Электромагнитные контакторы
Контактор представляет собой двухпозиционный электрический аппарат, предназначенный для частых коммутаций силовых электрических цепей с током, не превышающим тока перегрузки. Замыкание (размыкание) контактов контактора осуществляется электромагнитным приводом.
Различают контакторы постоянного и переменного тока.
Контакторы постоянного токапредназначены для коммутации силовых электрических цепей постоянного тока и приводятся в действие электромагнитом постоянного тока.
Контакторы переменного токапредназначены для коммутации силовых электрических цепей переменного тока и приводятся в действие электромагнитом постоянного или переменного тока.
Основные узлы контактора:
Контактная системаобеспечивает включение и отключение силовой электрической цепи.
Дугогасительная система
Электромагнитный механизмприводит в движение подвижные контакты, осуществляет замыкание главных контактов.
Вспомогательные контакты (блок-контакты) предназначены для коммутации цепей сигнализации и контроля.
Принцип действия контактора:
Включение контакторапроисходит при подаче напряжения на обмотку электромагнитного привода. Якорь электромагнита притягивается к сердечнику. Одновременно с якорем подвижный контакт притягивается к неподвижному и происходит замыкание силовой электрической цепи.
Отключение контактора происходит при снятии напряжения с катушки электромагнита. Подвижные контакты отпадают от неподвижных под действием силы тяжести подвижных частей и усилия отключающей (возвратной) пружины.
Параметры контактора:
номинальный ток главной цепи;
предельная коммутационная способность – максимальный ток, который способен отключить контактор и быть пригодным для дальнейшей эксплуатации;
номинальное напряжение главной цепи – до 660В;
номинальное напряжение цепи управления – 12, 24, 48, 110, 220В;
коммутационная износостойкость – это способность аппарата выдерживать определенное число коммутаций при наличии тока в главной цепи и быть пригодным для дальнейшей эксплуатации. До 2 млн. циклов;
механическая износостойкость– это способность аппарата выдерживать определенное число коммутаций без тока в главной цепи и быть пригодным для дальнейшей эксплуатации. Для контакторов 10÷20 млн. циклов;
частота включения в часдля различных серий контакторов составляет 150, 300, 600, 1200, 3600 циклов в час;
собственное время включения– отрезок времени с момента подачи команды на включение до полного замыкания контактов;
собственное время отключения– отрезок времени с момента подачи команды на отключение до погасания дуги;
напряжение и ток вспомогательных контактов;
число вспомогательных контактов и их вид(размыкающие, замыкающие).
Контакторы постоянного тока
Серии контакторов постоянного тока: КП, КМК, КПМ, КПВ.
Контакторы постоянного тока имеют пять категорий применения: ДС-1; ДС-2; ДС-3; ДС-4; ДС-5.
Контакторы серии КПВ имеют два исполнения:
Замыкание главных контактов при подаче управляющего напряжения.
Размыкание главных контактов при подаче управляющего напряжения.
Контактная системавключает
неподвижный контакт, подвижный контакт,
гибкая связь с выводом. Подвижный
контакт выполнен в виде толстой
пластины поворотного типа и может
перекатываться и скользить по поверхности
неподвижного контакта. При этом в месте
контактирования стираются окисные
пленки, и уменьшается переходное
сопротивление. Вывод соединяется с
подвижным контактом гибкой связью.
Контактное нажатие создается контактной
пружиной. В контакторах постоянного
тока широко распространена мостиковая
система контактов с двумя разрывами на
полюс, что значительно облегчает условия
дугогашения. Под номинальным током
контакторы могут находиться не более
8 часов.По истечении этого времени
необходимо провести несколько операций
включение-отключение для удаления с
поверхности контактов окисной пленки.
При нахождении под током более 8 часов,
номинальный ток необходимо снизить до.
У контакторов, установленных в закрытых
объемах, номинальный ток уменьшается
до
.
Дугогасительная система: дугогасительная
камера, катушка магнитного дутья. При
отключении контактора, магнитное поле
дугогасительной катушки, взаимодействуя
с током дуги, вызывает движение последней
в сторону дугогасительной камеры.
Обеспечивается механическое растяжение,
охлаждение и гашение дуги. При токах
ниже
Электромагнит. В контакторах
постоянного тока наибольшее распространение
получили электромагниты клапанного
типа. Якорь вращается на призме. Такая
конструкция обеспечивает механическую
износостойкость узла вращения до 20 млн.
циклов при частоте включения до 1200
включений в час. Катушка электромагнита
наматывается на изолированную стальную
гильзу для обеспечения механической
прочности и улучшения условий охлаждения.
Сила, развиваемая электромагнитом,
должна проходить выше характеристики
противодействующих пружин при напряжении
на катушке не ниже

Блок-контакты.Все контакторы выпускаются со вспомогательными контактами. Вспомогательные контакты обеспечивают подключение дополнительных схем (сигнализация состояния цепи).
Контакторы переменного тока
Контакторы переменного тока имеют четыре категории применения: АС-1; АС-2; АС-3; АС-4. Контакторы переменного тока выпускаются на токи от 100 до 1000А. Наибольшее распространение получили 3-х полюсные контакторы серии КТ-6000.
Контактная система.
Дугогасительная системасостоит из катушки магнитного дутья, включенной последовательно в токовую цепь, сердечника, полюсных пластин и керамической дугогасительной камеры. Принцип работы дугогасительной системы аналогичен контакторам постоянного тока. В контакторах переменного тока серии КТ-7000 широкое распространение получили дугогасительные решетки, которые не требуют магнитного дутья и более эффективны в качестве дугогасительных устройств. К недостаткам такой системы можно отнести значительный нагрев дугогасительных пластин решетки, что не позволяет применять такие контакторы при большой частоте включения.
Электромагнит.В качестве привода контакторов переменного тока могут использоваться электромагниты переменного тока (серии КТ 6000, КТ 7000) и электромагниты постоянного тока (серии КТП 6000).
С целью устранения вибрации якоря в притянутом положении на полюсах магнитной системы АС расположены короткозамкнутые витки, эффективность работы которых увеличивается при уменьшении зазора между якорем и сердечником, что требует тщательной шлифовки опорных поверхностей магнитопровода. Из-за изменяющейся индуктивности катушки, ток в начальном положении якоря значительно больше тока в конечном положении. В среднем можно считать, что пусковой ток в 10 раз превышает ток в конечном положении якоря. Из данного положения следует недопустимость подачи напряжения на катушку при заторможенном якоре. Допускается питание катушек от сети постоянного тока с обязательной установкой дополнительного резистора. Тяговая характеристика электромагнитов такова, что при уменьшении воздушного зазора сила растет, не так быстро, как у электромагнитов постоянного тока и тяговая характеристика близка к противодействующей. Это обеспечивает высокий коэффициент возврата 0.6÷0.7, что позволяет использовать контакторы переменного тока для защиты электрооборудования от пониженного напряжения.
Электромагниты обеспечивают работу контактора в диапазоне напряжений 0,85-1,05 номинального.
Блок-контакты предназначены для коммутации цепей сигнализации и контроля. В качестве контактного материала вспомогательных контактов применяется серебро или биметалл.
Вакуумные контакторы
Вакуумные контакторы предназначены для коммутации силовых электрических цепей переменного тока и приводятся в действие электромагнитом постоянного тока. Вакуумные контакторы имеют герметичное дугогасительное устройство (вакуумную камеру), с помощью которого отключение коммутируемой цепи происходит в вакуумной среде. Трехфазные вакуумные контакторы выпускаются на номинальные токи 160, 250, 400 и 630А и номинальное напряжение 660 и 1140 В. Контакторы предназначены для работы в режимах АС-3 и АС-4 при числе циклов 600 и 1200 в час с высокой износостойкостью.
Зазор между главными контактами 1,2 мм и увеличивается в процессе работы до 2 мм. Возможна однократная регулировка зазора. Малый ход контактов обеспечивает малую вибрацию и высокую износостойкость до 2·106циклов в режиме АС-3 при напряжении 1140 В.
Вакуумная дугогасительная камера (дугогасительное устройство) обладает высокими изоляционными и дугогасительными свойствами, а также высоким пробивным напряжением между контактами, высокой скоростью восстановления электрической прочности межконтактного промежутка.
Контактор в электротехнике относится к категории коммутационных аппаратов с дистанционным управлением. С его помощью производится коммутация мощных нагрузок, работающих при переменном или постоянном токе. В отличие от электромагнитных реле, контакторы могут выполнять одновременный разрыв сразу нескольких точек электрической цепи. Они включают и отключают силовые электрические цепи при нормальном режиме работы. Чаще всего используются контакторы переменного тока для коммутации машин, механизмов и промышленного оборудования. Использование контакторов переменного токаКонкретная задача контакторов заключается в управлении трехфазными асинхронными электродвигателями с короткозамкнутым ротором. Кроме того, при помощи этих устройств осуществляется коммутация таких приборов и оборудования, как трехфазные трансформаторы, тормозные электромагниты, нагревательные устройства, пусковые резисторы и прочие электротехнические системы. В зависимости от конструкции, контакторы могут выполнять различные функции. Например, приборы серии КТ используются при включении и отключении различных электрических приемников, а устройства серии КМ предназначаются для силовых электрических цепей, являющихся составной частью схемы управления трехфазными двигателями. Выключатели высокого напряжения в своей схеме также используют контакторы переменного тока, чтобы обеспечить оперативное включение привода. Контакторы переменного тока классифицируются по параметрам:
Особенности контактной схемыНаиболее широкое применение получили контакторы, рассчитанные на работу при номинальном токе 100-1000 ампер, с тремя полюсами. Количество главных контактов насчитывает 1-5 единиц. При большом количестве контактов усилие электромагнита увеличивается. Кроме того, увеличивается и момент, необходимый для включения прибора. Контакторы переменного тока оборудованы вспомогательными контактами, которые приводятся в действие с помощью электромагнита так же, как и основные контакты. Между контактами оставляется зазор. Его значение для приборов постоянного тока больше, чем в устройствах переменного тока. Таким образом, гашение дуги происходит в наиболее благоприятных условиях. В результате, масса, мощность и размеры электромагнита удается существенно сократить. Сам электромагнит оборудован подвижным контактом и якорем. Они связаны между собой специальным валом. Подвижные части и контактные пружины отключают аппаратуру. При необходимости может производиться замена неподвижных и подвижных контактов. В контактной пружине имеется функция предварительного сжатия, составляющего 50% от окончательного сжатия. Крепление деталей осуществляется с помощью изоляционной рейки. Для крепления рычага подвижного контакта применяется специальный вал. Система гашения дуги состоит из сердечника, катушки, полюсных пластин и керамической камеры. Последовательное подключение катушки к электрической цепи выполняется совместно с неподвижным и подвижным контактом. При вращении вала в работу включаются вспомогательные контакты. Благодаря такой схеме, коммутация и управление приборами, машинами и оборудованием выполняется с высокой эффективностью. |
3.3. Особенности устройства и работы контактора переменного тока.
Коммутирующее устройство. Контакторы переменного тока выпускаются на токи от 100 до 630 А. Число главных контактов колеблется от одного до пяти. Это отражается на конструкции всего аппарата в целом. Наиболее широко распространены контакторы трехполюсного исполнения. Наличие большого числа контактов приводит к увеличению усилия и соответственно момента, необходимых для включения аппарата.
На
рис.8, а представлен разрез контактора КТ-6000
по магнитной системе, а на
рис.8, б
— по
контактной и дугогасительной системам
одного полюса. Подвижный контакт 1 с пружиной 2 укреплен на изоляционном рычаге 3, связанном с валом контактора. Вследствие
более легкого гашения дуги переменного
тока раствор контактов может быть
взят небольшим. Уменьшение раствора
дает возможность приблизить контакт к
оси вращения. Малое расстояние точки
касания контактов от оси вращения
позволяет уменьшить силу электромагнита,
необходимую для включения контактора,
что дает возможность уменьшить
габариты и потребляемую мощность
магнита.
Подвижный контакт 1 и якорь 4 электромагнита связаны между собой через вал контактора. В отличие от контакторов постоянного тока подвижный контакт в контакторе КТ-6000 не имеет перекатывания. Отключение аппарата происходит под действием контактных пружин и сил веса подвижных частей.
Для удобства эксплуатации подвижный и неподвижный контакты сделаны легко сменными. Контактная пружина 2, так же как и в контакторах постоянного тока, имеет предварительное нажатие, составляющее примерно половину конечного.
Рис.8. Контактор перемен-
ного тока серии КТ-6000.
Магнитная и контактная системы контактора КТ-6000 укреплены на стальной рейке 5, что позволяет использовать их в реечной конструкции комплектных станций управления.
Широкое распространение получила мостиковая контактная система с двумя разрыва-
ми на каждый полюс (рис.9). Такая конструкция распространена в пускателях. Быстрое гашение дуги, отсутствие гибкой связи являются большим преимуществом такой конструкции.
Применяется как прямоходовая система (рис.13), так и с вращением якоря (рис.9). В первом случае якорь движется поступательно. Подвижные контакты связаны с якорем и совершают тот же путь, что и якорь. При передаче усилия контактных пружин к якорю из-за отсутствия рычажной системы нет выигрыша в силе. Электромагнит должен развивать усилие большее, чем сумма сил контактных пружин и веса якоря (в контакторах с вертикальной установкой).
Рис.9. Контактор пускателя серии ПА.
В большинстве выполненных по этой схеме контакторов наблюдается медленное нарастание силы контактного нажатия, из-за чего имеет место длительная вибрация контактов (до 10 мс). В результате происходит сильный износ контактов при включении. Поэтому такая конструкция применяется только при небольших номинальных токах. Более совершенным является контактор, который имеет мостиковую систему и рычажную передачу усилий от контактов к якорю электромагнита. Разрез такого контактора на ток 60 А показан на рис.9. Каждый полюс имеет два неподвижных контакта 1 и один мостиковый контакт 2. Места касания контактов облицованы металлокерамическим материалом (серебро—окись кадмия). Нажатие контактов создается пружиной 3. Контактный мост имеет малую массу и выполнен самоустанавливающимся.
Расстояние от оси вращения до места расположения контактов в 2,5 раза меньше, чем расстояние от оси вращения до точки крепления якоря 4. Такая кинематика позволяет увеличить силу нажатия при данных габаритах электромагнита. Близкое расположение контактов к оси вращения снижает скорость движения контактов. Малая масса моста, низкая скорость в момент касания, большая сила нажатия способствуют резкому снижению вибрации (она длится всего 0,3 мс). При этом коммутационная износостойкость возрастает до 2*106 операций включения и отключения.
В высокочастотных контакторах (500—10000 Гц) существенно возрастают потери в токоведущих частях из-за эффекта близости и поверхностного эффекта. Для эффективного отвода тепла целесообразно использование водяного охлаждения.
Гашение дуги в контакторах переменного тока. На рис.10 изображены экспериментальные зависимости раствора контактов, необходимого для гашения дуги, от величины тока цепи. Коэффициент мощности цепи cos меняется в пределах от 0,2 до 1. Контактор имеет один разрыв на полюс и не снабжен никаким дугогасительным устройством.
Рис.10. Зависимость раствора контактов, обеспечивающего гашение дуги, от величины тока при различных условиях.
В случае активной нагрузки (cos=1) гашение дуги происходит при растворе контактов примерно 0,5*10-3м при любом токе и любом напряжении (до 500В), кривая 3 рис.10.
При индуктивной нагрузке (cos=0,2-0,5) такое же гашение имеет место при напряжении до 220В. Это объясняется тем, что гашение дуги происходит за счет практически мгновенного восстановления электрической прочности 200-220В около катода.
При напряжении источника питания, не превышающем 220В, для гашения дуги необходим всего один разрыв на полюс. Никаких дугогасительных устройств не нужно.
Если в цепи полюса аппарата создавать два разрыва, например, за счет применения мостикового контакта, то дуга надежно гасится за счет околоэлектродной прочности при напряжении сети 380 В. На основании этих данных в настоящее время широко применяются контакторы с двукратным разрывом цепи в одном полюсе. При индуктивной нагрузке (cos =0,2—0,5) и напряжении источника свыше 380В величина восстанавливающегося напряжения становится больше околокатодной прочности. Кривые 1 и 2 рис.10 аналогичны кривым рис.4, полученным для постоянного тока. В области до 40—50 А гашение происходит за счет механического растяжения дуги. Максимальный раствор, требуемый для гашения, составляет 7*10-3 м. При токах более 50 А необходимый раствор уменьшается. Гашение происходит за счет действия на дугу электродинамических сил. При токе более 200А гашение происходит при растворе менее 10-3 м. Таким образом, наиболее тяжелой для гашения является величина тока 40—50 А. Исследования показали, что увеличение раствора сверх 8*10-3 м не влияет на процесс гашения дуги.
Для эффективного гашения дуги, уменьшения износа контактов могут быть использованы следующие системы:
1. Магнитное гашение дуги с помощью катушки тока
и дугогасительной камеры с продольной или лабиринтной щелью (рис.6).
2. Дугогасительная камера с деионной решеткой из стальных пластин.
В системе магнитного дутья с катушкой тока сила, действующая на дугу, пропорциональна квадрату тока. Поэтому и при переменном токе на дугу действует сила, неизменная по направлению. Сила пульсирует с двойной частотой во времени (так же, как электродинамическая сила, действующая на проводник). Средняя сила получается такой же, как и при постоянном токе, при условии, что постоянный ток равен действующему значению переменного тока. Указанные соотношения справедливы, когда потери в магнитной системе катушки дутья отсутствуют, и поток по фазе совпадает с током. Несмотря на эффективную работу этого устройства, в настоящее время оно применяется только в контакторах, работающих в тяжелом режиме (число включений в час более 600).
Недостатками этого метода гашения являются: увеличение потерь в контакторе из-за потерь в стали магнитной системы дугогашения, что ведет к повышению температуры контактов, расположенных вблизи дугогасительного устройства, и возможность возникновения больших перенапряжений из-за принудительного обрыва тока (до естественного нуля).
Значительное увеличение электрической износостойкости контактов (до 15*106) можно получить, шунтируя контакты тиристорами.
Применение для гашения катушки напряжения на переменном токе исключается из-за того, что сила, действующая на дугу, меняет свой знак, так как поток, создаваемый магнитной системой дугогашения, сдвинут по фазе относительно отключаемого тока. Если ток и поток имеют один знак, сила положительна, если же ток и поток имеют разные знаки, то сила отрицательна.
Довольно широкое распространение получила дугогасительная камера с деионной решеткой из стальных пластин. Принципиальная схема дугогасительного устройства дана на рис.11, б. Дуга 1, возникающая после расхождения контактов, втягивается в клиновидный паз параллельно расположенных стальных пластин 2. В верхней части дуга пересекается пластинами и разбивается на ряд коротких дуг 3. При вхождении дуги в решетку возникают силы, тормозящие движение дуги. Для уменьшения этих сил дуга, смещенная относительно середины решетки, вначале пересекает пластины с нечетными номерами, а потом уже с четными (рис. 11,6). После того как дуга втянется в решетку и разобьется на ряд коротких дуг, в цепи возникает дополнительное падение напряжения А на каждой паре электродов. Это падение напряжения составляет 20—30 В. Из-за наличия этого падения напряжения ток в цепи пройдет через нуль ранее своего естественного нулевого значения. При этом уменьшается восстанавливающееся напряжение промышленной частоты, а, следовательно, и пик восстанавливающегося напряжения (рис.11,а).
Рис.11. Процесс гашения дуги в деионной решётке.
Для того чтобы пластины решетки не подвергались коррозии, они покрываются тонким слоем меди или цинка. Несмотря на быстрое гашение дуги, при частых включениях и отключениях происходит нагрев пластин до очень высокой температуры. Возможно даже прогорание пластин. В связи с этим число включений и отключений в час у контакторов с деионной решеткой не превышает 600 (контактор КТ-7000).
В новых контакторах, применяемых в пускателях серии ПА, применяется двукратный разрыв на каждый полюс (рис.9). Для того чтобы уменьшить оплавление контактов, они охвачены стальной скобой. При образовании дуги на нее действует электродинамическая сила втягивания дуги в эту скобу. Движению опорных точек дуги по контакту помогают также электродинамические силы, возникающие за счет взаимодействия дуги с током в подводящих проводниках и арматуре контактов. Здесь, так же как и в решетке для гашения дуги, используется околокатодная прочность, возникающая после прохода тока через нуль. Два разрыва и магнитное дутье за счет стальной скобы и поля подводящих проводников обеспечивают надежную работу при напряжении до 500 В. Контактор на номинальный ток 60 А отключает десятикратный ток короткого замыкания при напряжении 450 В и cos =0,3.
Электромагнитный механизм контактора переменного тока. Для привода контактов широкое распространение получили электромагниты с Ш-образным и П-образным сердечниками.
Магнитопровод состоит из двух одинаковых частей, одна из которых укреплена неподвижно, другая связана через рычаги с контактной системой. В электромагнитах старой конструкции для устранения залипания якоря между средними полюсами Ш-образной системы делался зазор. При включении удар приходился на крайние полюсы, что приводило к их заметному расклепыванию. В случае перекоса якоря на рычаге возможно разрушение поверхности полюса сердечника острыми кромками якоря. В современных контакторах (серии ПА) для устранения залипания в цепь введена магнитная прокладка. Во включенном положении все три зазора равны нулю. Это позволяет уменьшить износ полюсов, так как удар приходится на все три полюса. В современных контакторах для уменьшения удара неподвижный сердечник амортизирован с помощью цилиндрических пружин, что улучшает условия работы и контактной системы, поскольку при включении не возникает вибрации основания контактора.
С целью устранения вибрации якоря во включенном положении на полюсах магнитной системы устанавливаются короткозамкнутые витки. Действие короткозамкнутого витка наиболее эффективно при малом воздушном зазоре. Поэтому для плотного прилегания полюсов их поверхность должна шлифоваться. Хорошие результаты по уменьшению вибрации электромагнита достигнуты в контакторе типа ПА, где за счет эластичного крепления сердечника возможна самоустановка якоря относительно сердечника, при которой воздушный зазор получается минимальным.
Известно, что из-за изменения индуктивного сопротивления катушки ток в притянутом состоянии якоря значительно меньше, чем в отпущенном состоянии. В среднем можно считать, что пусковой ток равен десятикратному току притянутого состояния, но для больших контакторов может достигать значения, равного 15-кратному от тока в замкнутом состоянии. В связи с большим пусковым током ни в коем случае недопустима подача напряжения на катушку, если якорь по каким-либо причинам удерживается в положении «отключено». Катушки большинства контакторов рассчитаны таким образом, что допускают до 600 включений в час при ПВ==40%.
В особо тяжелых условиях работают электромагниты контакторов при пяти-полюсном исполнении. Для того чтобы обеспечить нормальную работу пяти контактных пар, электромагнит имеет форсировку. Такой контактор может работать только в повторно-кратковременном режиме (контакторы старых серий КТ и КТЭ). Современные контакторы КТ-6000 и КТ-7000 могут работать в любом режиме (ГОСТ 11206-70).
Электромагниты контакторов переменного тока могут также питаться от сети постоянного тока. В этом случае на контакторах устанавливается специальная катушка, которая работает с форсировочным сопротивлением. Форсировочное сопротивление шунтировано размыкающим блок-контактом контактора или более мощными контактами другого аппарата.
Параметры катушек и величины форсировочных сопротивлений приведены в каталогах. При уменьшении зазора тяговая характеристика электромагнита переменного тока поднимается менее круто, чем в электромагните постоянного тока. Благодаря этому тяговая характеристика электромагнита более близко подходит к противодействующей. В результате напряжение отпускания близко к напряжению срабатывания.
Относительно высокий коэффициент возврата (0,6—0,7) дает возможность осуществить защиту двигателя от падения напряжения. При понижении напряжения до (0,6—0,7) Uн, происходит отпадание якоря и отключение двигателя.
Электромагниты контакторов обеспечивают надежную работу в диапазоне колебания питающего напряжения 85—110% Uн. Поскольку катушка контактора питается через замыкающий блок-контакт, то включение контактора не происходит самостоятельно после подъема напряжения до номинального значения. Так же как и контакторы постоянного тока, контакторы переменного тока имеют блок-контакты, которые приводятся в действие тем же электромагнитом, что и главные контакты.
В схемах автоматики часто возникает необходимость иметь контакторы с «памятью». После снятия напряжения с электромагнита якорь остается в притянутом состоянии. Такой принцип осуществлен в контакторе залипания КМЗ. Магнитопровод собран из стали марки 40Х, в замкнутом состоянии магнитной системы немагнитный зазор отсутствует, катушка имеет две секции. Схема включения показана на рис.12.
Рис.12.Схема включения обмоток контактора с залипанием серии КМЗ.
При подаче переменного напряжения на вводы 1—2 обмотка 2 питается постоянным током. После притяжения якоря блок-контакт 3 размыкается, но по обмотке 2 продолжает протекать ток через диод Д и конденсатор С до тех пор, пока конденсатор не зарядится до определенного напряжения. Ток конденсатора и длительность протекания выбраны такими, что обеспечивается надежное залипание якоря после снятия напряжения. Якорь удерживается в притянутом состоянии за счет остаточной индукции. Для отключения напряжение подается на вводы 2 и 4. Обмотка 1 размагничивает сердечник, якорь отпадает. При замыкании контакта 3 конденсатор С разряжается на резистор Rр. Блок-контакт 5 размыкает цепь размагничивания в положении отключено. Контактор подготавливается для следующего включения. Допустимая частота включений в час 150.
Большим достоинством контактора с залипанием является отсутствие потребления мощности в притянутом состоянии.
Устройство магнитного пускателя.
Магнитным пускателем называется контактор, предназначенный для пуска в ход асинхронных двигателей с короткозамкнутым ротором.
Конструкция и схема включения пускателя. Наибольшее распространение получили пускатели серий ПМЕ и ПА. На рис.13 представлен магнитный пускатель серии ПМЕ.
Учитывая облегченные условия работы пускателя при отключении, возможно, используя двукратный разрыв цепи, отказаться от применения громоздких дугогасительных устройств в виде решетки или камеры магнитного дутья. Широко применяются торцевые контакты с металлокерамикой. Подвижный контакт 1 выполняется мостикового типа с самоустанавливанием. Токоведущие шинки 3 от зажимов к неподвижным контактам 4 выполняются таким образом, чтобы электродинамические силы сдували дугу с контактов.
Прямоходовой
электромагнит имеет Ш-образный
сердечник 5 и якорь 6. Возврат пускателя в исходное положение
происходит за счет пружины 7. Короткозамкнутый виток 8 расположен на двух крайних стержнях
сердечника. Якорь электромагнита 6 связан с изоляционной траверсой 9, несущей подвижные контакты 1 с контактными пружинами 2. Траверса 9 движется в направляющих 10, являющихся
частью литого корпуса 11. Пускатель может иметь пять главных и
два вспомогательных контакта 12. Основной особенностью электромагнитного
механизма является равенство ходов
контакта и якоря электромагнита.
Такая система имеет ряд недостатков,
которые ведут к большому времени вибрации
контактов (более
1 мс) и их
быстрому износу. В современных пускателях
такая система применяется только при
малых мощностях двигателей (номинальный
ток
25 А).
При токах, больших 25 А, хорошо себя зарекомендовала система пускателей серии ПА, в которой ход контакта примерно в 2,5 раза меньше, чем ход якоря электромагнита. Для защиты двигателя от перегрузки в двух фазах устанавливаются тепловые реле. В некоторых типах пускателей, например в серии П, тепловые реле расположены на одной панели с контактором. Реле типа ТРП и ТРН монтируются вне контактора пускателя.
Схема включения нереверсивного пускателя показана на рис14. Главные (линейные) контакты Л включаются в рассечку проводов, питающих двигатель. В проводах двух фаз включаются также нагревательные элементы
Рис.13. Пускатель серии ПМЕ
тепловых реле ТРП1 и ТРП2. Катушка электромагнита К подключается к сети через размыкающие контакты тепловых реле Т° и кнопки управления. При нажатии кнопки Пуск напряжение на катушку подается через замкнутые контакты 1—2 кнопки Стоп и замкнутые контакты тепловых реле Т°. После притяжения якоря электромагнита замыкается блок-контакт БК, шунтирующий контакты 3—4 кнопки Пуск. Это дает возможность отпустить пусковую кнопку. Для отключения пускателя нажимается кнопка Стоп. При перегрузке двигателя срабатывают тепловые реле, которые разрывают цепь катушки К. Якорь электромагнита отпадает. Происходит отключение пускателя.
Рис.14. Схема включения нереверсивного пускателя.
На рис.15 показан общий вид реверсивного пускателя на базе ПМЕ. Подвижная часть верхнего пускателя 1 с помощью рычага 2 сблокирована с подвижной частью 3 нижнего пускателя. При подаче напряжения на верхний пускатель его якорь притягивается, верхний конец рычага 2 поворачивается влево и удерживает якорь нижнего пускателя в крайнем правом положении. Даже при подаче напряжения на нижний пускатель якорь его электромагнита не сдвинется с места, так как сила, действующая на верхнее плечо (якорь верхнего пускателя притянут), больше силы, действующей на нижнее плечо. Поскольку при подаче напряжения на нижний электромагнит в его обмотке протекает большой ток и она может выйти из строя, механическая блокировка дополняется электрической.
Рис.15. Механическая блоки- Рис.16. Схема включения реверсивного пускателя.
ровка реверсивного пускателя.
Схема включения реверсивного пускателя приведена на рис16. Кнопка управления Вперед имеет замыкающие контакты 1—2 и размыкающие контакты 4—6. Аналогичные контакты имеет кнопка пуска двигателя в обратном направлении Назад.
Соответственно
индекс «в» отнесен к элементам, участвующим
при работе вперед, и индекс «н» — при
работе назад. При пуске Вперед замыкаются контакты 1—2 этой кнопки и процесс протекает так же,
как и у нереверсивного пускателя, с
той лишь разницей, что цепь катушки Кн замыкается через размыкающие контакты 1—6 кнопки Назад.
Одновременно размыкаются размыкающие
контакты 4—6 кнопки Вперед,
при этом разрывается цепь катушки Кн.
При нажатии кнопки Назад вначале размыкаются контакты 1—6, обесточивается катушка и отключается пускательВперед.
Затем контактами 4—3 запускается электромагнит пускателя Назад. При одновременном нажатии кнопок Вперед и Назад ни один из пускателей не будет включен.
Контакторы переменного тока | контактная схема, контакторы переменного тока серии МК
Контакторы переменного тока – это электрические аппараты, которые служат для дистанционного переключения, включения или выключения электрических цепей переменного тока. Контакторы переменного тока обычно используют в оборудовании таких машин как трамваи, тепловозы, троллейбусы, вагоны метро, большегрузные автомобили и многие другие.
Конкретно, контакторы переменного тока занимаются управлением асинхронных трехфазных двигателей с короткозамкнутым ротором. А также для выведения пусковых резисторов, включения нагревательных устройств и трехфазных трансформаторов, тормозных электромагнитов и многих других электротехнических устройств.
Например, контакторы серии КТ предназначены для отключения и включения приемников электрической энергии, а контакторы переменного тока серии КМ, предназначены для функционирования в силовых электрических цепях, которые составляют схемы управления электродвигателями электропогрузчиков.
Помимо этого, они также могут применяться в схемах выключателей высокого напряжения для коммутации цепей оперативного включения привода.
Контакторы переменного тока разделяются на следующие классификации:
- Число главных полюсов. Оно может быть от 1 до 5.
- Номинальное напряжение включающей катушки. Для контакторов переменного тока это значение может быть от 12 до 660 В, с частотой тока 50 Гц и от 24 до 660 В при частоте переменного тока 60 Гц.
- Номинальный ток главной цепи. Он может быть от 1,5 до 4800А.
- Номинальное напряжение главной цепи. От 110 до 1600 В, для переменного тока с частотами 50, 60, 500, 1000, 2400, 8000 и 10000 Гц.
- Наличие вспомогательных контактов. Есть или нет дополнительных контактов.
Контактная схема
Наиболее популярными контакторами являются контакторы переменного тока рассчитанные на номинальный ток от 100 до 1000 А, с числом главных контактов от 1 до 5. Также широко распространены трехполюсные контакторы.
Следствием большого количества контактов, является увеличение усилия электромагнита и необходимого для включения контактора момента. Контакторы переменного тока имеют вспомогательные контакты, приводимые в действие тем же электромагнитом, который двигает и главные контакты.
Зазор, оставляемый между главными контактами, в контакторах переменного тока, меньше чем в контакторах постоянного тока. По этой причине, возникают наиболее благоприятные условия для гашения дуги, что позволяет сократить размеры, мощность и массу электромагнита.
Якорь (4) и подвижный контакт электромагнита связаны между собой посредством вала контактора (6). Контакт в контакторе переменного тока КТ-6000 плоский и без перекатывания. При помощи контактных пружин и подвижных частей, происходит отключение аппарата. Подвижные и неподвижные контакты, для удобства эксплуатации, сделаны сменяемыми. Контактная пружина (2) имеет предварительное сжатие, которое примерно равно половине конечного. На изоляционной рейке (5) закрепляются все детали контактора переменного тока. Рычаг (3) подвижного контакта, закреплен на валу (5), вращающемся на подшипниках (7) и покрытым изоляционным материалом. Катушка (8), сердечник (9), керамическая камера (11) и полюсные пластины (10) составляют в общем, систему дугогашения. Катушка (8) подключена к цепи последовательно вместе с подвижным и неподвижным контактом (12). Выводы (13) и (14) подключают к цепи главные контакты. А гибкая связь (15) и вывод (13) соединяются с подвижным контактом (13). Вращение вала (6) приводит в действие блок вспомогательных контактов (16). Благодаря тому, что все детали закреплены на рейке, появляется возможность установки контакторов переменного тока в комплексных станциях с реечной конструкцией, а также уменьшить массу и объем станции управления. Максимально допустимое число включений составляет 1200 в час. В контакторах переменного тока очень часто используется мостиковая контактная система с двумя разрывами цепи на каждый из полюсов (рис. 3.6). Эта система позволяет довольно быстро гасить дуги, если отсутствует гибкая связь.
а— магнитная система; б— контактная система
Контакторы серии МК.
Данная модель контакторов способна работать как в цепях с постоянным током, так и с переменным. Напряжение в цепи постоянного тока может достигать 440 В, а в цепях с переменным током до 660 В, со значениями частоты тока 50 и 60 Гц соответственно. Сила тока в таких цепях может быть до 160 А. На стальной скобе (1) закрепляются все детали контактора. Здесь на системы главных (6) и вспомогательных контактов (7), действуют изоляционные колодки (4 и 5). В свою очередь, якорь электромагнита (2), притягивается к двум полюсам П-образного электромагнита (3).
Условные обозначения контакторов КТ 6600 и КТП 6600.
КТП ХХХ | Буквенное обозначение вида контактора.КТ – контактор переменного тока с управлением переменным током.КТП – контактор переменного тока с управлением постоянным током.
|
67ХХ | Условный номер серии 67 |
3Х | Цифра. Условное обозначение величины номинального тока:1 – 100 А2 – 160 А 3 – 250 А |
2Х | Цифра. Число полюсов: 2 или 3. |
СХ | Буква. Дополнительное условное обозначение серии: С – контакторы для работы только в продолжительном режиме. |
— | Разделительный знак. |
У ХЛЗХХХ | Обозначение климатического исполненияи категории размещения по ГОСТ 15150-69; УЗ, ТЗ, ХЛЗ. |
Содержание:
В работе электрических цепей постоянно возникают ситуации, когда требуется включить или выключить на расстоянии какие-либо установки и оборудование. Для решения этих задач широко используются электромагнитные контакторы, работающие с разными видами токов. В нормальном рабочем режиме коммутационных устройств предполагается частое выполнение подобных операций – примерно 1500 в течение часа. Устройство и принцип работы контакторов позволяет активно применять их для управления двигателями высокой мощности, установленными на электровозы, трамваи, троллейбусы, лифты и другую технику, и оборудование. Существуют устройства с другими разновидностями приводов – гидравлические и пневматические. Тем не менее, электромагнитные контакторы являются основными, поскольку они более универсальны, эффективны и устойчивы к износу. Компоненты и составляющие коммутационного устройстваДействие устройств электромагнитного типа осуществляется благодаря взаимодействию всех узлов, деталей и компонентов, составляющих цельный прибор. Каждый контактор переменного и постоянного тока состоит из:
Общие внешние данные любого контактора переменного тока и постоянного, в целом будут одинаковыми для всех подобных систем. Основные отличия заключаются в разном количестве контактов, катушек и других элементов, установленных в автоматические выключатели. Принцип действия контакторовОсновной деталью контактора, которая сразу же бросается в глаза, является катушка с проводами. Изнутри у нее располагается сердечник, соединенный механически с контактами. Данные элементы осуществляют замыкание или размыкание электрической цепи, создавая течение или, наоборот, прекращая движение тока. Медная или стальная каркасная оболочка придает катушке необходимую жесткость и способствует более эффективному остыванию деталей прибора. Принцип работы контактора заключает в себе определенные действия противоположного характера. После поступления на катушку напряжения, возникает магнитное поле, под влиянием которого сердечник начинает движение снизу-вверх. В результате, происходит замыкающее соединение цепи и возникновение тока, приводящего в движение подключенное электрооборудование. Когда движение электричества прекращается, сердечник, под воздействием пружинной системы, возвращается к своему начальному состоянию. В результате, цепь размыкается и электрооборудование выключается. Функция включения-выключения контакторного устройства состоит в действии специального кнопочного мини-аппарата с кнопками ПУСК (черного цвета) и СТОП (красного цвета). При надавливании на каждую из них контакты, соответственно, замыкаются и размыкаются. Потенциал поступает на катушку и происходит замыкание силовых контактов. Они остаются во включенном состоянии даже после возврата пусковой кнопки в первоначальное состояние. Эта функция осуществляется с помощью вспомогательных блок-контактов. Принцип действия контактора заключается еще и в действии коммутационной схемы, где участвуют две цепи. Первая из них – управляющая, передающая питание на катушку. После замыкания контактов в действие вступает высоковольтная цепь, ток в которой намного выше, чем в управляющей схеме. Классификация и виды контакторовПоскольку коммутационные устройства и автоматические выключатели применяются во многих областях, они выпускаются под выполнение конкретных задач, с необходимыми параметрами и техническими характеристиками. Эти данные необходимы при решении задачи, как выбрать контактор. Все разновидности коммутирующих устройств можно классифицировать по их характерным признакам и другим показателям:
В зависимости от частоты коммутаций прибора в часовой промежуток времени, существует специальная классификация контакторов – 0,3; 1,3; 10; 30. Каждому из них соответствует определенная частота включений – 30, 120, 300, 1200 и т.д. Показатель механической устойчивости к износу может доходить до 30 млн. циклов, а устойчивость к коммутационному износу составляет 0,1 и выше от механического показателя. Большинство контакторов имеют 10 класс и соответствующие ему параметры и технические характеристики. Выбор контактора осуществляется еще и по коммутационной способности, которая полностью зависит от условий работы. Большинство приборов задействовано в операциях пуска, реверсирования, торможения и отключения. Это основные действия, обязательные в процессе управления различными типами электрических приводов. Параметры и технические показателиК основным показателям электро-магнитных контакторов относятся следующие:
Большое значение для электромагнитных контакторов приобретает номинальный показатель рабочего тока и напряжения. Значение номинальных токовых параметров зависит от условий нагрева основных цепей, при бездействии самого прибора. В замкнутом положении основных контактов, прибор должен выдерживать ток установленного номинала на протяжении 8 часов. При этом, его любые детали не могут нагреваться сверх установленной величины. Напряжение силовой цепи соответствует номинальному, когда контакторное устройство может нормально выполнять свои функции. Кроме того, существуют контакторы постоянного и переменного тока, используемые в соответствующих цепях. Между ними имеется заметная разница, поэтому их следует рассмотреть более подробно. Контакторы работающие при постоянном и переменном токеКонтакторы постоянного тока используются для коммутационных действий в силовых цепях аналогичного тока. Для приведения в действие устройства используется соответствующий электромагнит. Данные типы устройств работают при напряжении 22 и 440 вольт, силе тока – до 630 А. Конструктивно они могут быть одно- и двухполюсными. Отдельные виды контакторов используются в силовых и управляющих цепях постоянного тока напряжением 220 В и номинальных токах 25-250 А. Вес каждого устройства зависит от его величины и технических характеристик. Например, масса контактора на 100 А составляет 5,5 кг, а на 630 А – 30 кг. Подобные приборы все реже выпускаются производителями из-за снижения спроса. Коммутационные устройства, автоматы, в том числе и контактор переменного тока используются в силовых цепях с аналогичными параметрами. Все рабочие процессы осуществляются с помощью электромагнита постоянного или переменного тока. Большинство из них имеют трехполюсную конструкцию на основе главных замыкающих контактов. Конструкция электромагнитной системы изготавливается в шихтованном варианте – набирается из отдельных пластинок, толщина которых не более 1 мм, изолированных между собой. Катушки отличаются незначительным количеством витков и низким показателем сопротивления. Индуктивное сопротивление катушки электромагнитного контактора составляет большую часть от общего сопротивления и может изменяться по мере изменения размера зазора. В связи с этим, величина переменного тока внутри катушки при разомкнутом положении контактов примерно в 5-10 раз выше тока в замкнутом состоянии магнитной системы. Неприятные явления в виде вибрации и гудения в таких приборах устраняются короткозамкнутым витком в сердечнике. |
1.3. Контакторы переменного тока
а) Контактная система. Контакторы переменного тока выпускаются на номинальный ток от 100 до 1000 А при числе главных контактов от одного до пяти. Наиболее распространены контакторы трехполюсного исполнения. Наличие большого числа контактов приводит к увеличению усилия электромагнита и соответственно момента, необходимого для включения контактора.
Так же как и контакторы постоянного тока, контакторы переменного тока имеют вспомогательные контакты, которые приводятся в действие тем же электромагнитом, что и главные контакты.
Из-за более благоприятных условий гашения дуги зазор между главными контактами делается меньше, чем в контакторах постоянного тока. Уменьшение зазора позволяет уменьшить мощность электромагнита, его габариты и массу.
На рис.1.4,а показан разрез по магнитной системе, а на рис. 1.4,б—разрез по контактной системе и общий вид одного полюса контактора КТ-6000. Подвижный контакт 1 с пружиной 2 укреплен на рычаге 3.
Подвижный контакт 1 и якорь 4 электромагнита связаны между собой через вал контактора 6. В отличие от контакторов постоянного тока подвижный контакт в контакторе КТ-6000 плоский без перекатывания. Отключение аппарата происходит под действием контактных пружин и массы подвижных частей.
Для удобства эксплуатации подвижный и неподвижный контакты сделаны легко сменяемыми. Контактная пружина 2, так же как и в контакторах постоянного тока, имеет предварительное нажатие, составляющее примерно половину конечного.
Все детали контактора укреплены на изоляционной рейке 5. Рычаг 3 подвижного контакта 1 укреплен на валу 9, покрытом изоляционным материалом. Вал вращается в подшипниках 7. Система дугогашения состоит из последовательной катушки 8, сердечника 9, полюсных пластин 10 и керамической камеры 11. Катушка 8включена в цепь последовательно с неподвижным контактом 12 н подвижным контактом 1. Главные контакты подключаются в схему выводами 13 и 14. Подвижный контакт 1 соединяется с выводом 13 с помощью гибкой связи 15.
Блок вспомогательных контактов 16приводится в действие от вала 6. Крепление всех деталей на рейке позволяет использовать контактор в комплектных станциях реечной конструкции и сократить объем и массу станции управления. Допустимое число включений достигает 1200 в час.
В контакторах переменного тока широко распространена мостиковая контактная система с двумя разрывами цепи на каждый полюс (рис. 1.6), которая обеспечивает быстрое гашение дуги при отсутствии гибких связей. Отсутствие гибкой связи облегчает работу электромагнита и уменьшает габариты аппарата. В качестве материала главных контактов применяется металлокерамика, а для вспомогательных—серебро или биметалл. Основой биметаллического контакта является медь, покрытая тонкой пластиной из серебра. В контакторах переменного тока наряду с магнитным гашением дуги широко применяются дугогасительные решетки (см. рис 4.11), особенно при облегченных режимах работы.
б) Электромагнит. Для привода контактов контактора неременного тока широкое распространение получили электромагниты с Ш- и П-образными магнитопроводами. Магнитопровод электромагнита состоит из двух сердечников, один из которых неподвижен, другой (якорь) связан через рычаги с контактной системой. Для амортизации удара якоря о неподвижный сердечник последний крепится к основанию с помощью пружины. Это улучшает условия работы и контактной системы, поскольку при включении не возникает вибрация основания контактора.
С целью устранения вибрации якоря во включенном положении на полюсах магнитной системы устанавливаются короткозамкнутые витки. Как указывалось в § 5.6, короткозамкнутые витки наиболее эффективны при малом рабочем зазоре. Поэтому для плотного прилегания полюсов их поверхность должна шлифоваться.
Из-за изменения индуктивности катушки ток при притянутом якоре значительно меньше, чем при отпущенном [1.1§ 5.3] В среднем можно считать, что пусковой ток электромагнита равен десятикратному току притянутого состояния. Для больших контакторов это значение может достигать 15-кратного. В связи с большим пусковым током недопустима подача напряжения на катушку, если якорь по каким-либо причинам удерживается в отпущенном положении. Катушки электромагнитов
а)
б)
Рис. 8.4 Контактор серии КТ-6000
а) магнитная система;
б) контактная система.
большинства контакторов допускают до 600 включений в час при ПВ=40%.
В особо тяжелых условиях работают электромагниты пятиполюсных контакторов. Для обеспечения нормальной работы пяти контактных пар необходима форсировка электромагнита.
Электромагниты контакторов переменного тока могут также питаться от сети постоянного тока. Такие электромагниты имеют специальную катушку с форсировочным резистором (см.[1.1 рис. 5.23]), который шунтирован размыкающим вспомогательным контактом контактора или контактами другого аппарата. Параметры катушек и фор-сировочных резисторов приводятся в справочных материалах.
При уменьшении .зазора тяговая характеристика электромагнита переменного тока поднимается менее круто, чем в электромагните постоянного тока [1.1§ 5.6], а благодаря этому ближе подходит к противодействующей. В результате напряжение отпускания близко к напряжению срабатывания. Относительно высокий коэффициент возврата (0,6—0,7) позволяет использовать контакторы переменного тока для зашиты электродвигателей от снижения сетевого напряжения. При понижении напряжения сети до. (0,6-0,7) Uном, происходит опадание якоря и отключение двигателя. Электромагниты контакторов обеспечивают надежную работу в диапазоне колебания питающего напряжения 85— 110% Uном. Поскольку катушка контактора питается через замыкающий вспомогательный контакт, то включение контактора не происходит автоматически после восстановления напряжения до номинального значения (см. рис. 1.11). Как указывалось в[1.1 § 5.7,] срабатывание и отпускание электромагнита переменного тока происходят значительно быстрее, чем электромагнита постоянного тока. Собственное время срабатывания контакторов составляет 0,03—0,05, а время отпускания 0,02 с.
в) Контакторы серии МК. Контакторы серии МК [9,5] могут работать в цепях постоянного тока напряжением до 440В и в цепях переменного тока напряжением до 660В, частотой 50, 60 Гц при токах до 160 А. Электромагнитный привод контактора выполняется только на постоянном токе с напряжением 24—220В. Общий вид контактора дан на рис 8.5. Все детали монтируются на стальной скобе 1 Якорь электромагнита 2 притягивается к двум полюсам П-образного магнитопровода электромагнита 3 и через изоляционные колодки 4, 5 действует на системы главных 6 и вспомогательных контактов 7. Система главных контактов показана на рис. 8.6. Все детали крепятся к изоляционной плите 1. Якорь электромагнита воздействует на шток привода контактов 2, на котором установлен подвижный мостиковый контакт 4. Неподвижный контакт 3 укреплен на скобе 5. Нажатие контактов создается пружиной 6. Возврат подвижного контакта в начальное положение производится возвратной пружиной 7. За счет мостикового контакта каждый полюс главной цепи имеет два разрыва, что способствует гашению дуги переменного тока. Для гашения дуги постоянного тока имеются две системы магнитного гашения с катушкой тока 8. Контакторы в зависимости от модификации могут иметь от одной до трех систем главных контактов. Таким образом, контактор может работать
Рис. 1.5. Контактор серии МК
в трехфазных цепях и при этом использоваться для пуска трехфазных асинхронных двигателей. Контактор имеет также четыре цепи вспомогательных замыкающих или размыкающих контактов. Механическая износостойкость контакторов с номинальным током до 63 А составляет,16*106, с током 100 и 160 А—10-106 циклов. Допустимая частота срабатываний составляет 1200 в час при ПВ=40%. При номинальном токе 40 А и категории применения АС-4 износостойкость не менее 106, при номинальном токе 160 А— 0,2-106 циклов. Контакторы обеспечивают 50 отключений удвоенного номинального тока при напряжении 110%Uном с интервалами между включениями не менее 10с. Собст-
Лекция № 12 Контакторы и магнитные пускатели
Контактор – это электрический аппарат, предназначенный для коммутации силовых электрических цепей. Замыкание или размыкание контактов контактора осуществляется под воздействием электромагнитного привода.
Контакторы постоянного тока предназначены для коммутации цепей постоянного тока и, как привило, приводятся в действие электромагнитом постоянного тока.
Контакторы переменного тока предназначены для коммутации цепей переменного тока. Электромагниты этих контакторов могут быть как переменного, так и постоянного тока.
Категории применения современных контакторов и параметры коммутируемых ими цепей подразделяют:
Для контакторов переменного тока (табл.12.1):
АС-1 – активная или малоиндуктивная нагрузка.
АС-2 – пуск электродвигателей с фазным ротором, торможение противовключением.
АС-3 – пуск электродвигателей с КЗ ротором. Отключение вращающихся двигателей при номинальной нагрузке.
АС-4 – пуск электродвигателей с КЗ ротором, Отключение неподвижных или медленно вращающихся электродвигателей. Торможение противовключением.
Для контакторов постоянного тока (табл. 12.2):
ДС-1 – активная или малоиндуктивная нагрузка.
ДС-2 – пуск электродвигателей постоянного тока с параллельным возбуждением и их отключение при номинальной частоте вращения.
ДС-3 – пуск электродвигателей с параллельным возбуждением и их отключение при неподвижном состоянии или медленном вращении ротора.
ДС-4 – пуск электродвигателей с последовательным возбуждением и их отключение при номинальной частоте вращения.
ДС-5 – пуск электродвигателей с последовательным возбуждением и отключение неподвижных или медленно вращающихся двигателей, торможение противотоком.
Таблица 12.1
Контакторы переменного тока
Категория приме- нения | Режим нормальных коммутаций | |||||
Включение | Отключение | |||||
Коммутируемый ток, А | Напряжение, В | Коммутируемый ток, А | Напряжение, В | |||
АС-1 | 0,95 | 0,95 | ||||
АС-2 | 0,65 | 0,65 | ||||
АС-3 | 0,35 | 0,35 | ||||
АС-4 | 0,35 | 0,35 | ||||
Категория приме- нения | Режим редких коммутаций | |||||
Включение | Отключение | |||||
Коммутируемый ток, А | Напряжение, В | Коммутируемый ток, А | Напряжение, В | |||
АС-1 | 0,95 | 0,95 | ||||
АС-2 | 0,65 | 0,65 | ||||
АС-3 | 0,35 | 0,35 | ||||
АС-4 | 0,35 | 0,35 |
Номинальный
ток контактора представляет собой ток, который можно
пропускать по замкнутым главным контактам
в течение 8 ч без коммутации, причем
превышение температуры различных частей
контактора не должно быть больше
допустимого.Номинальный
рабочий ток контактора
— это допустимый ток через его замкнутые
главные контакты в конкретных условиях
применения.
Номинальным напряжением называется наибольшее напряжение коммутируемой цепи, для работы при котором предназначен контактор.
Таблица 12.2
Контакторы постоянного тока
Категория применения | Режим нормальных коммутаций | ||||||
Включение | Отключение | ||||||
Коммутируемый ток, А | Напряжение, В | Пост. времени, мс | Коммутируемый ток, А | Напряжение, В | Пост. времени, мс | ||
ДС – 1 | 1 | 1 | |||||
ДС – 2 | 2 | 7,5 | |||||
ДС – 3 | 2 | 2 | |||||
ДС — 4 | 7,5 | 10 | |||||
ДС — 5 | 7,5 | 7,5 | |||||
Категория приме- нения | Режим редких коммутаций | ||||||
Включение | Отключение | ||||||
Коммутируемый ток, А | Напряжение, В | Пост. времени, мс | Коммутируемый ток, А | Напряжение, В | Пост. времени, мс | ||
ДС – 1 | — | — | — | — | — | — | |
ДС – 2 | 2,5 | 2,5 | |||||
ДС – 3 | 2,5 | 2,5 | |||||
ДС — 4 | 15 | 15 | |||||
ДС — 5 | 15 | 15 |
Контакторы подразделяются :
по роду тока главной цепи: постоянного тока, переменного тока, постоянного и переменного токов;
по роду тока цепи управления: с управлением постоянным током, с управлением переменным током;
по числу главных полюсов: от одного до пяти;
по номинальному току главных цепей: на токи 4, 6,5, 10, 16, 25, 40, 63, 100, 160, 250, 400, 630, 1000; (2500) А;
по номинальному напряжению главной цепи: на постоянное напряжение 220, 440, 600 В; на переменное — 380(500) и 660 В;
по номинальному напряжению включающих катушек; на постоянное напряжение 24, 48, 60, 110 и 220 В, на переменное — 24, 36, 110, 127, 220, 230, 240, 380, 400, 415, 500, 660 В частотой 50 Гц и 110, 220,380, 440 В частотой 60 Гц;
по наличию и исполнению вспомогательных контактов;
по роду присоединения проводников;
по классу, соответствующему частоте включений:
Класс | 0.3 | 1 | 3 | 10 | 30 |
Допустимая частота включений в час | 30 | 120 | 300 | 1200 | 3600 |
по категории применения;
по воздействию климатических факторов;
по степени защиты.
Контакторы
допускают работу при напряжении главной
цепи до 1,1 и цепи управления (0,85-1,1)
. Контакторы предназначены для работы
в одном, нескольких или во всех следующих
режимах: в прерывисто-продолжительном
с периодом нагрузки без отключения не
более
= 8ч, продолжительном (
>
8ч), повторно-кратковременном и
кратковременном. Контакторы с размыкающими
главными контактами допускают нечастые
коммутации двукратного номинального
тока при напряжении
.
Контактор имеет следующие основные узлы: контактную систему; дугогасительное устройство, электромагнит и систему вспомогательных контактов.
На рис.12.1 показана конструкция контактора постоянного тока типа КПВ – 600.
Неподвижный контакт 1 механически и электрически соединен со скобой 2 – дугогасительным рогом (направляющей для дуги). К скобе 2 присоединен один конец дугогасительной катушки 3, второй конец которой с выводом 4 закреплен в электроизоляционном основании 5 и является одним из двух токоподводов контактора.
Рис. 12.1. Контактор постоянного тока
Основание 5 жестко укреплено на стальной скобе 6, являющейся основной несущей деталью для электромагнитного привода и подвижной контактной системы. Подвижный контакт 7 может поворачиваться относительно опорной точки 8. Вывод 9, являющийся вторым токоподводом, соединен с подвижным контактом 7 гибкой связью 10. С подвижным контактом 7 электрически связан другой дугогасительный рог 11. Контактное нажатие создается пружиной 12, а возвратная пружина 13 предназначена для размыкания контактов и возврата привода в исходное положение. При размыкании контактов на них появляется электрическая дуга 14, которая попадает в магнитное поле между пластинами 15 магнитопровода системы магнитного дутья, создаваемого катушкой 3 и охватывающего камеру с обеих сторон. Под воздействием этого поля дуга перемещается в камеру, ее опорные точки переходят на дугогасительные рога, дуга растягивается, охлаждается и гаснет.
Электромагнитный привод контактора включает в себя обмотку 20 с магнитопроводом и якорь 17, который может поворачиваться на призме 19, прижимаемый к скобе 18 пружиной 16. При подаче напряжения на катушку 20 якорь 17, преодолевая противодействие возвратной пружины 13, начинает притягиваться к магнитопроводу. При определенном зазоре между якорем и магнитопроводом происходит соприкосновение контактов 7 и 4. Дальнейшее сближение якоря и мгнитопровода влечет за собой поворот контакта 7 относительно опорной точки 8 и сжатие контактной пружины. Этим обеспечивается создание так называемого провала контактов – расстояния, на которое переместился бы подвижный контакт, если убрать неподвижный. Наличие провала контактов обеспечивает контактору заданную коммутационную износостойкость.
При работе контакторов в повторно-кратковременном режиме значение рабочего тока зависит от продолжительности включения и частоты срабатывания.
Рабочий ток при различных режимах может быть определен по формуле
,
где — номинальный ток контактора;
ПВ – относительная продолжительность включений;
n – число включений в час.
Допустимое число включений в зависимости от характера нагрузки для КПВ 600 доходит до 1200 в час; КПВ 600 выполняются на номинальные токи 100, 160, 250 и 630 А.
Контакторы переменного тока выпускаются на токи от 100 до 1000 А при числе главных контактов от одного до пяти. Наиболее распространены контакторы трехполюсного исполнения. На рис. 12.2 показан контактор переменного тока типа КТ-6000. Подвижный контакт 1 с пружиной 2 укреплен на рычаге 3. Подвижный контакт 1 (на общем виде три подвижных контакта 1) и якорь 4 привода электромагнита связаны между собой валом 6. Отключение контактора происходит под действием контактных пружин и массы подвижных частей.
Контактная пружина 2 имеет предварительное нажатие на (30-50)% меньше конечного контактного нажатия. Все детали укреплены на изоляционной рейке 5. Рычаг 3 подвижного контакта 1 укреплен на валу 6, покрытом изоляционным материалом. Вал вращается в подшипниках 7. Система дугогашения состоит из последовательной катушки 8, магнитопровода 9, полюсных пластин 10 и дугогасительной камеры 11. Обмотка 8 включена в цепь последовательно с неподвижным контактом 12 и подвижным контактом 1. Главные контакты подключаются к внешней электрической цепи выводами 13 и 14. Подвижный контакт 1 соединяется с выводом 13 при помощи гибкой связи 15. Блок вспомогательных контактов 16 приводится в действие валом 6.
Рис.12.2. Контактор переменного тока
С целью устранения вибрации якоря во включенном положении на полюсах магнитной системы устанавливаются короткозамкнутые витки.
Допустимое число включений достигает 1200 в час, коммутируемый ток – до 1000 А, номинальное напряжение – 380 и 660 В.
В контакторах серий КТ64, КТП64, КТ65, КТП65, предназначенных для коммутации силовых цепей переменного тока, имеется полупроводниковый блок, в котором осуществляется бездуговая коммутация путём шунтирования главных контактов тиристорами на период коммутации, благодаря чему электрическая дуга не возникает.
Отсутствие дуги при отключении контактором силовых цепей повышает надежность работы контакторов, электрическую износостойкость, взрывобезопасность, резко уменьшает потери энергии в контакторе.
Контакторы серии МК предназначены для работы в силовых электрических цепях и цепях управления установок при постоянном напряжении до 440 В и переменном до 660 В, частотой 50 и 60 Гц при токах до 160 А. Контакторы имеют четыре величины: МК 1 (Iном=40 A), МК 2 (Iном=63 A), МК 3 (Iном=100 A) и МК 4 (Iном=160 A).
Собственное время срабатывания контакторов при включении 0,08 с, при отключении 0,05 с. Втягивающие катушки выполняются только на постоянный ток напряжением 24, 48, 110, 220 В. Контакторы могут работать в продолжительном, прерывисто-продолжительном, кратковременном и повторно-кратковременном режимах.
Допустимая частота срабатывания контакторов – до 1200 циклов в час при ПВ = 40%.
Магнитным пускателем называется электрический аппарат, предназначенный для пуска, остановки, реверсирования и защиты асинхронных электродвигателей. Его практически единственное отличие от контактора – наличие устройства защиты от токовых перегрузок (обычно тепловое реле).
Работа асинхронных двигателей зависит от таких свойств пускателей, как износостойкость, коммутационная способность, надёжность защиты двигателя от перегрузок. В процессе эксплуатации довольно часто обрывается одна из фаз питающего напряжения и ток статора работающего двигателя резко возрастает, что приводит к выходу из строя обмотки из-за нагрева ее до высокой температуры. Тепловые реле пускателя от этих токов должны срабатывать и отключать двигатель.
Конструктивная схема магнитного пускателя серии ПА приведена на рис. 12.3.
Рис. 12.3. Конструкция магнитного пускателя
Пускатель собран на металлическом основании 1. Контактная система мостикового типа с неподвижными 2 и подвижными 3 контактами размещена в дугогасительной камере 5. Контактное нажатие обеспечивается пружиной 4. Подвижные контакты соединены с траверсой 6, которая может поворачиваться относительно точки О1. На противоположном конце траверсы 6 укреплен якорь 7 электромагнитного привода с магнитопроводом 8 и обмоткой 9. Под магнитопроводом 8 имеется пружина сжатия 10, которая обеспечивает более плотное прилегание якоря и магнитопровода при срабатывании электромагнита и смягчает возникающий при этом удар. Последовательно с коммутируемой цепью включено тепловое реле 11, которое при срабатывании своими контактами размыкает цепь питания катушки 8, траверса 6 под действием возвратной пружины 12 отходит вправо и происходит отключение главной цепи.
В технических данных указываются номинальный ток пускателя и номинальная мощность двигателя при различных напряжениях.
Промышленность выпускает магнитные пускатели серии ПМЛ и ПМС на токи до 260 А и напряжение до 660 В.
Наибольшее рабочее напряжение пускателя равно 660 В.