в вакууме колбы, сделанной из стекла. При этом происходила большая светоотдача из-за возрастания силы тока, превышение температур плавления с последующим угасанием лампочки. На основе данного опыта были определены подходящие для функционирования лампочек режимы, а 1873 году они впервые использовались на санкт-петербургских улицах.
Именно в этот же период времени к разработке лампочек приступил Томас Эдисон, который в дальнейшем получил на них патент. Именно после этого его стали называть «отцом» самых первых электрических ламп. Но нельзя точно утверждать, кто совершил данное открытие первым, поскольку прибор был изобретен одновременно в разных странах. Зато Александру Николаевичу Лодыгину с большой вероятностью принадлежит идея замены угольной нити на вольфрамовую, которая обладает высокой температурой плавления (3410 ⁰С). В этот же период времени Томас Эдисон внес свой вклад, создав резьбовую систему «патрон-цоколь», которая дожила до наших дней практические никак не изменившись. Именно буква E в маркировке современных цоколей говорит о том, что их изобретателем был американский ученый Эдисон (Е — Edison Screw). Самыми популярными типами цоколя в России и Европе являются Е27 и Е14, а в Америке используются другие, поскольку напряжение сетей различается. Спустя 20 лет еще один американский ученый воплотил в жизнь идею замены нити спиралью, благодаря чему уменьшились габариты лампочки, улучшилась работа и увеличилась световая отдача.
Лампа накаливания только на первых порах для непрофессионального человека может показаться простой и незамысловатой, но это не так. Данный осветительный прибор – это совокупность различных научных достижений в области светотехники. На сегодняшний день спираль накаливания может быть не только вольфрамовой. Сейчас материалом изготовления также служит осмий, а также осмиевые соединения. Кроме того, колба сегодня перестает быть вакуумной и заполняется различными инертными газами. Именно данное нововведение помогло избежать сильное атмосферное давление на лампу, значительно увеличив продолжительность ее работы. Ведь ток, проходя через спираль, провоцирует ее сильный нагрев (до 2900 ⁰С) и активное испарение вольфрама, с его последующим оседанием на стекле. Следовательно, колба со временем перестает быть прозрачной, уменьшается ее светоотдача, понижается срок службы нити.
Лампы накаливания отличаются слишком ярким светом желтого цвета, что вызывает дискомфорт. Именно поэтому производители выпускают не только с прозрачные лампочки, но и матовые. Такое стекло рассеивает свет, делая его мягким при небольшой потере интенсивности.
Несмотря на большую популярность данной лампочки, правильный ее выбор пока еще могут сделать не все. Нередко бывает, что после покупки прибор отработал пару суток и перегорел. Но бывает и такое, что лампочка может светить в течение нескольких лет. Все это зависит от того, насколько правильно вы выбираете осветительный прибор. При покупке необходимо обращать внимание на следующие аспекты:
- стекло не должно иметь никаких микровключений, поскольку именно их отсутствие обеспечивает надежность колбы. Качество материала легко проверяется несильными постукиваниями пальцем по колбе. Издаваемый звук должен отличаться приглушенностью;
- металлический цоколь должен быть без любых повреждений. Нижний контакт может быть как широким (до 7 мм), так и узким (около 5 мм). Первый вариант наиболее приемлемый, поскольку обеспечивается наиболее плотный контакт. Но современные лампочки чаще всего производятся с наличием узкого контакта;
- в зонах приклеивания не должны образовываться отверстия;
- соединение внешнего токопровода и цоколя должно осуществлять обыкновенной пайкой. Также возможно применение точеной сварки;
- в пайке главное – маленькие размеры и аккуратность, а также надежность крепления;
- исключено провисание спирали (наличие провисания означает неоднократное использование лампы).
Кроме вышеперечисленных аспектов, необходимо уделить большое внимание обжиму спирали в области ее крепления к электродам. Если обжим был недостаточным, то срок службы прибора резко снижается.
Обязательно следуйте вышеперечисленным рекомендациям при выборе лампы накаливания. Это поможет приобрести качественный прибор, который прослужит Вам долгое время.
Торговая сеть «Планета Электрика» рада предложить лампы накаливания, а также их прямую замену — светодиодные лампы. Торговые залы представлены во всех крупных городах Сибирского Федерального округа, например в Новосибирске, Барнауле, Омске. Список не весь — полный на этой странице.
Лампа накаливания Википедия
В лампе накаливания используется эффект нагревания тела накаливания при протекании через него электрического тока (тепловое действие тока). Температура тела накаливания повышается после замыкания электрической цепи. Все тела, температура которых превышает температуру абсолютного нуля, излучают электромагнитное тепловое излучение в соответствии с законом Планка. Спектральная плотность мощности излучения (Функция Планка) имеет максимум, длина волны которого на шкале длин волн зависит от температуры. Положение максимума в спектре излучения сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура излучающего тела превышала 570 °C (температура начала красного свечения, видимого человеческим глазом в темноте). Для зрения человека оптимальный, физиологически самый удобный спектральный состав видимого света отвечает излучению абсолютно чёрного тела с температурой поверхности фотосферы Солнца 5770 K. Однако неизвестны твердые вещества, способные без разрушения выдержать температуру фотосферы Солнца, поэтому рабочие температуры нитей ламп накаливания лежат в пределах 2000—2800 °C. В телах накаливания современных ламп накаливания применяется тугоплавкий и относительно недорогой вольфрам (температура плавления 3410 °C), рений (температура плавления примерно та же, но выше прочность при пороговых температурах) и очень редко осмий (температура плавления 3045 °C). Поэтому спектр ламп накаливания смещён в красную часть спектра. Только малая доля электромагнитного излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Чем меньше температура тела накаливания, тем меньшая доля энергии, подводимой к нагреваемой проволоке, преобразуется в полезное видимое излучение, и тем более «красным» кажется излучение.
Для оценки физиологического качества светильников используется понятие цветовой температуры. При типичных для ламп накаливания температурах 2200—2900 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (T < 3500 K) свет более комфор
кто придумал и создал первым в мире электрическую лампочку накаливания, история создания Лодыгиным и Эдисоном
Время на чтение: 3 минуты
АА
Споры о том, кто был истинным изобретателем лампы накаливания, ведутся по сей день. В основном, фигурируют два имени – Томас Эдисон и Александр Лодыгин. На самом же деле, великое открытие состоялось благодаря упорной работе многих ученых.
Кто первым в мире и когда придумал и изобрел?
С древних времен люди искали способы освещения в ночное время. Например, в Древнем Египте и Средиземноморье использовались аналоги керосиновой лампы. Для этого в особые глиняные сосуды вставлялся фитиль из хлопчатобумажной ткани и наливалось оливковое масло.
Жители побережья Каспийского моря использовали похожее устройство, только вместо масла в сосуд наливали нефть. В Средние века глиняные светильники сменили свечи из пчелиного воска и сала.
Но во все времена ученые и изобретатели искали возможность создать долговечный и безопасный осветительный прибор.
После того как человечество узнало об электричестве, исследования вышли на качественно новый уровень.
За изобретение первых электрических ламп, подходящих для коммерческого использования, мы должны благодарить трех ученых из разных стран. Независимо друг от друга они проводили свои эксперименты и в итоге добились результата, перевернувшего мир.
ВАЖНО! В 70-е годы XIX века было получено три патента на новейшие устройства – угольные лампы накаливания в вакуумных колбах.
В 1874 г. выдающийся ученый Александр Николаевич Лодыгин запатентовал свою лампу накаливания в России.
В 1878 г. Джозеф Уилсон Суон подал заявку на британский патент.
В 1879 г. американский патент получил изобретатель Томас Эдисон.
Именно Эдисон создал первую промышленную компанию по производству ламп накаливания. Большой заслугой стало то, что он сумел добиться длительной продолжительности работы – более 1200 часов – благодаря использованию карбонизированного бамбукового волокна.
В начале 80-х годов XIX века Эдисон и Суон организовали в Британии совместную компанию. Она так и называлась «Эдисон и Суон». В то время она стала самым крупным производителем электрических ламп.
В 90-е годы Александр Лодыгин переехал в Америку, где и предложил использовать вольфрамовую или молибденовую спираль. Это был очередной технологический прорыв. Лодыгин продал свой патент компании General Electric, которая начала производить электрические лампы с вольфрамовой нитью.
А уже в 1920 году один из работников компании Уильям Дэвид Кулидж рассказал миру, как можно производить вольфрамовую нить в промышленных масштабах. В том же году другой ученый из General Electric по имени Ирвинг Ленгмюр предложил наполнять колбу лампочки инертным газом.
Именно это значительно повысило период работы лампы накаливания, а также увеличило светоотдачу.
Этими устройствами человечество пользуется по сей день.
История создания электрической лампочки
Конечно, история создания лампы неотделима от развития такой науки, как электротехника. Она берет начало с открытия в XVIII веке электрического тока. Это открытие поспособствовало тому, что выдающиеся ученые со всего мира занялись изучением и развитием электротехники, которая к тому времени выделилась в самостоятельную науку.
- XIX век стал веком глобальных открытий. В 1800 году был изобретен гальванический элемент – химический источник тока. Его еще называют вольтовым столбом в честь итальянского ученого Алессандро Вольта.
- В следующем году в Санкт-Петербурге руководство Петербургской медико-химической Академии приобрело электрическую батарею. Это мощное устройство было куплено в кабинет профессора Василия Петрова. Состояла батарея из 420 пар гальванических элементов. Целый год профессор Петров проводил с ней эксперименты, пока в 1908 году не открыл знаменитую электрическую дугу. Она представляет собой разряд, возникающий между угольными стержнями-электродами, разведенными на определенное расстояние. Тогда же и было предложено использовать электрическую дугу как источник света.
- Первым шагом к созданию современных ламп накаливания стало изобретение в 1809 году первой лампы с платиновой спиралью в основе. Сделал это англичанин Деларю.
- Через несколько десятилетий, в 1854 году немецкий ученый Генрих Гебель создал похожее устройство. Главным отличием было то, что он использовал обугленную бамбуковую нить, помещенную в вакуумный сосуд. То есть, этот вариант был уже гораздо ближе к известной всем нам электрической лампе. Гебель продолжал совершенствовать свое изобретение еще пять лет, создав устройство, которое называют первой практической лампой. К сожалению, получить патент он не мог, т. к. был эмигрантом без денег и связей. Тем не менее, он использовал свое изобретение для освещения принадлежавшего ему магазина часов.
- Что касается массового электрического освещения, то здесь несомненный вклад внес наш соотечественник, выдающийся ученый Павел Николаевич Яблочков. Свои эксперименты он начал в России, а затем продолжил в Париже после эмиграции. Именно он создал простую, недорогую и долговечную «электрическую свечу». В 1876 году ученый представил свое изобретение на выставке в Лондоне. В том же году лампы, созданные Яблочковым стали появляться сначала на самых посещаемых улицах Парижа, а затем распространились на весь мир.
НА ЗАМЕТКУ! Отличительной чертой «свечи Яблочкова» было то, что для нее не требовалось вакуума. Нить накала, изготовленная из каолина, не перегорала и не теряла своих свойств на открытом воздухе.
И, конечно, говоря об истории электротехники, нельзя не вспомнить ученых, перевернувших мир – Александре Лодыгине и Томасе Эдисоне. Именно они, проводя эксперименты независимо друг от друга, в 70-е годы XIX века создали электрическую лампу.
Александр Лодыгин – изобретатель из России
В 1872 году в Санкт-Петербурге Александр Николаевич Лодыгин приступил к опытам по электрическому освещению.Его первые лампы представляли собой тонкую угольную палочку, зажатую между объемными стрежнями из меди. Все это находилось в закрытом стеклянном шаре.
Это было еще несовершенное устройство, тем не менее, они начали активно использоваться для освещения зданий и улиц Петербурга.
В 1875 году в товариществе с Коном была выпущена усовершенствованная электрическая лампа. В ней угольки заменялись автоматически, кроме того, они располагались в вакууме. Эта разработка принадлежит электротехнику Василию Федоровичу Дитрихсону.
В 1876 году другой исследователь, Булыгин также внес коррективы. В его разработке уголек выдвигался по мере сгорания.
В конце 70-х годов лампа накаливания, созданная Лодыгиным и запатентованная в России, Франции, Великобритании, Австрии и Бельгии, попала, наконец, и в США. Лейтенант Хотинский отправился к побережью Америки, чтобы принять корабли, построенные для Российского флота. Именно Хотинский посетил лабораторию и показал «лампу Лодыгина» и «свечу Яблочкова» американскому исследователю Томасу Эдисону.
Доподлинно неизвестно, как это повлияло на ход мыслей Эдисона, который и сам в то время работал над созданием искусственного освещения. Как бы то ни было, именно Эдисон довел конструкцию лампы накаливания до качественно нового уровня, а также популяризовал ее, организовав массовое производство. Это помогло значительно снизить стоимость, что позволяло покупать лампу даже беднякам.
Александр Лодыгин также не останавливался в своем рвении усовершенствовать лампу накаливания. После переезда в США, в 1890 году, Лодыгин получил еще один патент – на лампу с металлической нитью из тугоплавких металлов — осьмия, иридия, родия, молибдена и вольфрама. Это был настоящий прорыв в области электротехники. Изобретение имело оглушительный успех, и в 1906 году патерн на него был куплен компанией General Electric. К слову, компания эта принадлежала Томасу Эдисону.
Создание лампочки Эдисоном
Во всем мире принято считать, что электрическую лампочку изобрел ученый Томас Альва Эдисон.На протяжении многих лет Эдисон ставил эксперименты в области электротехники. В течение почти двух лет он искал идеальный вариант для нити накаливания.
Исследователь провел эксперименты более чем с шестью тысячами углеродсодержащих материалов. Методично перебирая и исследуя разнообразные вещества, Эдисон пришел к выводу, что лучшим вариантом является японский бамбук, из которого создан футляр для веера.
В 1879 году появилась первая заметка в газете, гласящая об изобретении Томасом Эдисоном лампы накаливания с угольным стержнем. Названа она была «Эдисоновский свет». Такая лампа могла непрерывно гореть в течение сорока часов. В том же году Эдисон запатентовал свое изобретение.
Нельзя сказать, что Эдисон внес значительные изменения в лампу накаливания, созданную Лодыгиным.
Как выглядел вариант лампы Эдисона?
Это также была стеклянная колба, из которой был полностью выкачан воздух. Горел в ней так же угольный тонкий стержень. Но именно Эдисон создал условия для максимально комфортной работы ламп накаливания. Он изобрел такие вещи, как винтовой цоколь, патрон, счетчики энергии, а также выключатели и предохранители.
Более того, организовав собственное производство, он поставил на поток изготовление электрических лампочек и механизмов электрический системы. Несмотря на то что лампа накаливания была создана задолго до получения патента американским ученым, именно благодаря Эдисону электрическое освещение получило столь широкое распространение.
Патент Эдисона на лампу накаливания вскоре (еще до окончания срока действия) был призван недействительным.
Говоря о великом изобретении – лампе накаливания – нельзя называть только одно имя. Без сомнения, у нее было несколько выдающихся изобретателей, каждый из которых внес неоценимый вклад в развитие электротехники.
Рейтинг автора
Автор статьи
Доцент кафедры энергетики. Автор статей по осветительным приборам.
Написано статей
ПредыдущаяЛампы накаливанияУстройство плавного включения — достоинства и схема работы
СледующаяЛампы накаливанияЯркая, но короткая жизнь ламп накаливания или почему обрывается нить
Галогенная лампа — Википедия
Галогенная лампа Галогенная лампа накаливания с цоколем Е27 и двойной колбойГалоге́нная ла́мпа — лампа накаливания, в баллон которой добавлен буферный газ: пары галогенов (брома или иода). Буферный газ повышает срок службы лампы до 2000-4000 часов и позволяет повысить температуру спирали. При этом рабочая температура спирали составляет примерно 3000 К. Эффективная светоотдача большинства массово производимых галогенных ламп на 2012 год составляет от 15 до 22 лм/Вт.
Галогенный цикл, лежащий в основе принципа действия ламп данного типа, был открыт в 1915 году Ирвингом Ленгмюром во время исследования адсорбции газов на твёрдых поверхностях. В своих исследованиях Лэнгмюр использовал источник света с двумя вольфрамовыми спиралями, находящимися в атмосфере, содержащей пары галогенов. Он обратил внимание, что если в такой конструкции включать только одну спираль, то вторая, холодная, постепенно истончается при работе прибора вплоть до полного исчезновения, а раскалённая, наоборот, становится толще[1].
Коммерческие галогенные лампы, основанные на данном регенеративном действии, появились тем не менее, достаточно поздно, в 1959 году, что позволило повысить КПД, который для обычных ламп накаливания в то время составлял немногим более 2 %[1].
В лампе накаливания электрический ток, проходя через тело накала (обычно — вольфрамовую спираль), нагревает его до высокой температуры. Нагреваясь, тело накала начинает светиться. Из-за высокой температуры атомы вольфрама испаряются с поверхности тела накала (вольфрамовой спирали) и осаждаются (конденсируются) на менее горячих поверхностях колбы, ограничивая срок службы лампы.
В галогенной лампе окружающий тело накала иод или бром (совместно с остаточным кислородом) вступает в химическое соединение с испарившимися атомами вольфрама, препятствуя осаждению последних на колбе. Этот процесс является обратимым — при высоких температурах вблизи тела накала соединения вольфрама распадаются на составляющие вещества. Атомы вольфрама высвобождаются таким образом либо на самой спирали, либо вблизи неё. В результате атомы вольфрама возвращаются на тело накала, что позволяет повысить рабочую температуру спирали (для получения более яркого света), продлить срок службы лампы, а также уменьшить габариты по сравнению с обычными лампами накаливания той же мощности.
Галогенные лампы одинаково хорошо работают на переменном и постоянном токе. При применении плавного включения срок службы может быть повышен до 8000-12 000 часов.
Достоинством галогенных ламп является минимально возможное мерцание при питании переменным током промышленной частоты и более высокая эффективность преобразования энергии в видимый свет в сравнении с другими лампами накаливания. Недостатком этой системы является то, что распад галогенидов вольфрама при обратном переносе на спираль осуществляется неравномерно и зависит от температуры участков спирали. В результате, на ней образуются со временем утолщения и утоньшения, приводящие к разрушению, хотя и, конечно, гораздо медленнее, чем у простых ламп накаливания при той же температуре. При использовании галогенных ламп в сети переменного тока совместно с диммером может возникать низкочастотный акустический шум, но его нельзя отнести к недостаткам самих ламп. Утилизация их не требует особой процедуры, поскольку эти источники света не содержат веществ и материалов, опасных для окружающей среды и живых организмов (не путать с металлогалогенными лампами!).
Компактность[править | править код]
Добавление галогенов предотвращает осаждение вольфрама на стекле, при условии, что температура стекла выше 250 градусов Цельсия. По причине отсутствия почернения колбы галогенные лампы можно изготавливать очень компактными. Малый объём колбы позволяет, с одной стороны, использовать большее рабочее давление (что опять же ведёт к уменьшению скорости испарения нити) и, с другой стороны, без существенного увеличения стоимости заполнять колбу тяжёлыми инертными газами, что ведёт к уменьшению потерь энергии за счёт теплопроводности. Всё это увеличивает срок службы галогенных ламп и повышает их эффективность (КПД).
Цветопередача[править | править код]
Галогенные лампы обладают хорошей цветопередачей (Ra 99-100), поскольку их непрерывный спектр близок к спектру абсолютно чёрного тела с температурой 2800-3000 K. Их свет подчёркивает тёплые тона, но в меньшей степени, чем свет обычных ламп накаливания.
Хотя галогенные лампы не достигают эффективности люминесцентных и тем более светодиодных ламп, их преимущество состоит в том, что они могут быть без каких-либо доработок использованы для замены обычных ламп накаливания, например, с диммерами и с выключателями с подсветкой («с огоньком»).
Галогенные лампы также активно используются в автомобильных фарах благодаря их повышенной светоотдаче, долговечности, устойчивости к колебаниям напряжения, малым размерам колбы. Они обозначаются латинской буквой «H» (halogen). После буквы идёт цифровое обозначение цоколя, например, h2, h5, h21, h25, h37. Также встречаются обозначения HB1, HB3, HB4.
Мощная осветительная галогенная лампа (~230 В, 150 Вт, L=118 мм)Мощные галогенные лампы используются в прожекторах, рампах, а также для освещения при фото-, кино- и видеосъёмке, в кинопроекционной аппаратуре, в офсетной и флексографической печати и шелкографии, для экспонирования и сушки материалов, чувствительных к ультрафиолетовому излучению.
Галогенные лампы с небольшой температурой тела накала являются источниками инфракрасного излучения и используются в качестве нагревательных элементов, к примеру в электроплитах[2], микроволновках (гриль), паяльниках (спайка ИК-излучением термопластов).
Лампа типоразмера MR16Галогенные лампы могут быть изготовлены как в компактных типоразмерах MR16, MR11 с цоколем GU 5.3, G4, GY 6.35 (на 12 вольт) или G9, GU10 (на 220 или 110 вольт), так и с цоколем Эдисона Е14 или Е27 (на 110 или 220 вольт), линейные с цоколем R7 различной длины (L=78 мм, L=118 мм и др.). Колба ламп может быть прозрачной, матированной, а также иметь рефлектор и/или рассеиватель.
Лампы типоразмеров MR не предназначены для установки в транспортных средствах (автомобилях, мотоциклах, велосипедах), при подключении через трансформатор к бытовой сети могут использоваться для стационарного освещения («точечное освещение», компактные светильники).
Лампы типоразмера GU используются для стационарного освещения и в отличие от ламп MR подключаются к бытовой сети без трансформатора. Определить тип лампы (MR или GU), установленной в светильнике или световой «точке», не вынимая лампу, можно, проследив характер изменения яркости лампы при включении и выключении. Лампа GU загорается и гаснет практически мгновенно, а лампа MR — плавнее, обладая определённой инерцией (порядка 1/2 секунды).
Лампы с цоколем Е14 (миньон) или Е27 (стандарт) предназначены для замещения обычных ламп накаливания. Они снабжены дополнительной внешней колбой (по форме и размерам напоминающей колбу обычных ламп накаливания), защищающей внутреннюю кварцевую колбу от загрязнений, случайных прикосновений и контакта с легкоплавкими материалами.
Из-за высокой рабочей температуры колбы изготавливаются из кварцевого стекла. Галогенные лампы очень чувствительны к жировым загрязнениям, поэтому их нельзя касаться даже чисто вымытыми руками. При быстром нагреве лампы после её включения эти загрязнения начинают испаряться, охлаждая ту часть колбы, на которой они находятся. Из-за неравномерности нагрева стекла в нём возникают сильные внутренние напряжения, которые могут разрушить колбу — лампа буквально взрывается с большим количеством осколков.
При установке ламп следует держать колбу лампы через чистую салфетку (или в чистых перчатках), а при случайном касании тщательно протереть колбу тканью, не оставляющей волокон (например, микрофиброй) с обезжиривателем. Обычный этиловый спирт для этих целей не очень подходит, т. к. слабо растворяет жиры и оставляет белёсые разводы.
Поскольку колба галогенной лампы разогревается до пожароопасных температур, то её следует монтировать так, чтобы в дальнейшем полностью исключить всякую возможность её соприкосновения с любыми находящимися поблизости предметами и материалами, и тем более человеческим телом.
При использовании галогенной лампы с диммером необходимо время от времени включать лампу на полную мощность примерно на 10 минут, чтобы испарить накопившийся на внутренней части колбы осадок иодида вольфрама[3].
Новым направлением развития ламп является так называемые IRC-галогенные лампы (сокращение «IRC» обозначает «инфракрасное покрытие»). На колбы таких ламп наносится специальное покрытие, которое пропускает видимый свет, но задерживает инфракрасное (тепловое) излучение и отражает его назад, к спирали. За счёт этого уменьшаются потери тепла и, как следствие, увеличивается эффективность (КПД) лампы. По данным фирмы OSRAM потребление энергии снижается на 45 %, а срок службы удваивается (по сравнению с обычной галогенной лампой). Такая галогенная лампа мощностью 65 Вт даёт световой поток 1700 лм, то есть имеет световую отдачу 26 лм/Вт[4]. Это примерно вдвое меньше световой отдачи компактной люминесцентной лампы мощностью 30 Вт (1900 лм), требующейся для создания аналогичного светового потока, и вдвое больше световой отдачи простой лампы накаливания.