Расчёт потребления электрической энергии
В эпоху, когда без электрических приборов трудно представить свою жизнь, а цена на энергоносители постоянно растёт, важно уметь планировать и рассчитывать. Расчёт расхода электроэнергии важен как для планирования будущих затрат на оплату счетов по электроэнергии, так и для определения убытка, нанесённого безучётным пользованием электроэнергией.
Варианты определения расхода электроэнергии.
- Каждый электрический прибор содержит ярлык с указанием его технических характеристик, значение которое измеряется в Ваттах (W или Вт) это и есть электрическая мощность. На некотором оборудовании, например, микроволновой печи, может указываться диапазон значений, например, от 800 до 1000Вт в таком случае принято брать среднее значение 900 Вт.
Так же, известно приблизительное время работы каждого потребителя электрической энергии. Холодильник работает не более 8 часов в сутки и так по каждому прибору. Только время работы обогревателя, вентилятора и кондиционера могут существенно отличаться в зависимости от сезона. В таком случае точнее будет проводить разные расчёты для каждого времени года. - Второй способ очень похож на первый. Но в нём указано как считать расход электроэнергии у электроприборов с неуказанной мощностью. Правильно рассчитать мощность можно зная величину потребляемого тока и напряжения в сети. Ток указывается на бирке с индексом «А», напряжение «В» («V»). Величина напряжения, общепринятая в нашей стране 220 В. Умножив ток на напряжение, можно достаточно точно рассчитать потребляемую прибором мощность.
Дальнейший расчёт не отличается от первого варианта. - Как правило, электросчётчик достаточно точно рассчитывает количество потреблённой электроэнергии. Руководствуясь его показаниями можно достаточно точно определить объём потреблённой энергии. Для этого достаточно из текущих показаний прибора, вычесть предыдущие. Полученное значение и будет расход за конкретный период времени.
В случае со счётчиками непрямого измерения, то есть с трансформаторами тока и (или) напряжения, полученное число нужно умножить на коэффициент трансформации.
Среднеприведённые значения мощности электрических приборов
Порой в быту достаточно тяжело определить значение мощности указанное на бирках, а показания электросчётчика ставятся под сомнение. В таблице представлены типовые значения мощности распространённых электроприборов.
Наименование электроприбора Мощность, Вт
Холодильник 1000
Компьютер 750
Телевизор 250
Пылесос 1500
Утюг 1500
Микроволновая печь 1000
Лампа накаливания 75
Приведённые в таблице данные могут значительно отличаться от реальных, поскольку сейчас существует достаточно много модификаций одного и того же электроприбора.
В случае когда точную мощность прибора определить невозможно, отсутствуют паспортные данные, специалисты часто пользуются токоизмерительными приборами, амперметром или клещами.
Правильно применяя вышеуказанные формулы и произведя обратный расчёт, можно без труда вычислить потребляемую мощность электроприборов, зная расход за месяц, и даже среднее значение тока. Эти данные помогут определить сечение токопроводящих жил и защитной аппаратуры.
Как расчитать потребление электроэнергии в квартире | ENARGYS.RU
Для проведения расчета необходимо определить мощность бытовых приборов и их количество.
Проанализировав электроприборы, для расчета потребления электроэнергии в квартире составим ориентировочную таблицу потребителей. В таблицу введем данные по потребителям, которые используются в квартире, количество ламп и их работу за сутки. В таблице (ниже) указаны мощности сберегающих ламп в соответствии к лампам накаливания.
Потребление электроэнергии всех потребителей в таблице указано на основе тестирования и паспортных данных электроприборов.
Суммируя расход электроприемников применяем формулу W = Р · t · T, где: W – расход электроэнергии (кВт, мощность) t –время работы бытового прибора в день в часах. Т – количество суток электроприемника.
В настоявшем случае каждый бытовой прибор снабжен специальной биркой по электропотреблению, которая находится на задней стенке или внизу прибора,
К сожалению, с точностью подсчитать расход бытовой электроэнергии очень трудно, так как некоторые приборы могут задействовать разные режимы работы с различными нагрузками, например, стиральная машина или холодильник.
Так как стоимость потребления электроэнергии в каждом регионе России разная можно использовать 4 р. за 1 кВт-час.
Таблица соответствия мощностей ламп накаливания, люминесцентных и светодиодных ламп. Каждый проставляет свои данные касающиеся количества и времени работы ламп, затем по формулам можно провести несложные расчеты, по затрате энергии на освещение.
Кол-во ламп | Мощность ЛН, Вт | Мощность ЛЛ, Вт | Мощность лампы LED, Вт | Количество часов работы в день |
40 | 14 | 8 | ||
60 | 20 | 11 | ||
75 | 32 | 18 | ||
100 | 46 | 28 светодиодная панель |
Расчет расхода электроэнергии в квартире для обеспечения безопасного использования электроприемников определяется по потребляемой мощности, которая находится по формуле:
Р = Р общ х К, Р общ общая мощность, К – коэффициент спроса.
Коэффициент принимается исходя из количества электроприемников и времени использования, пользуются этим коэффициентом на ранних этапах расчета, когда о потребителе имеется мало информации, взять его можно из справочной литературы.
Коэффициент спроса нагрузки находится из отношения мощностей бытовых приборов:
Кс = Рр /Ру где:Рр – расчетная мощность, Ру номинальная или установочная мощность
Коэффициент использования принимается отношением фактической мощности к номинальной Ки = Р /Рн
Коэффициент мощности cos φ равен отношению расчетной мощности к полной Рр / S
Расчетная активная мощность электроприборов различных групп находится по формуле:
Рр =Ру х Кс х Ки
Полная мощность определяется по формуле
S = Ppх cos φ
Расчетный ток определяется из формулы Ip = Pp / Uxcos φ = S/U
Сводная таблица мощности и необходимых для работы коэффициентов отдельных бытовых приборов
(Полную таблицу бытовых приборов можно посмотреть здесь)
Потребитель | Мощность номинальная | характеристика | Коэф.спроса | Коэффициентиспользования | cos φ |
Телевизор | 100 Вт60 Вт
200 Вт
300 Вт | ЖКLED
Электроннолучевая трубка Плазменный | 0,7 – 1,0 | 0,65 | |
Холодильник | 70 Вт100Вт 145 Вт 240 Вт 300 Вт
| Маленький Средний Обычный Большой | 0.7 – 1.0 | 0,65 | |
Стиральная машина | 350 Вт1500 Вт 2200 Вт 2600 Вт | ПолуавтоматМалая, автомат Средняя, автомат Большой, автомат | 1,0 | 0,6 | 0,8 |
Электроплита для расчета выбирается кол-во работающих конфорок | 1000 Вт1200 Вт 1500 Вт 2000 Вт 2500 Вт | Малая конфорка Средняя конфорка Большая конфорка Экспресс конфорка
| 0,8 | 1,0 | 0,9 |
Электрообогреватель | От 1000 до 4000 Вт | 0,4 | 1,0 | 1,0/0 | |
Кондиционер | От 800 до 1200 Вт | 0,7 | 0,8 | 0,75 | |
Фен | От 400 до 1800 Вт | 0,7 – 1,0 | |||
Утюг | От 400 до 2500 Вт | 0,7 – 1,0 | |||
Пылесос | Мощности 800, 1200, 1600, 1800, 2000, 2500 Вт | 0,7 – 1,0 | |||
Бойлер | От 700 до 2000 Вт | 0.6 | 0.8 | 1,0 | |
Компьютер потребляет в среднем | 70 Вт 140, 180 Вт 200 Вт 300 Вт 500 Вт | Компьютер для офиса Персональный Игровой Мощный игровой Очень мощный | 0,6 | 1,0 | 0,65 |
Монитор компьютера | От 15 до 200 Вт | 0,65 | |||
Ноутбук | От 30 до 200 Вт | ||||
Принтер | 11, 16, 20Вт22 Вт 300 | СтруйныйМатричный лазерный домашний | |||
Теплый пол | 60 Вт/м2 | 0,5 | 1,0 | ||
Кухонный комбайн, чайник, кофеварка | 4 – 5 кВт | 0,3 | 1,0 | ||
тепловентилятор | 1.5 — 2 кВт | 0,9 | 0,9 | ||
Водонагреватель проточный | 1,5 – 2 кВт | 0,4 | 1,0 | 1,0 | |
Посудомоечная машина | 2,2 кВт | 0,8 | 0,8 | ||
Бытовая сеть розеток | 100 Вт на розетку | 1 розетка на6 м | 0,7при числе розеток 50 шт.-1,0- 10 розеток | ||
Осв. коридора | 25 Вт/м2 | ЛН | 0,8 | 0,8 | 1,0 |
Осв. кухни | 30 Вт/м2 | ЛН | 1,0 | 0,8 | 1,0 |
Осв. спальни | 30 Вт/м2 | ЛН | 0,6 | 0,6 | 1,0 |
Освещение зала | 40 Вт/м2 | ЛН | 0,8 | 0,8 | 1,0 |
Также коэффициент спроса можно определить по зависимости от заявленной суммарной мощности всех электроприемников в квартире.
Мощность кВт | 14 | 20 | 30 | 40 | 50 | 60 | 70 |
Кс | 0,8 | 0,65 | 0,6 | 0,55 | 0,5 | 0,48 | 0,45 |
Для экономного пользования электроэнергией существуют калькуляторы энергопотребления, которые просто незаменимы для рачительного хозяина, при их помощи автоматически рассчитывается расход электроэнергии. Такая программа помогает оптимизировать расходы на электроснабжение, а также поможет тем, кто собирается применить автономную систему энергоснабжения и рассчитать ее мощность.
Коэффициент трансформации счетчика электроэнергии — что это такое?
Коэффициент трансформации счетчика электроэнергии (КТ) – это одна из технических величин, виляющих на точность показаний прибора учёта.
Показатель определяется эффективностью функционирования трансформаторной подстанции.
Разберем подробно данную величину.
Что такое коэффициент трансформации?
С целью учета электрической энергии, которая потребляется крупными объектами, включая жилые многоэтажные здания, используется специализированное оборудование, способствующее понижению показателей мощности напряжения, которое передаётся на контакты общедомового прибора учёта.Такие электрические счётчики не имеют непосредственного соединения с электросетью дома, что обуславливается отсутствием возможности выполнить подключение высокого напряжения посредством традиционных приборов прямого включения.
Таким образом, чтобы предотвратить поломку счетчиков, требуется уменьшать мощностные показатели на подаваемое напряжение посредством трансформаторного стандартного оборудования. На выбор такого оборудования оказывает непосредственное влияние уровень необходимой нагрузки.
Коэффициент трансформации приборов учёта электрической энергии может варьироваться в зависимости от характеристик установленного оборудования. В результате приборы-счётчики для учета затрат электроэнергии, функционирующие с трансформаторами, фиксируют нагрузку, которая снижена в несколько десятков раз.
Полученные прибором учёта данные и являются коэффициентом трансформации, а чтобы определить реальное потребление электроэнергии, потребуется умножить показания электрического счетчика на КТ.
Как определить коэффициент трансформации: формула
Коэффициент трансформации счетчика электроэнергии указывает во сколько раз входные параметры напряжения или тока отличаются в меньшую или большую сторону от показателей на выходе.
При показателях, превышающих единицу, производится снижение, и, напротив, при показателях менее единицы, применяется устройство повышающего типа.
Различаются коэффициенты трансформации на напряжение или ток.
Формула расчёта: k=U1/U2=N1/N2 ≈ I2/I1, где:
- U1 и U2 – разница электрического напряжения на первичной и вторичной обмотке;
- N1 и N2 – количество витков первичной и вторичной обмотки;
- I2 и I1 – показатели силы тока в первичной и вторичной обмотке;
- k – искомые показатели КТ.
Как правило, такие параметры коэффициента трансформации в обязательном порядке указываются в сопроводительной документации, которая прилагается к оборудованию. Также эти сведения можно узнать из обозначений на корпусе такого устройства.
Сложной является ситуация, при которой КТ нужно вычислить самостоятельно, по данным, полученным эмпирическим путем. В этом случае осуществляется пропуск тока сквозь первичную обмотку оборудования и замыкание на вторичной обмотке, после чего замеряется величина электрического тока, проходящего по вторичной обмотке.
Самостоятельный расчёт предполагает деление значения первичного тока, на значение вторичной обмотки. Результатом таких расчётов является частное, представленное коэффициентом трансформации.
Расчетный коэффициент учета
Чтобы уточнить реальный уровень потребления электрической энергии, требуется снять показания электросчётчика, после чего умножить их на КТ.
На практике КТ трансформатора, понижающего напряжение в домашних условиях, составляет 20 единиц, поэтому данные с прибора учёта нужно умножать именно на эту цифру, в результате чего и будет получен реальный расход электрической энергии.
Разновидности приборов учета электроэнергии
Счетчики являются многофункциональными устройствами для учета потребления, а также сохранения информации по потреблению электрической энергии. На сегодняшний день эксплуатируются три варианта приборов-счётчиков, предназначенных для учета расходуемой электрической энергии. К ним относятся индукционные, электронные и гибридные модели. Последний вариант наименее распространённый.
Механические или индукционные приборы учёта
Приборы такого типа состоят из двух катушек.
Первая катушка на напряжение ограничивает параметры переменного тока, преграждая помехи и образуя, в соответствии с напряжением, особый магнитный поток.
Вторая катушка на ток образует поток переменного типа.
К преимуществам механических моделей относятся высокая надежность и конструкционная простота, длительный эксплуатационный срок, независимости от перепадов напряжения и доступная стоимость. При выборе индукционных приборов нужно учитывать достаточно крупные габариты устройства.
Несмотря на широкое распространение, такое оборудование относится к устройствам малого класса точности и отличается повышенной энергоемкостью, а погрешности получаемых данных особенно хорошо заметны в условиях невысокой нагрузки на сеть.
Электронные приборы учёта
Модельный ряд электронных приборов отличается достаточно высокой стоимостью, которая вполне оправдана достойным качеством устройства, включая более высокий класс точности и способность функционировать в многотарифном режиме.
Принцип действия базируется на способе преобразования входных аналоговых сигналов в специальный цифровой код, расшифровываемый при помощи микроконтроллера.
Однофазный многофункциональный электронный счётчик электрической энергии DDS28U
Расшифрованные данные поступают на дисплей или так называемый оптический порт. Помимо высокой точности и многотарифной системы использования, к преимуществам можно отнести возможность ведения энергоучёта в двух направлениях, сохранение данных, возможность получения показаний в дистанционном режиме, а также долговечность и компактные размеры.
При выборе нужно учитывать основные недостатки таких моделей, которые представлены высокой чувствительностью к перепадам напряжения и отсутствием ремонтопригодности.
Гибридные приборы учёта
На сегодняшний день гибридные приборы учёта используются потребителями крайне редко. Такой промежуточный вариант счётчика электрической энергии имеет цифровой интерфейс, а измерительная часть устройства может быть представлена индукционным или электронным типом. Характерным является наличие механического вычислительного устройства.
Советы и рекомендации
На сегодняшний день в многоквартирных жилых домах и частном загородном секторе домовладений в основном устанавливаются однофазные приборы учёта электрической энергии, которые рассчитаны на стандартное напряжение в 220 В.Тем не менее, в условиях использования большого количества бытовых приборов с разными показателями мощности, рекомендуется отдавать предпочтение трехфазным счетчикам, что позволяет подключать энергоемкие устройства, которые рассчитаны на напряжение в 220 В и 380 В.
При выборе прибора нужно обязательно обращать внимание на расчётные показатели тока, а также класс точности, представленный наибольшей допустимой относительной погрешностью, выраженной в процентах.
Все вновь устанавливаемые трехфазные счетчики обязательно должны иметь пломбы государственной поверки, давность которых не превышает двенадцать месяцев. Срок давности пломбы на однофазном счетчике не может превышать два года.
Видео на тему
8.6 Расчёт годового потребления электроэнергии
Годовой расход электроэнергии электрооборудованием и осветительными установками проектируемого предприятия определяется по группам потребителей умножением расчётных активной (∑Pp) и реактивной (∑Qp) мощностей на годовое число использования максимума нагрузки, соответственно кВтч и кварч:
= ; (8.9)
= (8.10)
Где ∑WA, ∑ WP – годовой расход активной и реактивной энергий;
TMAX– годовое число часов использования максимума нагрузки, определяемое для силовой нагрузки умножением числа часов работы оборудования в год T на коэффициент использования максимальной нагрузки .
Расчётное годовое время Т для технологического, санитарно-технического оборудования и оборудования вспомогательных цехов составляют 3576 часов; время использования максимума осветительной нагрузки TMAX составляет при односменной работе оборудования TMAX = 2000 часов.
Результаты расчётов сведены в таблицу 8.6.
Таблица 8.6 – Расчёт годового потребления электроэнергии
Наименование потребителя | Pр, кВт | Qр, кВ Ар | T, ч | | TMAX, ч | Годовой расход электроэнергии | |
Wа, кВтч | Wр, кВАрч | ||||||
Технологическое оборудование | 195,15 | 171,73 | 3576 | 0,85 | 3400 | 663510 | 583882 |
Санитарно-техническое оборудование | 179,2 | 177,4 | 3576 | 0,50 | 2000 | 358400 | 354800 |
Окончание таблицы 8.6
Наименование потребителя | Pр, кВт | Qр, кВ Ар | T, ч | | TMAX, ч | Годовой расход электроэнергии | |
Wа, кВтч | Wр, кВАрч | ||||||
Оборудование вспомогательных цехов | 25,6 | 26,085 | 3576 | 0,40 | 1600 | 40960 | 41760 |
Освещение | |||||||
Лампы накаливания | 6,13 | – | 550 | – | 550 | 3910,5 | – |
Люминесцентные лампы | 91,78 | 69,73 | 550 | – | 550 | 50479 | 383515 |
Освещение наружное | 22,5 | – | – | – | 550 | 12375 | – |
Всего | 520,36 | 444,945 | 1129634,65 | 1018957 |
Годовое потребление электроэнергии составит WA= 1129634,65кВт·ч.
Лист
Коэффициент трансформации счетчика электроэнергии » АСД Екатеринбург
Разберемся, что такое, коэффициент трансформации. По сути это техническая величина. Все дело в следующем. В целях учета электроэнергии, потребленной крупным объектом (вроде жилой многоэтажки), появляется необходимость использования специализированного оборудования, понижающего мощность напряжения, передаваемого на контакты общедомового счетчика.
Эти приборы учета не соединяют, непосредственно с электрической сетью дома, в связи с невозможностью подключения большой мощности напряжения, через традиционный счетчик прямого включения (они не работают с большими токами).
Для того, чтобы не допустить выхода из строя счетчика, нужно уменьшить мощность подаваемого напряжения.
Для этих целей используют трансформаторы, их подбирают исходя из требуемого уровня нагрузки.
Коэффициент трансформации счетчика электроэнергии, изменяется в зависимости от смонтированного оборудования. Таким образом, прибор учета электроэнергии, работающий в паре с трансформатором, считывает нагрузку, пониженную в 30, 40 или 60 раз. Проще говоря, эти цифры и представляют собой коэффициенты трансформации.
Как определить коэффициент трансформации?
Часто бывает так, что на приобретенном трансформаторе, невозможно найти нужной информации, в частности данных, об уровне преобразования, подаваемого на него напряжения. Эта информация важна для выбора прибора учета электроэнергии. Обладая данными о коэффициенте трансформации используемого оборудования, можно понять, во сколько раз снижена электрическая нагрузка. Узнать эти показатели, можно проведя определенные расчеты.
Для этого, вам понадобиться выяснить уровень напряжения на вторичной обмотке. Далее цифры показателей тока, на первичной обмотке, делят на полученное значение (данные на вторичной обмотке). Таким образом, вы узнаете нужный вам коэффициент, для прибора учета электроэнергии.
Расчетный коэффициент учета, что это такое?
Для уточнения реального уровня электропотребления, необходимо снять показания с вашего прибора учета электроэнергии и умножить его на коэффициент трансформации трансформатора (то есть в 30,40 или 60 раз). Это будет выглядеть приблизительно следующим образом. На циферблате установленного у вас счетчика учета электроэнергии, показана цифра 60 кВт*ч. В доме используется трансформатор, понижающий напряжение в 20 раз (это коэффициент). Умножаем обе цифры (60*20=1200кВт*ч)
. Получившаяся цифра и есть реальный расход электроэнергии.
Разновидности приборов учета электроэнергии
Все существующие сегодня счетчики, разделяют по принципу их действия, бывают трехфазные и однофазные. К сети их подключают не напрямую, между ними, в цепи, в большинстве случаев, присутствует трансформатор. Но возможно и прямое включение. Для сетей с напряжением до 380В, применяют приборы учета электроэнергии от 5 до 20А. Мы уже знаем, что коэффициент трансформации, это разница между напряжением на входе в трансформатор, и напряжением на его выходе.
На электросчётчик попадает чистая электроэнергия, имеющая постоянное значение. Сегодня прибегают к использованию двух основных разновидностей приборов учета. До середины девяностых годов прошлого века, монтировали в основном счетчики индукционного типа. Они продолжают работать и сегодня, но постепенно идет замена их на электронные счетчики (это утверждение касается и общедомового счетчика).
Счетчик индукционного типа имеет устаревшую конструкцию. В основе его работы, взаимодействие магнитных полей, продуцируемых в индуктивных катушках и диске, который в процессе вращения считывает расход электричества. Недостаток этих приборов состоит в том, что они не в состоянии обеспечить многотарифный учет. К тому же, нет возможности удаленной передачи данных.
В основе работы электронных счетчиков, лежат микросхемы, они напрямую преобразуют считываемые сигналы. В этих устройствах нет вращающихся частей, что значительно повышает их надежность и долговечность службы. Проще говоря, коэффициент трансформации счетчика, оказывает прямое влияние на точность выдаваемых им данных.
Раньше, показатели точности составляли 2.5, но приборы учета, используемые сегодня, имеют класс точности, на уровне 2.0. Такие высокие данные точности, имеет именно оборудование электронного типа. Сегодня повсеместно устанавливают только электронные счетчики, которые уверенно вытесняют индукционные.
Главное преимущество, технологически продвинутого оборудования, состоит в том, что они являются многотарифными. Такое обстоятельство позволяет не только учитывать суточный уровень потребления электроэнергии, но также и в соответствии с порой года. Смена тарифов контролируется автоматикой и производится автономно, не требуя вмешательства человека.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter
Ещё больше интересного материала
что это такое и как его установить
Содержание статьи:
На крупных зданиях и объектах устанавливают специальные механизмы контроля электричества, которые рассчитаны на объемные показатели токов (свыше 100А). Поэтому есть необходимость установки понижающих трансформаторов. Для корректного снятия показаний со всех устройств нужен расчетный коэффициент учета электроэнергии.
Что такое коэффициент трансформации
Коэффициент может быть указан на специальной бирке, размещенной на корпусе счетчика или клеммной крышке
Коэффициент трансформации счетчика электроэнергии – это параметр технического назначения, который определяет точность показаний устройств учета потребляемой энергии.
Электросчетчики крупных объектов (промышленных, торговых, иных) не подключаются к общедомовой сети напрямую, потому что классические приборы не дают нужного уровня напряжения. Чтобы снизить вероятность поломки, необходимо снижать данные мощности на вход через установленные трансформаторы.
Расчетный коэффициент учета электроэнергии – это показатель, отражающий соотношение силы тока и данных счетчиков. При большом объеме потребляемого электричества приборы не отражают действительного количества, поэтому применяется дополнительный расчет. Цифра коэффициента – выше единицы на несколько пунктов. При умножении получается значение фактически потребленной электроэнергии.
Еще один момент – уровень трансформатора по погрешности. Счетчики энергии соответствуют 0,5 или 0,2. Чем выше значение, тем менее точные данные показывают устройства.
Формула для определения КТ
Расчет показаний электросчетчика с трансформаторами тока и соответствующими коэффициентами производится по определенной формуле. Результат отражает необходимое масштабирование – повышение или понижение данных. Другими словами – трансформатор изменяет уровень напряжения и показывает колебания в цифрах.
Чтобы понять, как правильно считать показания счетчика электроэнергии с трансформаторами тока, стоит разобраться с используемой формулой. В большинстве случае коэффициент трансформации шифруют английскими буквами k и n (другие символы встречаются реже). Если обозначение на трансформаторе k ˂ 1, значит, устройство работает на повышение, если k ˃ 1 – на понижение.
Общая формула следующая:
где: U1 – уровень напряжения на входе, U2 – уровень на выходе, N1 – первичная обмотка (число витков), N2 – вторичная обмотка (число витков).
Данная формула используется, если можно пренебречь показателями потерь в обмотках. В ином случае прибегают к следующим расчетам:
где: R1и R2 – данные по сопротивлению первичной и вторичной обмоток соответственно, I1 и I2 – уровень силы электроэнергии на соответствующих витках.
Для крупных объектов формулы могут быть сложнее указанных, чтобы расчеты учитывали все нюансы и детали потребления электроэнергии.
Коэффициент трансформации (учета) электросчетчика – это величина, на которую умножают показатели счетчиков, чтобы получить более корректные данные. Например, для домашних сетей – 20 единиц. Если использовать коэффициент и цифры с экрана счетчика, можно получить количество реально потребленной энергии.
Разновидности приборов учета электроэнергии
Устройства для подсчета электроэнергии – это многофункциональные механизмы, которые могут отражать текущее положение данных, сохранять и передавать важную информацию. На сегодняшний день используют три разных варианта счетных механизмов.
Механические или индукционные приборы учета
Однофазные индукционные счетчики электроэнергии
Классический тип устройств, который встречается чаще всего. Конструкция состоит из двух обычных катушек. Одна из них ограничивает данные переменного напряжения, предотвращая искажения и получая электрический ток. Вторая преобразует поток переменного напряжения.
Основные плюсы – простота в эксплуатации, долговечность устройств. Срок службы счетчиков подобного типа высокий, а стоимость – низкая. Минус – габариты механизма.
Механические приборы имеют большую погрешность, которая сильно заметна при использовании в сетях с невысоким напряжением.
Электронные приборы учета
Модульный трехфазный электронный электросчетчик
Устройства имеют более высокий уровень точности в подсчетах, но и цена их выше. Дополнительный плюс – возможность функционировать в нескольких режимах (например, утро и ночь, двух- и трехтарифные приборы).
Электронные счетчики преобразуют входящие аналоговые показатели в специальную цифровую кодировку, которые в свою очередь преобразуются небольшим микроконтроллером. Полученные данные можно увидеть на дисплее. Такие приборы стараются устанавливать все чаще, заменяя устаревшие механические модели.
Другие преимущества – компактный размер, возможность дистанционного контроля.
Гибридные приборы учета
Гибридный электросчетчик
Являются средним вариантом между счетчика электронного и механического типа работы. С одной стороны – устройства оснащают цифровым дисплеем для удобства. С другой – используют классический индукционный способ получения и обработки данных.
Гибридные устройства устанавливают редко, предпочитая аналоговые или электронные механизмы.
Полезные рекомендации
Электросчетчики позволяют посмотреть количество потребляемой энергии, чтобы адекватно оценить расход и посчитать итоговую оплату. Устройства различаются по классу точности, мощности, степени допустимой погрешности. Чтобы получить точные данные, снимают показания, с помощью коэффициента и калькулятора вычисляют фактическое потребление.
Для жилых домов в городской зоне и поселках используют небольшие устройства – однофазные счетчики (например, Меркурий 230 ART-03 CN, производство г. Москва) или многотарифные приборы, подходящие для сети в 220 Вольт или 120 Ампер.
Важно, чтобы каждое новое устройство имело пломбу проверки государственного образца. Без этого показания электросчетчика не будут считаться достоверными, и приниматься контролирующими органами. Выбирать подходящий счетчик и высчитывать фактические показатели можно самостоятельно или через контролеров.
Оценка реальной требуемой максимальной мощности (кВА). Коэффициент одновременности потребления электроэнергии
ГлавнаяРазноеКоэффициент одновременности потребления электроэнергииОценка максимальной нагрузки (кВА) — Руководство по устройству электроустановок
Все отдельные ЭП не обязательно работают при полной номинальной мощности и одновременно. Коэффициенты ku и ks позволяют определить максимальную полную мощность электроустановки.
Коэффициент максимального использования (ku)
В нормальных режимах работы потребление мощности обычно меньше номинальной мощности. Это довольно частое явление, которое оправдывает применение коэффициента использования (ku) при оценке реальных значений.
Этот коэффициент должен применяться для каждого ЭП, особенно для электродвигателей, которые крайне редко работают при полной нагрузке.
В промышленной установке этот коэффициент может оцениваться по среднему значению 0,75 для двигателей.
Для освещения лампами накаливания этот коэффициент всегда равен 1.
Для цепей со штепсельными розетками этот коэффициент полностью зависит от типа приборов, питаемых от штепсельных розеток.
Коэффициент одновременности (ks)
Практически одновременная работа всех ЭП определенной установки никогда не происходит, т.е. всегда существует некоторая степень разновременности, и этот факт учитывается при расчете путем применения коэффициента одновременности (ks).
Коэффициент ks применяется для каждой группы ЭП (например, запитываемых от главного или вторичного распределительного устройства). Определение этих коэффициентов входит в ответственность конструктора, поскольку требует детального знания установки и условий работы отдельных цепей. По этой причине невозможно дать точные значения для общего применения.
Коэффициент одновременности для жилой застройки
Некоторые типовые значения для этого случая приводятся на рис. A10 и применяются для бытовых потребителей с питанием 230/400 В (3-фазная 4-проводная сеть). В случае потребителей, использующих электрические обогреватели для отопления, рекомендуется коэффициент 0,8, вне зависимости от числа электроприемников (ЭП).
2 — 4 | 1 |
5 — 9 | 0,78 |
10 — 14 | 0,63 |
15 — 19 | 0,53 |
20 — 24 | 0,49 |
25 — 29 | 0,46 |
30 — 34 | 0,44 |
35 — 39 | 0,42 |
40 — 49 | 0,41 |
50 и более | 0,40 |
Рис. A10 : Значения коэффициента одновременности для жилой застройки
Пример (см. рис. A11):Пятитиэтажное жилое здание с 25 потребителями с установленной мощностью 6 кВА для каждого.
Общая установленная мощность для здания: 36 + 24 + 30 + 36 + 24 = 150 кВА.
Полная мощность, потребляемая зданием: 150 x 0,46 = 69 кВА.
С помощью рис. А10 можно определить величину тока в разных секциях общей питающей магистрали всех этажей. Для стояков, запитываемых на уровне первого этажа, площадь поперечного сечения проводников может постепенно снижаться от нижних к верхним этажам.
Как правило, такие изменения сечения проводника производятся с минимальным интервалом в 3 этажа.
В этом примере, ток, поступающий на стояк на уровне первого этажа, равен:
Ток, поступающий на 4-й этаж, равен:
Рис. A11 : Применение коэффициента одновременности (ks) для жилого 5-этажного здания
Коэффициент одновременности для распределительных устройств
Рис. A12 показывает теоретические значения ks для распределительного устройства, запитывающего ряд цепей, для которых отсутствует схема распределения нагрузки между ними.
Если цепи служат в основном для осветительных нагрузок, целесообразно принять значения ks, близкие к единице.
Информация имеется, 2 и 3 | 0,9 |
4 и 5 | 0,8 |
6 — 9 | 0,7 |
10 и более | 0,6 |
Информации нет | 1,0 |
Рис. A12 : Коэффициент одновременности для распределительных устройств (МЭК 60439)
Коэффициент одновременности в зависимости от назначения цепи
Значения коэффициента ks, которые могут использоваться для цепей, питающих стандартные нагрузки, приводятся на рис. A13.
Освещение | 1 | |
Отопление и кондиционирование воздуха | 1 | |
Штепсельные розетки | 0,1 — 0,2 [1] | |
[2] |
| 10,750,60 |
[1] В определенных случаях, в частности, для промышленных установок, этот коэффициент может быть выше.[2] Учитываемый ток равен номинальному току двигателя, увеличенному на треть его пускового тока.
Рис. A13 : Коэффициент одновременности в зависимости от назначения цепи
ru.electrical-installation.org
Возраст детей : На практике, отдельные нагрузки не обязательно работают на полной мощности или одновременно. Коэффициенты ku и ks позволяют определить потребности в максимальной и полной мощности, которые реально требуются для определения параметров электроустановки. Коэффициент максимального использования (ku) При нормальных рабочих условиях, потребление мощности отдельным потребителем нагрузки иногда меньше, чем номинальная мощность, указанна |