виды, принцип действия, как выбрать
Способов очищения сточных вод существует немало. При обустройстве автономных канализационных сетей помимо установки привычных фильтров, способных отсеивать вредные вещества и делать при этом воду чище, все чаще применяют осадительный метод очистки – коагуляцию.
Мы расскажем, по какому принципу работает коагулянт для очистки воды. В предложенной к ознакомлению статье подробно описаны все применяемые на практике разновидности. Вы узнаете, что надо учитывать при выборе средства и как правильно его использовать.
Содержание статьи:
Принцип работы коагулянтов
Коагуляция – метод очистки воды путем сцепления загрязняющих дисперсных веществ для последующего удаления механическим методом, фильтрацией. Объединение загрязняющих частиц происходит благодаря введению коагулирующих реагентов, создающих условия для простейшего устранения связанных загрязнителей из очищаемой воды.
Термин «coagulatio» в переводе с латинского обозначает «сгущение» или «свертывание». Сами коагулянты представляют собой вещества, способные за счет химической реакции создавать нерастворимые и малорастворимые соединения, которые проще и легче вывести из состава воды, чем дисперсные компоненты.
Галерея изображений
Фото из
Вещества для химической фильтрации
Принцип действия коагулянтов по очистке воды
Использование в независимых очистных сооружениях
Использование на промышленных предприятиях
Сфера применения в бытовых условиях
Предупреждение цветения воды
Приготовление раствора для бассейна
Очистка воды для аквариумов
Принцип работы веществ построен на том, что их молекулярная форма имеет положительный заряд, в то время как большинство загрязнений – отрицательный. Присутствие двух отрицательных зарядов в строении атомов грязных частиц не позволяет им соединяться вместе. По этой причине грязная вода всегда приобретает мутность.
В момент внесения в жидкость небольшой порции коагулянта вещество начинает подтягивать к себе присутствующие в ней взвеси. Как результат: с увеличением интенсивности рассеиваемого света жидкость на короткий промежуток времени становится более мутной. Ведь одна молекула коагулянта с легкостью может притянуть к себе несколько молекул грязи.
Коагулянты провоцируют образование устойчивых связей между мелкими частицами загрязнений и присутствующих в воде микробов
Притянувшиеся молекулы грязи начинают вступать с коагулянтом в реакцию, вследствие которой объединяются в большие сложно-составные химические соединения. Малорастворимые высокопористые вещества постепенно оседают на дно в виде белого осадка.
Задача хозяина состоит лишь в том, чтобы вовремя убирать осадок, применяя любой из доступных ему типов фильтрации.
Молекулы, притягивающиеся друг к другу, образуют крупные частицы, которые за счет своего увеличившегося веса оседают, а затем выводятся путем фильтрации
Об эффективности действия препарата можно судить по образованию на дне осадка в виде белых хлопьевидных образований – флокул. Благодаря этому термин «флокуляция» нередко используют в качестве синонима понятия «коагуляция».
Образующиеся хлопья, размер которых может достигать от 0,5 до 3,0 мм, имеют большую поверхность, обладающую высокой сорбцией осаждаемых веществ
Кроме очистки сточной воды коагулянты применяются в , в водоподготовке технической и питьевой воды в регионах с ограниченными водными ресурсами. Рекомендуем ознакомиться с возможностями коагулирующих химсоставов, особенности которых описаны на нашем сайте.
Применение реагентов: за и против
Эффективность современного оборудования по нейтрализации примесей в сточных водах не способна достигнуть максимального уровня без задействования реагентов.
Современные коагулянты позволяют существенно повысить интенсивность и качество процесса очистки сточных вод. Высокая стоимость реагентов окупается рядом преимуществ, которыми они обладают.
Среди неоспоримых достоинств применения синтетических коагулянтов стоит выделить:
- эффективность;
- доступная стоимость;
- высокое качество очистки;
- универсальность применения.
Сточные воды представляют собой устойчивую агрессивную систему. И разрушить ее, сформировав крупные частицы с тем, чтобы в последующем вывести их путем фильтрации, помогает коагуляция.
Применение реагентов дает хорошие результаты по выведению из стоков взвешенных и коллоидных частиц.
По сути частицы коагулирующей фазы, сформированной под действием коагулянтов, являются одновременно и центром хлопьеобразования и утяжелителем
Но осадительный метод с применением реагентов не лишен недостатков. К числу таковых стоит отнести:
- необходимость строгого соблюдения дозировки;
- образование большого объема вторичных отходов, которые нуждаются в дополнительной фильтрации;
- трудоемкость налаживания процесса собственными силами.
В промышленных масштабах процессы коагуляции задействуются повсеместно, они поставлены на поток. Для налаживания системы в домашних условиях придется приобретать специальные установки, стоимость которых довольно высока.
Большинство хозяев решают этот вопрос путем применения отдельных коагулянтов бытового типа, которые продаются в небольших по объему емкостях.
Действующие вещества просто добавляют в жидкость, а затем отфильтровывают выпавший на дне осадок; но этот процесс довольно трудоемок и потому на его реализацию затрачивается много времени
В ряде случаев коагуляция может осуществляться непосредственно в . Для этого реагент вводят в участок трубопровода с подлежащей обработке жидкостью перед местом подачи ее на фильтр. И в этом случае в фильтрационную систему поступают уже инородные частицы, «преобразованные» в хлопья.
Основные виды коагулянтов
Существует много разновидностей коагулянтов. Подробно перечислять их формулы в статье мы не станем. Рассмотрим лишь две основные группы, которые в зависимости от исходного сырья делятся на органические и неорганические.
Одна категория коагулянтов способна обезжелезивать воду и выводить из нее соли алюминия, другая – повышать либо понижать кислотный показатель pH, некоторые реагенты – оказывать комплексный эффект
Сегодня производством коагулянтов занимаются многие отечественные и зарубежные компании. Выпускаемые ими реагенты нового поколения отличаются от коагулянтов, выпускаемых еще при Советском Союзе, улучшенными техническими характеристиками.
Галерея изображений
Фото из
Поставка в виде растворов
Концентрированный формат поставки
Порошкообразный формат
Таблетированные средства для очистки
Органические природные вещества
Они представляют собой специально созданные реагенты, которые путем ускорения слипания присутствующих в воде агрессивно неустойчивых частиц способствуют облегчению процессов, связанных с их отделением и осаждением. Органика помогает стимулировать объединение загрязнителей в плотные суспензии и эмульсии, облегчающие процесс их вывода из воды.
Высокомолекулярные вещества хорошо борются с хлором и эффективно устраняют неприятные «ароматы» в жидкости, к примеру: часто присутствующий в ожелезненной жидкости запах сероводорода
При взаимодействии с молекулами загрязнений органические коагулянты значительно уменьшаются в своих размерах. По завершении реакции они выпадают в виде небольшого количества осадка.
Благодаря минимизации объема скапливаемого на дне емкости осадка намного проще и быстрее отфильтровать. При этом уменьшенное количество осадка никоим образом не сказывается на качестве очистки.
Из-за ограниченности сырьевой базы природные реагенты не нашли широкого применения при очистке сточных вод в промышленных масштабах. Но для бытовых целей их используют часто.
Синтетические коагулирующие соединения
Эти типы реагентов создаются на основе минеральных и синтетических элементов. Полимеры способствуют образованию высокого катиодного заряда, стимулируя тем самым быстрое появление хлопьев. Они отлично взаимодействуют с водой, оказывая на нее комплексный эффект: умягчая ее структуру, а также избавляя от грубых примесей и солей
Наибольшее распространение получили соли поливалентных металлов, созданные на основе железа или алюминия. Железо применяют для грубой очистки.
Флокулянты – вторичные коагулянты, превращающие суспензии и эмульсии в хлопья, используются в паре с первичными коагулянтами. Тандем способен очищать как малые порции бытовых отходов, так и большие объемы, создаваемые промышленными предприятиями
Среди железных составов самыми популярными считаются:
- хлорное железо – гигроскопичные кристаллы, имеющие темный металлический блеск, отлично устраняют крупные частицы загрязнений и легко выводят запах сероводорода;
- сульфат железа – кристаллический гигроскопичный продукт хорошо растворяется в воде и эффективен при очистке канализационных стоков.
За счет низкого уровня вязкости при малой молекулярной массе такие реагенты отлично растворяются в любом типе обрабатываемой жидкости.
Из коагулянтов, созданных на основе алюминия, наибольшее распространение получили:
- оксохлорид алюминия (ОХА) – применяют для обработки воды с повышенным содержанием органических природных веществ;
- гидроксохлорсульфат алюминия (ГСХА) – отлично справляется с природными отложениями сточных вод;
- сульфат алюминия – неочищенный технический продукт в виде кусков серо-зеленого цвета применяют для очистки питьевой воды.
В прежние годы полимеры применяли лишь в качестве добавки к неорганическим коагулянтам, используя их в качестве стимуляторов, способствующих ускорению образованию хлопьев. Сегодня эти реагенты все чаще применяют как основные, заменяя ими неорганические.
Если сравнивать органические и синтетические вещества, то первые выигрывают в том, что действуют намного быстрее. К тому же они способны функционировать практически в любой щелочной среде и не вступают во взаимодействие с хлором.
Для адсорбции растворенных в воде солей, ионов тяжелых металлов и других взвесей порция органического реагента потребуется в разы меньше, чем синтетического аналога (+)
Органические действующие соединения выигрывают и в том, что не изменяют показатель pH в воде. Это позволяет их использовать для очистки воды, где присутствуют колонии планктона, растут водоросли и крупные микроорганизмы.
Рекомендации по выбору средств
К выбору коагулянта для очистки стоков необходимо подходить очень внимательно. Ведь, хоть вещество и не несет опасности здоровью человека, но по своему действию имеет довольно узкую специализацию.
Подбирая коагулянт для очистки стоков, можно воспользоваться и справочными пособиями, но перед приобретением расходного материала все же стоит проконсультироваться с профессионалами, специализирующимися в сфере водоочистки.
Чтобы уберечь себя от разочарований в случае низкой эффективности применения коагулянта, рекомендуем предварительно сдать воду на анализ. Лабораторные исследования дадут представления о составе и помогут определиться с наиболее подходящим видом обработки.
Зная состав загрязненной воды, намного проще будет подобрать оптимальный вариант коагулянта, который поможет быстро решить проблему
Коагулянты – довольно специфические субстанции. В одних случаях они способны отторгать элементы воде, в других, напротив, усиливать свое действие. К примеру, применение действующего вещества, созданного на основе сульфата алюминия и железа, способно казать тройной эффект: очистить содержимое, а также обезжелезить его и существенно умягчить.
При использовании любого вида коагулянта главное – придерживаться рекомендованной производителем дозировки. Слишком малая порция действующего вещества спровоцирует реакцию, но она будет протекать не так интенсивно, как необходимо для должной очистки. Осадок будет выпадать медленно, а жидкость не очистится от вредных примесей.
Кроме того при нарушении дозировки хлопья начинают осаждаться неравномерно. В связи с этим в воде образуется много микрохлопьев, которые за счет малых размеров не улавливаются фильтрами.
Действующие реагенты на рынке представлены в виде гранул, фракций и кусков, а также небольших бесформенных пластинок
Чтобы упростить задачу расчета необходимого объема действующего вещества производители выпускают коагулянты в упаковках, оборудованных дозаторами, не забывая приложить к ним подробную инструкцию по применению.
Условия для протекания процесса
Максимальная эффективность очистки сточных вод достигается путем комплексного подхода решения проблемы. Поэтому при обустройстве автономных очистных сооружений коагуляцию применяют в комплексе с механической и биологической очисткой.
Для этого возводят конструкции, состоящие из вертикальных отстойников, разделенных перегородками. Благодаря этому стоки проходят многоступенчатую очистку. Сначала они отстаиваются, затем очищаются путем переработки бактериями, после чего поступают в камеру, где вступают в процесс коагуляции и на завершающем этапе фильтруются.
Коагулянт может располагаться в отдельном пластиковом контейнере, подвешенном в чаше унитаза, благодаря чему при каждом смыве частички реагента попадают вместе со стоками в систему
Установку специализированного оборудования, расчет примерной дозы расходных материалов и первоначальный контроль на всех этапах за процессом очистки стоков лучше поручить профессионалам.
Схема коагуляции включает три основных этапа:
- Внесение коагулянта в загрязненную жидкость.
- Создание условий для максимального взаимодействия действующего реагента с примесями.
- Отстаивание с последующей фильтрацией осевших частиц.
Необходимым условием протекания коагуляции является равенство частиц с противоположным зарядом. Поэтому, чтобы обеспечить достижение желаемого результата, получив наибольшее снижение мутности стоков, так важно соблюдать концентрацию используемого реагента.
При использовании коагулянтов для очистки сточных вод следует учитывать, что эти вещества работают только при плюсовой температуре.
Рабочий диапазон реагентов варьируется в пределах от 10 до 40°С, и в случае превышения температуры выше этого показателя реакция начинает протекать намного медленнее
Поэтому так важно обеспечивать стабильность прогрева обрабатываемой воды.
Для ускорения процесса коагулирования в состав воды можно добавлять вещества, способные образовывать коллоидные дисперсионные системы – флокулянты. Для этой цели чаще всего используют: крахмал, полиакриламид, активированный силикат. Они будут адсорбироваться на хлопьях коагулянта, превращая их в более прочные и крупные агрегаты.
Флокулянт вводят в зону контактной среды спустя 1-3 минуты с момента ввода коагулянта. К этому времени процессы образования микрохлопьев и следующая за ними сорбция осаждающих веществ завершаются.
Количество осадка, выпадающего в контактных резервуарах, зависит от типа используемого реагента и степени предварительной очистки подлежащих обработке стоков.
В среднем после механической очистки объем осадка из расчета на одного человека в сутки составляет порядка 0,08 литра, после прохождения биофильтров – 0,05 л, а после обработки в аэротенке – 0,03 литра. Его необходимо лишь вовремя удалять по мере наполняемости резервуара.
Выводы и полезное видео по теме
Принцип действия коагулянта:
Видео-презентация бытовых коагулирующих продуктов:
Применяя методику коагуляции, вы получите прекрасную возможность добиться высоко результата при небольших вложениях. Грамотно подойдя к выбору реагента и создав необходимые условия для его эксплуатации, не составит труда очистить сточные воды сразу от множества примесей и загрязнений.
Появились вопросы в процессе ознакомления с представленной нами информацией? Знаете тонкости применения коагулянтов на практике? Пожалуйста, делитесь знаниями и впечатлениями, а также задавайте вопросы в расположенном ниже блоке.
Коагулянт для очистки сточной воды
Здесь вы узнаете:
Выбор систем водоочистки сегодня большой. Один из вариантов — коагулянты для очистки воды. Существует два основных вида — органические и синтетические соединения.
Назначение коагуляции
Коагуляцией называют специальный метод очистки питьевой и сточной воды. Сами коагулянты – это вещества, которые имеют интересные особенности и способны на химическую реакцию.
Если посмотреть на их молекулярную форму, то можно понять, что все они имеют положительный заряд. В то время как большинство загрязнений в воде имеют отрицательный заряд.
Наличие двух отрицательных зарядов в атомах грязных частиц не дает им соединяться вместе. Именно поэтому грязная вода, в большинстве случаев, просто становится мутной.
Причем очистка ее с помощью стандартных фильтров ничего не даст, так как вы отфильтруете только максимально крупные загрязнения. А их в обычной питьевой воде не так уж и много.
Главные же проблемы, например, присутствие возбудителей болезней, микробов и избыток других микроорганизмов, решить таким способом не удастся.
В итоге получается, что питьевой эта вода после фильтрации не становится. Она просто немного очищается. Но достаточно ли простого очищения от крупных примесей? В большинстве случаев нет.
Проблема усугубляется, когда необходимо обеспечить очистку не питьевой воды, а сточных вод. Сточные воды, как вы все наверняка знаете, тоже проходят циклы фильтрации, так как это намного экономнее и эффективнее, чем сливать стоки и набирать воду по новой. Да и экология от таких действий страдает не в пример меньше.
Однако в сточных водах процент загрязнения намного больше. А значит, и очищать их нужно намного тщательнее.
Склад коагулянтов на промышленном предприятии
Именно для таких целей и пользуются коагуляцией. Коагулянты, за счет своего положительного заряда атомов и особенной структуры, провоцируют образование устойчивых связей между микробами и мелкими частицами в воде.
При попадании в жидкость достаточного количества коагулянта, она начинает сначала немного мутнеть, а затем на дне образовывается белый осадок.
Используют коагулянты преимущественно для очистки сточных вод. Хотя, существуют и бытовые вещества, которые с успехом применяют для дезинфекции питьевой воды.
Сфера применения и особенности
Существуют разные способы очистки сточных вод от примесей: фильтрация, отстаивание, химическая очистка, электрическая очистка, термическая обработка.
Эти способы нашли применение в разных отраслях, но наиболее распространенными и эффективными из них можно считать фильтрацию и химическую обработку.
Размеры частиц взвеси в воде могут быть настолько малы, что фильтрация становится либо невозможной, либо слишком дорогой. В отдельных случаях приходится идти на повышение расходов, но, чаще всего эта мера оказывается нерентабельной. Например, владелец частного бассейна едва-ли захочет тратиться на специальное очистное сооружение, но обычный фильтр не справляется с задачей настолько успешно, насколько требуется, поэтому хозяину придется немного «помочь» простому фильтру с помощью современной химии.
Коагуляция — это особый процесс, который можно охарактеризовать словом укрупнение. То есть, при добавлении в состав мутной грязной воды определенного вещества, все частицы, которые в ней плавают и создают муть, начнут объединяться в более крупные агломерации, и, в конце, станут достаточно большими, чтобы осесть в виде хлопьев и отфильтроваться.
В разных сферах хозяйства и быта используют разные типы коагулянтов. Их можно разделить на две большие группы: минеральные и органические.
Важно! Органические коагулянты стоят дороже и применяются, чаще всего, для очистки питьевой воды. Они демонстрируют несколько лучшие показатели, нежели неорганические соединения, однако, зачастую их применение менее рентабельно.
В случае очистки промышленных стоков, различных теплоносителей и циркулирующих сред, бассейнов и водоемов применяют неорганические коагулянты:
- Хлорное железо. Сильный корродант и токсин, применяется в промышленности.
- Железа сульфат. Используется в промышленности для очистки стоков, в коммунальном хозяйстве для подготовки воды, а также в медицине для остановки крови.
- Сульфат алюминия. Подходит для очистки питьевой, хозяйственной и технической воды различного назначения.
- Алюминия оксихлорид. Данная соль – гидроксохлорид – хороша при очистке сточных вод, резервуаров, бассейнов, водоемов.
- Гидроксохлоросульфат алюминия. Это смесь на основе сульфата алюминия. Является прекрасным препаратом для обработки паводковых грязных вод при температурах ниже +12˚ С.
Эти вещества отличаются сравнительно невысокой ценой, доступностью, безопасностью и простотой использования.
Суть процесса коагуляции
Химия процесса коагуляции затрагивает широкое поле научных знаний, понимание которых потребует определенного уровня специальной подготовки. Мы опустим околонаучные подробности и постараемся донести самую суть.
Как действуют коагулянты 1
Как действуют коагулянты 2
Как действуют коагулянты 3
Итак, у нас есть определенный объем воды, загрязненный коллоидными частицами. Частицы эти настолько мелкие, что их пропускает песчаный фильтр. Более того, их размеры так малы, что они не могут осесть на дно: броуновское движение молекул заставляет эти частицы постоянно пребывать во взвешенном состоянии.
Внимание! Еще раз: в воде плавают мельчайшие соринки, которые выглядят как муть. Они проходят сквозь фильтр и не оседают на дно, так как молекулы воды непрерывно «толкают» их с разных сторон, приводя в движение. В результате невозможно ни отфильтровать воду, ни осадить грязь на дно.
Эти частицы не только не оседают и не фильтруются, они также отказываются слипаться в более крупные образования. Это вызвано тем, что они имеют одинаковый заряд и отталкиваются в результате действия сил электростатического взаимодействия.
Здесь мы подходим к сути процесса коагуляции: после введения специального реагента свойства частиц меняются, они теряют свой заряд, а взвесь начинает слипаться в более крупные комки. В результате устранения эффекта электростатического отталкивания частицы сближаются достаточно для того, чтобы начали действие силы притяжения.
Сближению также препятствует пространственный объем молекул или атомных групп, которые, находясь в непосредственной близости от реагирующих атомов в молекуле, могут не давать этим атомам сойтись и прореагировать. Данный эффект нивелируется добавлением солей и изменением кислотности среды.
В итоге, коагулянты не меняют химический состав примесей или воды. Основная характеристика, на которую направлено их воздействие – это размеры частиц. После добавления, скажем, хлорного железа, отдельные корпускулы теряют заряд и начинают слипаться в хлопья, которые затем можно собрать или отфильтровать.
Важно! Суть процесса коагуляции заключается в том, чтобы сделать мельчайшие частицы достаточно крупными для того, чтобы они осели на дно, или их задержал фильтр. Это наиболее короткое и простое объяснение.
Условия для протекания процесса
Максимальная эффективность очистки сточных вод достигается путем комплексного подхода решения проблемы. Поэтому при обустройстве автономных очистных сооружений коагуляцию применяют в комплексе с механической и биологической очисткой.
Для этого возводят конструкции, состоящие из вертикальных отстойников, разделенных перегородками. Благодаря этому стоки проходят многоступенчатую очистку. Сначала они отстаиваются, затем очищаются путем переработки бактериями, после чего поступают в камеру, где вступают в процесс коагуляции и на завершающем этапе фильтруются.
Коагулянт может располагаться в отдельном пластиковом контейнере, подвешенном в чаше унитаза, благодаря чему при каждом смыве частички реагента попадают вместе со стоками в систему
Установку специализированного оборудования, расчет примерной дозы расходных материалов и первоначальный контроль на всех этапах за процессом очистки стоков лучше поручить профессионалам.
Схема коагуляции включает три основных этапа:
- Внесение коагулянта в загрязненную жидкость.
- Создание условий для максимального взаимодействия действующего реагента с примесями.
- Отстаивание с последующей фильтрацией осевших частиц.
Необходимым условием протекания коагуляции является равенство частиц с противоположным зарядом. Поэтому, чтобы обеспечить достижение желаемого результата, получив наибольшее снижение мутности стоков, так важно соблюдать концентрацию используемого реагента.
При использовании коагулянтов для очистки сточных вод следует учитывать, что эти вещества работают только при плюсовой температуре.
Рабочий диапазон реагентов варьируется в пределах от 10 до 40°С, и в случае превышения температуры выше этого показателя реакция начинает протекать намного медленнее
Поэтому так важно обеспечивать стабильность прогрева обрабатываемой воды.
Для ускорения процесса коагулирования в состав воды можно добавлять вещества, способные образовывать коллоидные дисперсионные системы – флокулянты. Для этой цели чаще всего используют: крахмал, полиакриламид, активированный силикат. Они будут адсорбироваться на хлопьях коагулянта, превращая их в более прочные и крупные агрегаты.
Флокулянт вводят в зону контактной среды спустя 1-3 минуты с момента ввода коагулянта. К этому времени процессы образования микрохлопьев и следующая за ними сорбция осаждающих веществ завершаются.
Количество осадка, выпадающего в контактных резервуарах, зависит от типа используемого реагента и степени предварительной очистки подлежащих обработке стоков.
В среднем после механической очистки объем осадка из расчета на одного человека в сутки составляет порядка 0,08 литра, после прохождения биофильтров – 0,05 л, а после обработки в аэротенке – 0,03 литра. Его необходимо лишь вовремя удалять по мере наполняемости резервуара.
Виды коагулянтов для очистки воды
Существует несколько разновидностей коагулянтов. Перечислять все эти вещества и их формулы мы сейчас не будем, так как на это может уйти огромное количество времени. Однако несколько самых популярных групп назвать все-таки стоит.
Коагулянты бывают:
- Органическими;
- Неорганическими.
Органические вещества – это специально выведенные полимеры или другие подобные элементы, которые способствуют очистке жидкости методом коагуляции. Неорганические же, как можно понять из названия, относятся к синтетике и минеральным элементам.
Если же говорить о составах, что чаще всего применяются в быту и промышленности, то они друг от друга мало чем отличаются.
В большинстве случаев пользуются коагулянтами на основе алюминия или железа. Железо применяется для грубой очистки сточных вод и отходов промышленных предприятий. Оно доступно, эффективно и выполняет свою работу качественно.
Самыми популярными из железных составов считаются:
- Сульфат железа;
- Хлорное железо.
Неочищенный сульфат алюминия для промышленного применения
Первый образец используется для очистки сточных вод из канализации, а вторым хорошо выводится запах сероводорода и крупные частицы загрязнений.
Из алюминиевых коагулянтов отметить стоит:
- Сульфат алюминия;
- Гидроксохлорид алюминия;
- Гидроксохлоросульфат алюминия (ГСХА)
Первая разновидность встречается чаще всего и используется для очистки питьевой воды. Второй и трети коагулянт больше применим для работы со сточными водами, природными отложениями и т.д.
Преимущества органических и неорганических коагулирующих препаратов
Все средства, используемые для очистки грязной или помутневшей воды, можно подразделить на органические и неорганические. К преимуществам органических коагулянтов можно отнести:
- Долгосрочность эффекта;
- Высокое качество коагуляции;
- Снижение остаточного содержания солевых составляющих;
- Низкое остаточное содержание металлов;
- Быстроту образования хлопьев.
Попадая в почву, такой реагент не вызывает нарушений в структуре окружающей среды. Из-за удобства и скорости растворения таких веществ, не требуется длительное перемешивание. Дополнительные средства для защиты при использовании коагулянтов органического типа не требуются, но вот руки и глаза при работе с реагентами лучше все же защитить.
Популярными используемыми неорганическими реагентами можно считать:
- Диоксид титана;
- Сульфат алюминия;
- Сульфат железа.
Первый вариант отличается самой высокой эффективностью очистки водной среды. Он обладает сильным бактерицидным действием. Препарат, созданный на основе этого активного вещества, можно использовать без предварительного хлорирования воды. Диоксид титана уменьшает время отстаивания, что выгодно отличает его от других соединений. Высокая стоимость этого средства делает его менее популярным среди наших соотечественников. После применения препарата на основе этого реагента, вода становиться питьевой, что в большинстве случаев является неподходящим для бассейнов. Жители загородных коттеджей предпочитают бюджетные варианты.
Сульфат алюминия можно разводить в воде без применения длительного отстаивания, а стоимость его намного ниже предыдущего вида очистителя. Препараты на основе этого реагента чувствительны к наличию в воде щелочных или кислотных составляющих. При низком температурном режиме использовать препарат для очистки воды не рекомендуется.
Оптимальным вариантом в ценовом сегменте и эффективности очистки воды является сульфат железа. Применение препаратов на его основе позволяет устранить маслянистые пятна, неприятный запах сероводорода и снизить содержание тяжелых металлов в водной среде. Недостатком такого средства станет неполного его растворение. В воде может оставаться небольшой процент осадка реагента.
Недостатки метода
По сути частицы коагулирующей фазы, сформированной под действием коагулянтов, являются одновременно и центром хлопьеобразования и утяжелителем
Осадительный метод с применением реагентов не лишен недостатков. К числу таковых стоит отнести:
- необходимость строгого соблюдения дозировки;
- образование большого объема вторичных отходов, которые нуждаются в дополнительной фильтрации;
- трудоемкость налаживания процесса собственными силами.
В промышленных масштабах процессы коагуляции задействуются повсеместно, они поставлены на поток. Для налаживания системы в домашних условиях придется приобретать специальные установки, стоимость которых довольно высока.
Большинство хозяев решают этот вопрос путем применения отдельных коагулянтов бытового типа, которые продаются в небольших по объему емкостях.
Действующие вещества просто добавляют в жидкость, а затем отфильтровывают выпавший на дне осадок; но этот процесс довольно трудоемок и потому на его реализацию затрачивается много времени
В ряде случаев коагуляция может осуществляться непосредственно в механической фильтрационной системе. Для этого реагент вводят в участок трубопровода с подлежащей обработке жидкостью перед местом подачи ее на фильтр. И в этом случае в фильтрационную систему поступают уже инородные частицы, «преобразованные» в хлопья.
Рекомендации по выбору средств
К выбору коагулянта для очистки стоков необходимо подходить очень внимательно. Ведь, хоть вещество и не несет опасности здоровью человека, но по своему действию имеет довольно узкую специализацию.
Подбирая коагулянт для очистки стоков, можно воспользоваться и справочными пособиями, но перед приобретением расходного материала все же стоит проконсультироваться с профессионалами, специализирующимися в сфере водоочистки.
Чтобы уберечь себя от разочарований в случае низкой эффективности применения коагулянта, рекомендуем предварительно сдать воду на анализ. Лабораторные исследования дадут представления о составе и помогут определиться с наиболее подходящим видом обработки.
Зная состав загрязненной воды, намного проще будет подобрать оптимальный вариант коагулянта, который поможет быстро решить проблему
Коагулянты – довольно специфические субстанции. В одних случаях они способны отторгать элементы воде, в других, напротив, усиливать свое действие. К примеру, применение действующего вещества, созданного на основе сульфата алюминия и железа, способно казать тройной эффект: очистить содержимое, а также обезжелезить его и существенно умягчить.
При использовании любого вида коагулянта главное – придерживаться рекомендованной производителем дозировки. Слишком малая порция действующего вещества спровоцирует реакцию, но она будет протекать не так интенсивно, как необходимо для должной очистки. Осадок будет выпадать медленно, а жидкость не очистится от вредных примесей.
Кроме того при нарушении дозировки хлопья начинают осаждаться неравномерно. В связи с этим в воде образуется много микрохлопьев, которые за счет малых размеров не улавливаются фильтрами.
Действующие реагенты на рынке представлены в виде гранул, фракций и кусков, а также небольших бесформенных пластинок
Чтобы упростить задачу расчета необходимого объема действующего вещества производители выпускают коагулянты в упаковках, оборудованных дозаторами, не забывая приложить к ним подробную инструкцию по применению.
Кто делает лучшие коагулянты: производство и распространение
Производители коагулянтов составляют солидный список, их число выросло в последнее время и составляет более 15 по стране. Для сравнения: на всей территории бывшего Советского Союза пребывало только 12 производств. Современная Россия обеспечивает свои нужды в коагулянтах на 95% за счет внутреннего производства.
В РФ выпускают неорганические препараты. Так произошло по причине экономических реалий времени возведения заводов и определенной конфигурации сырьевой базы, характерной для нашей страны. Исторически сложилось так, что первое место занимает приготовление коагулянтов на основе алюминия, а именно – оксихлорида и сульфата алюминия, а также алюмината натрия.
Рассмотрим их отличия:
Как следует из таблицы, алюминат натрия дает самую высокую концентрацию оксида алюминия, это значит, что данный раствор покажет самую высокую активность в процессе очистки воды от взвеси. При этом плотность примесей также самая большая, а это значит, что после обработки в воде могут оставаться лишние компоненты. Следуя аналогичной логике, мы придем к выводу, что наиболее приемлемым вариантом будет оксихлорид алюминия (другие названия: хлоргидроксид алюминия, ОХА, полиалюминия гидрохлорид), который демонстрирует оптимальное соотношение содержания алюминия и примесей.
Важно! Подбор конкретного вещества производится исходя из назначения воды, степени её загрязнения, температуры и способа очистки. ОХА используют для очистки холодной воды с высоким содержанием органических примесей природного происхождения.
Далее мы рассмотрим и сравним пять лучших производителей коагулянтов в России:
Одним из наиболее распространенных и эффективных средств для ухода за бассейном является оксихлорид алюминия. Это вещество особенно хорошо работает при невысоких температурах воды, в пределах +10 ˚С, и хорошо удаляет органические примеси. Именно ОХА содержится в большинстве современных коагулянтов для бассейна.
Коагулянты ? всё, что нужно знать про очистку воды
СОДЕРЖАНИЕ СТАТЬИ
Коагулянты для очистки воды: сфера применения и особенности
Что же это за химия такая — спросит читатель, ответ прост: коагулянты. Именно это вещество применяют для очистки воды от взвешенных частиц. Существуют разные способы очистки сточных вод от примесей: фильтрация, отстаивание, химическая очистка, электрическая очистка, термическая обработка.
Эти способы нашли применение в разных отраслях, но наиболее распространенными и эффективными из них можно считать фильтрацию и химическую обработку.
Размеры частиц взвеси в воде могут быть настолько малы, что фильтрация становится либо невозможной, либо слишком дорогой. В отдельных случаях приходится идти на повышение расходов, но чаще всего эта мера оказывается нерентабельной. Например, владелец частного бассейна едва-ли захочет тратиться на специальное очистное сооружение, но обычный фильтр не справляется с задачей настолько успешно, насколько требуется, поэтому хозяину придется немного «помочь» простому фильтру с помощью современной химии.
«Что же это за химия такая?» — спросит читатель. Ответ прост: коагулянт. Именно это вещество применяют для очистки воды от взвешенных частиц.
Коагуляция — это особый процесс, который можно охарактеризовать словом укрупнение. То есть, при добавлении в состав мутной грязной воды определенного вещества, все частицы, которые в ней плавают и создают муть, начнут объединяться в более крупные агломерации, и, в конце, станут достаточно большими, чтобы осесть в виде хлопьев и отфильтроваться.В разных сферах хозяйства и быта используют разные типы коагулянтов. Их можно разделить на две большие группы: минеральные и органические.
Важно! Органические коагулянты стоят дороже и применяются, чаще всего, для очистки питьевой воды. Они демонстрируют несколько лучшие показатели, нежели неорганические соединения, однако, зачастую их применение менее рентабельно.
В случае очистки промышленных стоков, различных теплоносителей и циркулирующих сред, бассейнов и водоемов применяют неорганические коагулянты:
- Хлорное железо. Сильный корродант и токсин, применяется в промышленности.
- Железа сульфат. Используется в промышленности для очистки стоков, в коммунальном хозяйстве для подготовки воды, а также в медицине для остановки крови.
- Сульфат алюминия. Подходит для очистки питьевой, хозяйственной и технической воды различного назначения.
- Алюминия оксихлорид. Данная соль – гидроксохлорид – хороша при очистке сточных вод, резервуаров, бассейнов, водоемов.
- Гидроксохлоросульфат алюминия. Это смесь на основе сульфата алюминия. Является прекрасным препаратом для обработки паводковых грязных вод при температурах ниже +12˚ С.
Эти вещества отличаются сравнительно невысокой ценой, доступностью, безопасностью и простотой использования.
Работа коагулянта: суть процесса
Химия процесса коагуляции затрагивает широкое поле научных знаний, понимание которых потребует определенного уровня специальной подготовки. Мы опустим околонаучные подробности и постараемся донести самую суть.
Как действуют коагулянты 1Как действуют коагулянты 2Как действуют коагулянты 3Итак, у нас есть определенный объем воды, загрязненный коллоидными частицами. Частицы эти настолько мелкие, что их пропускает песчаный фильтр. Более того, их размеры так малы, что они не могут осесть на дно: броуновское движение молекул заставляет эти частицы постоянно пребывать во взвешенном состоянии.
Внимание! Еще раз: в воде плавают мельчайшие соринки, которые выглядят как муть. Они проходят сквозь фильтр и не оседают на дно, так как молекулы воды непрерывно «толкают» их с разных сторон, приводя в движение. В результате невозможно ни отфильтровать воду, ни осадить грязь на дно.
Эти частицы не только не оседают и не фильтруются, они также отказываются слипаться в более крупные образования. Это вызвано тем, что они имеют одинаковый заряд и отталкиваются в результате действия сил электростатического взаимодействия.
Здесь мы подходим к сути процесса коагуляции: после введения специального реагента свойства частиц меняются, они теряют свой заряд, а взвесь начинает слипаться в более крупные комки. В результате устранения эффекта электростатического отталкивания частицы сближаются достаточно для того, чтобы началось действие силы притяжения.
Сближению также препятствует пространственный объем молекул или атомных групп, которые, находясь в непосредственной близости от реагирующих атомов в молекуле, могут не давать этим атомам сойтись и прореагировать. Данный эффект нивелируется добавлением солей и изменением кислотности среды.
В итоге, коагулянты не меняют химический состав примесей или воды. Основная характеристика, на которую направлено их воздействие – это размеры частиц. После добавления, скажем, хлорного железа, отдельные корпускулы теряют заряд и начинают слипаться в хлопья, которые затем можно собрать или отфильтровать.
Важно! Суть процесса коагуляции заключается в том, чтобы сделать мельчайшие частицы достаточно крупными для того, чтобы они осели на дно, или их задержал фильтр. Это наиболее короткое и простое объяснение.
Кто делает лучшие коагулянты: производство и распространение
Производители коагулянтов составляют солидный список, их число выросло в последнее время и составляет более 15 по стране. Для сравнения: на всей территории бывшего Советского Союза пребывало только 12 производств. Современная Россия обеспечивает свои нужды в коагулянтах на 95% за счет внутреннего производства.
В РФ выпускают неорганические препараты. Так произошло по причине экономических реалий времени возведения заводов и определенной конфигурации сырьевой базы, характерной для нашей страны. Исторически сложилось так, что первое место занимает приготовление коагулянтов на основе алюминия, а именно – оксихлорида и сульфата алюминия, а также алюмината натрия.
Рассмотрим их отличия:
Как следует из таблицы, алюминат натрия дает самую высокую концентрацию оксида алюминия, это значит, что данный раствор покажет самую высокую активность в процессе очистки воды от взвеси. При этом плотность примесей также самая большая, а это значит, что после обработки в воде могут оставаться лишние компоненты. Следуя аналогичной логике, мы придем к выводу, что наиболее приемлемым вариантом будет оксихлорид алюминия (другие названия: хлоргидроксид алюминия, ОХА, полиалюминия гидрохлорид), который демонстрирует оптимальное соотношение содержания алюминия и примесей.
Важно! Подбор конкретного вещества производится исходя из назначения воды, степени её загрязнения, температуры и способа очистки. ОХА используют для очистки холодной воды с высоким содержанием органических примесей природного происхождения.
Далее мы рассмотрим и сравним пять лучших производителей коагулянтов в России:
Одним из наиболее распространенных и эффективных средств для ухода за бассейном является оксихлорид алюминия. Это вещество особенно хорошо работает при невысоких температурах воды, в пределах +10 ˚С, и хорошо удаляет органические примеси. Именно ОХА содержится в большинстве современных коагулянтов для бассейна.
Порядок использования коагулирующих агентов для осветления воды в бассейне
Сперва мы расскажем, как поступать, если у вас стоит современное оборудование:
- Производим расчет дозы, исходя из объема и степени загрязнения резервуара.
- Наливаем необходимый объем жидкости в скиммер и ждем, пока он разгонит препарат по бассейну.
- Отключаем насос и даем препарату время для реакции в пределах 15 – 30 минут.
- Выпавший на дно осадок собираем водным пылесосом или погружным насосом.
- Вновь включаем насос и выполняем окончательную фильтрацию.
Расчет коагулянта – отдельная тема, считается, что это нечто из разряда высшей математики. Действительно, если мы хотим очищать питьевую воду на конвейерной основе, нам придется очень точно рассчитать расход химиката, иначе он будет накапливаться и отравлять воду. В случае бассейна все намного проще.
Важно! Обычно производитель указывает на этикетке способ применения препарата. Если же этого нет, тогда можно воспользоваться усредненными значениями для каждого конкретного вещества. Для ОХА эти значения составляют от 20 до 50 мл препарата на тонну воды.
Для тех, у кого установлен самодельный бассейн или бассейн без специального дополнительного оборудования
- Определяем необходимое количество агента, для этого вычисляем объем бассейна в кубометрах, и на каждый куб добавляем от 20 до 50 мл ОХА (GOODHIM «Чистый бассейн»).
- Коагулянт предварительно разводим в лейке с водой в пропорции 1:5 – 1:100, то есть берем около двух литров.
- Выключаем насос с фильтром.
- Спускаемся в бассейн и начинаем ходить по кругу, пока вода не образует небольшой водоворот.
- Выходим из бассейна и в водоворот добавляем подготовленный раствор.
- Ждем, затем собираем осадок и фильтруем оставшуюся воду окончательно.
Своевременный уход и очистка делают использование бассейна не только приятным, но безопасным и даже полезным для здоровья. Теперь вы можете приглашать знакомых присоединиться к водным процедурам не боясь опозориться состоянием воды в резервуаре.
Коагулянты для очистки питьевой и сточной воды
СодержаниеСуществуют разные способы очищать жидкости. Касается это очищения как питьевой или бытовой воды, так и промышленных сточных вод.
Железосодержащий коагулянт в мешках
Простейший способ очистки – это использование фильтров. Фильтры отсеивают все вредные вещества и делают воду чище. В отфильтрованном виде она пригодна для употребления и безопасна для человека.
Однако есть еще один метод очистки воды, который называют коагуляцией, а в работе с ним используют коагулянты.
Назначение коагуляции
Коагуляцией называют специальный метод очистки питьевой и сточной воды. Сами коагулянты – это вещества, которые имеют интересные особенности и способны на химическую реакцию.
Если посмотреть на их молекулярную форму, то можно понять, что все они имеют положительный заряд. В то время как большинство загрязнений в воде имеют отрицательный заряд.
Наличие двух отрицательных зарядов в атомах грязных частиц не дает им соединяться вместе. Именно поэтому грязная вода, в большинстве случаев, просто становится мутной.
Причем очистка ее с помощью стандартных фильтров ничего не даст, так как вы отфильтруете только максимально крупные загрязнения. А их в обычной питьевой воде не так уж и много.
Главные же проблемы, например, присутствие возбудителей болезней, микробов и избыток других микроорганизмов, решить таким способом не удастся.
В итоге получается, что питьевой эта вода после фильтрации не становится. Она просто немного очищается. Но достаточно ли простого очищения от крупных примесей? В большинстве случаев нет.
Проблема усугубляется, когда необходимо обеспечить очистку не питьевой воды, а сточных вод. Сточные воды, как вы все наверняка знаете, тоже проходят циклы фильтрации, так как это намного экономнее и эффективнее, чем сливать стоки и набирать воду по новой. Да и экология от таких действий страдает не в пример меньше.
Однако в сточных водах процент загрязнения намного больше. А значит, и очищать их нужно намного тщательнее.
Склад коагулянтов на промышленном предприятии
Именно для таких целей и пользуются коагуляцией. Коагулянты, за счет своего положительного заряда атомов и особенной структуры, провоцируют образование устойчивых связей между микробами и мелкими частицами в воде.
При попадании в жидкость достаточного количества коагулянта, она начинает сначала немного мутнеть, а затем на дне образовывается белый осадок.
Используют коагулянты преимущественно для очистки сточных вод. Хотя, существуют и бытовые вещества, которые с успехом применяют для дезинфекции питьевой воды.
к меню ↑
Какой принцип работы коагулянтов?
Как мы уже говорили выше, положительный заряд коагулянтов способствует их принципу работы.
При попадании в загрязненную жидкость это вещество начинает активно подтягивать к себе все вредоносные микроорганизмы и другие подобные вещества. Каждая молекула коагулянта способна притянуть к себе несколько молекул других веществ.
Именно поэтому важно точно дозировать его количество. Главное, чтобы вы не использовали слишком мало коагулянта, так как тогда реакция будет протекать вяло. Осадок выпадет медленно и не в тех количествах, в которых должен. А это уже приведет к тому, что жидкость не очистится от вредных примесей должным образом.
После притягивания, молекулы коагулянта вступают в реакцию и превращаются в особенное соединение.
После реакции они становятся похожи на белые хлопья. Эти хлопья выпадают в осадок на дно емкости с жидкостью. От человека затем требуется только убрать осадок посредством любого типа фильтрации.
В крайних случаях пользуются даже методом, который используется при самодельном обезжелезивании жидкости, когда из емкости просто сливают верхние слои, оставляя на дне железные отложения.
Промышленные очистительные установки работающие методом коагуляции
После этого воду еще можно умягчить или дополнительно отфильтровать, но главная работа будет сделана. Некоторые коагулянты способны на обезжелезивание питьевой воды. Другие могут понижать или повышать ее уровень pH. Все это надо учитывать.
Эти вещества работают при температуре жидкости от 10 до 40 градусов по Цельсию. В горячей воде реакция протекает не в пример хуже, но здесь все зависит от конкретного вещества.
Избыточное давление в емкости тоже нежелательно. Что же до состава и степени загрязненности жидкости, то по этим характеристиками коагулянты считаются лучшим решением, когда необходима полная и сравнительно быстрая очистка воды.
Аналогичное качество может обеспечить разве что установка обратного осмоса или система полной фильтрации. Но в промышленных предприятиях такими способами пользоваться нерентабельно. Особенно если речь идет об очистке сточных вод.
Существует также метод, который называют электрокоагуляцией. В работе таким способом необходим электрокоагулятор для очистки сточных вод. Это специальный прибор, который провоцирует очистку жидкости с помощью влияния на нее зарядов электричества.
Однако схема его работы имеет множество недостатков, да и само устройство нельзя назвать очень практичным и компактным. А потому широкое применение он получил только в отдельных направлениях промышленности.
Теперь рассмотрим основные плюсы и минусы использования коагулянтов для очистки воды.
Основные плюсы:
- Эффективность;
- Возможность проделывать реакцию в любых условиях;
- Сравнительная дешевизна;
- Качество очистки;
- Практичность;
- Доступность.
Основные минусы:
- Нужно соблюдать четкую дозировку;
- После обработки жидкость необходимо отфильтровать;
- Наладить процесс постоянной коагуляции своими руками очень сложно.
Эффект от использования коагулянтов для воды
к меню ↑
Какие виды коагулянтов применяют для очистки воды?
Существует несколько разновидностей коагулянтов. Перечислять все эти вещества и их формулы мы сейчас не будем, так как на это может уйти огромное количество времени. Однако несколько самых популярных групп назвать все-таки стоит.
Коагулянты бывают:
- Органическими;
- Неорганическими.
Органические вещества – это специально выведенные полимеры или другие подобные элементы, которые способствуют очистке жидкости методом коагуляции. Неорганические же, как можно понять из названия, относятся к синтетике и минеральным элементам.
Если же говорить о составах, что чаще всего применяются в быту и промышленности, то они друг от друга мало чем отличаются.
В большинстве случаев пользуются коагулянтами на основе алюминия или железа. Железо применяется для грубой очистки сточных вод и отходов промышленных предприятий. Оно доступно, эффективно и выполняет свою работу качественно.
Читайте также: зачем нужны фильтры грубой очистки воды?
Самыми популярными из железных составов считаются:
- Сульфат железа;
- Хлорное железо.
Неочищенный сульфат алюминия для промышленного применения
Первый образец используется для очистки сточных вод из канализации, а вторым хорошо выводится запах сероводорода и крупные частицы загрязнений.
Из алюминиевых коагулянтов отметить стоит:
- Сульфат алюминия;
- Гидроксохлорид алюминия;
- Гидроксохлоросульфат алюминия (ГСХА)
Первая разновидность встречается чаще всего и используется для очистки питьевой воды. Второй и трети коагулянт больше применим для работы со сточными водами, природными отложениями и т.д.
к меню ↑
Советы по выбору
Совершить выбор коагулянта надо очень осторожно, так как вещество это хоть и безопасное для человека, но довольно узкоспециализированное.
Как и в работе с любыми другими фильтровальными веществам и установками, мы рекомендуем вам обратиться к современной науке. А именно, отдать воду на анализ. После основательных анализов в лаборатории вы будете точно знать, какие проблемы есть в вашем случае и что конкретно нужно предпринимать.
Тогда и подобрать подходящий коагулянт будет намного проще.
Стоит понимать, что коагулянты – это вещи довольно специфические. В одних случаях они отторгают друг друга или определенные элементы в воде, в других же усиливают свое действие или комбинируют его по определенным принципам.
Так, использование простейшего коагулянта из железа и сульфата алюминия позволяет не только быстрее очистить воду, но и существенно умягчить или обезжелезить ее.
Очищенный и измельченный сульфат алюминия для бытового употребления
Однако здесь нужно не переусердствовать, так как слишком сильно разбавленная питьевая вода тоже не очень полезна, если не сказать вредна. Ведь с ней вы не будете получать всех тех необходимых минералов и полезных веществ, что существуют в необработанной жидкости.
Что же до конкретного применения коагулянтов, то тут советовать что-то излишне. В промышленности этим способом очистки пользуются практически везде. Но там процессы коагуляции можно без особых проблем наладить и поставить на поток.
В быту же придется покупать специальные установки, которые стоят не так дешево. Альтернативой им могут стать отдельные коагулянты бытового типа, что продаются в небольших емкостях.
Их достаточно просто добавить в воду, а затем отфильтровать выпавший осадок. Но, как вы сами понимаете, действовать так постоянно вам вряд ли будет удобно. Ведь этот способ очистки слишком трудоемок и отнимает много времени.
Если выбираете между неорганическими и органическими составами, то предпочтение лучше отдавать второму варианту.
Органика имеет несколько интересных преимуществ, которые никак нельзя игнорировать.
В первую очередь она намного эффективнее. Органические коагулянты действуют быстрее и для получения оптимального результата их нужно меньше. Также органика хорошо борется с хлором и избавляет воду от неприятных запахов. Например, от сероводорода, который часто сопутствует ожелезненной жидкости.
При этом она не изменяют показатель pH в воде и способна взаимодействовать с водорослями.
После применения органические коагулянты существенно уменьшаются в своих размерах. Это приводит к выпадению меньшего количества осадка, который намного проще отфильтровать. Но, при этом, эффективность очистки воды не падает. То есть качественное уменьшение количества осадка никак не сказывается на качестве очистки самой жидкости.
Неорганические коагулянты лучше взаимодействуют с водой. Они умягчают ее, избавляют от избыточного количества солей, железа и грубых примесей. Но здесь нужно учесть один серьезный нюанс. Неорганические составы нуждаются в чрезвычайно точном измерении.
Только так их можно использовать в полной мере. Если с точной дозировкой вы не угадаете (а в бытовых условиях это сделать очень сложно), то эффективность очистки существенно уменьшится.
Именно поэтому неорганические вещества так часто применяются в промышленности, но практически не встречаются в быту.
Впрочем, современные производители уже решили эту проблему, путем продажи минеральных коагулянтов в упаковках с дозаторами и подробной инструкцией.
к меню ↑
Как действует коагулянт для очистки воды? (видео)
Главная страница » Очистка воды
Коагулянты для очистки сточных вод
Коагуляция (от латинского coagulatio − свертывание, сгущение) − объединение частиц дисперсной фазы в агрегаты при соударениях. Соударения происходят в результате броуновского движения частиц, а также седиментации, перемещения частиц в электрическом поле (электрокоагуляция), механического воздействия на систему (перемешивания, вибрации). Характерные признаки коагуляции − увеличение мутности (интенсивности рассеиваемого света), появление хлопьевидных образований − флокул (отсюда термин флокуляция, часто используемый как синоним коагуляции), расслоение исходно устойчивой к седиментации системы (золя) с выделением дисперсной фазы в виде коагулята (осадка, сливок). При высоком содержании частиц дисперсной фазы коагуляция может приводить к отверждению всего объема системы вследствие образования пространственной сетки коагуляционной структуры. В относительно грубодисперсных системах (суспензиях) при отсутствии броуновского движения первичных частиц о коагуляции можно судить по изменению седиментации − от оседания независимых первичных частиц с постепенным накоплением осадка (бесструктурная седиментация) к оседанию агрегатов сплошным слоем; при достаточно высокой концентрации частиц в системе такой слой образует четкую границу (структурная седиментация). Кроме того, коагуляция приводит к увеличению конечного объема осадка.
Коагулянты − вещества, способные вызывать или ускорять коагуляцию. Введение в систему коагулянтов широко используют для облегчения процессов, связанных с необходимостью отделения вещества дисперсной фазы от дисперсионной среды (осаждение взвешенных частиц при водоочистке, обогащение минерального сырья, улучшение фильтрационных характеристик осадков и др.). Коагуляция играет важную роль в процессах водоочистки для удаления взвешенных коллоидных частиц, которые могут придавать питьевой воде неприятные вкус, цвет, запах или мутность. Под действием коагулянтов дисперсные коллоидные частички объединяются в большие массы, которые затем, после флокуляции, можно удалить такими методами разделения твердой и жидкой фазы, как осаждение, флотация и фильтрация.
Эффективными коагулянтами для систем с водной дисперсионной средой являются соли поливалентных металлов (алюминия, железа и др.). В водоподготовке применяют следующие алюминийсодержащие коагулянты: сульфат алюминия, оксихлорид алюминия, алюминат натрия и, в гораздо меньшей степени, хлорид алюминия.
Сульфат алюминия Al2(SO4)3·18h3O − неочищенный технический продукт, представляющий собой куски серовато-зеленоватого цвета, получаемые путем обработки бокситов, нефелинов или глин серной кислотой. Он должен иметь не менее 9% Al2O3, что соответствует содержанию порядка 30% чистого сульфата алюминия. В нем также содержится около 30% нерастворимых примесей и до 35% воды.
Очищенный сульфат алюминия (ГОСТ 12966-85) получают в виде плит серовато-перламутрового цвета из неочищенного продукта или глинозема растворением в серной кислоте. Он должен иметь не менее 13,5% Al2O3, что соответствует содержанию 45% сульфата алюминия. В России для обработки воды выпускается также 23−25% раствор сульфата алюминия. При его применении отпадает необходимость в специальном оборудовании для растворения коагулянта, а также упрощаются и удешевляются погрузочно-разгрузочные работы и транспортирование. Помимо водоочистки сернокислый алюминий применяется в больших
количествах в целлюлозно-бумажной промышленности для проклейки бумаги и других целей; его используют в текстильной промышленности в качестве протравы при крашении хлопчатобумажных, шерстяных и шелковых тканей, при дублении кож, для консервирования дерева, в промышленности искусственных волокон. В связи с этим, в настоящем обзоре при оценке объемов производства коагулянтов будет учитываться потребление Al2(SO4)3 в других областях промышленности, а затем эти данные будут исключены из структуры потребления. Коагулирующие свойства Al2(SO4)3 обусловлены образованием коллоидной гидроокиси алюминия и основных сульфатов в результате гидролиза. В процессе коагуляции Al(OH)3 коллоидные частицы примесей, находящиеся в воде, захватываются и выделяются вместе с гидроксидом алюминия в виде студенистых хлопьев. Al(OH)3 имеет повышенную чувствительность к pH и температуре обрабатываемой воды. Изоэлектрическая область для гидроксида алюминия, где у него наименьшая растворимость, соответствует pH = 6,5−7,5. При более низких значения pH образуются частично растворимые основные соли, при более высоких − алюминаты. При температуре исходной воды ниже 4оС в результате возрастания гидратации гидроксида алюминия замедляются процессы коагулирования ее примесей и декантации хлопьев, быстро засоряются фильтры, осадок гидроксида алюминия отлагается в трубах, остаточный алюминий попадает в фильтрат, а хлопья гидроксида образуются в воде уже после подачи потребителям.
В холодное время года при обработке воды с повышенным содержанием природных органических веществ используется оксихлорид алюминия (ОХА). ОХА известен под различными наименованиями: полиалюминий гидрохлорид, хлоргидроксид алюминия, основной хлорид алюминия и др. и имеет общую формулу Al(OH)mCl3n-m. При обработке воды указанные соединения могут образовывать мономерные, полимерные и аморфные структуры.
Неорганический катионный коагулянт ОХА обладает способностью образовывать комплексные соединения с широким спектром органических и неорганических веществ в воде. Принципиально отличается от обычных солей алюминия тем, что имеет так называемую поверхностную кислотную оболочку, что обеспечивает максимально высокую эффективность очистки воды от взвешенных веществ и металлов. Практика применения оксихлорида алюминия продемонстрировала ряд преимуществ, напрямую влияющих на экономические показатели его использования (в том числе и в сравнении с традиционно используемым сульфатом алюминия):
— представляя собой частично гидролизованную соль, оксихлорид алюминия обладает большей способностью к полимеризации, что ускоряет хлопьеобразование и осаждение коагулированной взвеси;
— подтверждена работа оксихлорида алюминия в более широком диапазоне рН по сравнению с сульфатом алюминия;
— снижение щелочности при коагулировании оксихлоридом алюминия существенно меньше. Это, наряду с отсутствием добавления сульфатов, приводит к снижению коррозионной активности воды, исключению стабилизационной обработки, улучшению состояния водопроводов городской распределительной сети и сохранению потребительских свойств воды при транспортировании, а также позволяет полностью отказаться от использования щелочных агентов и приводит к экономии таковых на средней станции водоочистки до 20 тонн ежемесячно;
— низкое остаточное содержание алюминия при высоких вводимых дозах;
— снижение рабочей дозы коагулянта в 1,5 — 2,0 раза по сравнению с сернокислым алюминием;
— поставка в готовом рабочем растворе, что позволяет отказаться от процесса растворения коагулянта, приводя к экономии электроэнергии на размешивании на средней станции до 100 тыс. кВт/час ежегодно;
— снижение трудоемкости и эксплуатационных затрат по хранению, приготовлению и дозированию реагента, улучшение санитарно-гигиенических условий труда.
Алюминат натрия NaAlO2 представляет собой твердые куски белого цвета с перламутровым блеском на изломе, получаемые растворением гидроксида или оксида алюминия в растворе гидроксида натрия. Сухой товарный продукт содержит 55% Al2O3, 35% Na2O и до 5% свободной щелочи NaOH. Растворимость NaAlO2 − 370 г/л (при 20оС). Насыпная масса 1,2−1,8 т/м3. Хлористый алюминий AlCl3 − белый кристаллический порошок плотностью 2,47 г/см3, с температурой плавления 192,4оС. Растворимость хлорида алюминия в 100 г воды при 20оС составляет 46 г, в горячей воде соединение разлагается. Из водных растворов кристаллизуется Al2Cl3·6H2O с плотностью 2,4 г/см3, расплывающийся на воздухе. При нагревании отщепляет воду и HCl с образованием Al2O3. Хлористый алюминий применяется, главным образом, в качестве катализатора при крекинге нефтепродуктов, а также для ряда органических синтезов. Однако, в ряде случаев, используется как коагулянт. При низких температурах воды в паводковый период в качестве коагулянта возможно использование гидроксида алюминия. В водообработке применяют также железосодержащие коагулянты:
хлорное железо, сульфаты железа (II) и железа (III), хлорированный железный купорос. Хлорное железо FeCl3·6H2O (ГОСТ 11159−86) представляет собой темные с металлическим блеском кристаллы, очень гигроскопичные, поэтому транспортируют его в железных герметичных бочках. Получают безводное хлорное железо хлорированием стальной стружки при температуре 700оС, а также как побочный продукт при производстве хлоридов металлов горячим хлорированием руд. Содержит в товарном продукте не менее 98% FeCl3. Плотность 1,5 г/см3. Сульфат закиси железа FeSO4·7H2O (железный купорос по ГОСТ 6981−85) представляет собой прозрачные зеленовато-голубые кристаллы, легко буреющие на воздухе в результате окисления железа (II). Товарный продукт выпускается двух марок (А и Б), содержащих соответственно не менее 53% и 47% FeSO4, не более 0,25 − 1% свободной H2SO4 и не более 0,4 − 1% нерастворимого осадка. Плотность реагента − 1,5 г/см3. Промышленность выпускает также и 30%-ный раствор сульфата железа (II), содержащий до 2% свободной серной кислоты. Транспортируют его в гуммированной таре. Окисление гидроксида железа (II), образующегося при гидролизе железного купороса при pH воды менее 8, протекает медленно, что приводит к неполному его осаждению и неудовлетворительному коагулированию. Поэтому перед вводом железного купороса в воду добавляют известь или хлор, либо оба реагента вместе, усложняя и удорожая тем самым водообработку. В связи с этим, железный купорос используют, главным образом, в технологии известкового и известково-содового умягчения воды, когда при устранении магниевой жесткости значение pH поддерживают в пределах 10,2 − 13,2 и, следовательно, соли алюминия не применимы.
Сульфат железа (III) Fe2(SO4)3·2H2O получают растворением оксида железа в серной кислоте. Продукт кристаллический, очень гигроскопичный, хорошо растворяется в воде. Плотность его − 1,5 г/см3. Использование солей железа (III) в качестве коагулянта предпочтение по сравнению с сульфатом алюминия. При их применении улучшается коагуляция при низких температурах воды, на процесс мало влияет pH среды, ускоряется декантация скоагулированных примесей и уменьшается время отстаивания (плотность хлопьев гидроксида железа (III) в 1,5 раза больше, чем гидроксида алюминия). К числу недостатков солей железа (III)
относится необходимость их точной дозировки, так как ее нарушение приводит к проникновению железа в фильтрат. Хлопья гидроксида железа (III) осаждаются неравномерно, в связи с чем, в воде остается большое количество мелких хлопьев, поступающих на фильтры. Эти недостатки в значительной мере устраняются при добавлении сульфата алюминия.
Хлорированный железный купорос Fe2(SO4)3+FeCl3 получают непосредственно на водоочистных комплексах обработкой раствора железного купороса хлором, вводя на 1 г FeSO4·7H2O 0,160 − 0,220 г хлора. Смешанный алюможелезный коагулянт приготовляют из растворов сульфата алюминия и хлорного железа в пропорции 1:1 (по массе). Рекомендуемое соотношение может изменяться в конкретных условиях работы очистных сооружений. Максимальное отношение FeCl3 к Al2(SO4)3 при применении смешанного коагулянта по массе равно 2:1. Вода, обработанная смешанным коагулянтом, как правило, не дает отложений даже при низких температурах, так как формирование и седиментация хлопьев заканчивается в основном до фильтров; хлопья осаждаются равномерно, и достигается более полное осветление воды. Применение смешанного коагулянта позволяет существенно сократить расход реагентов. Составные части смешанного коагулянта можно вводить как раздельно, та и предварительно смешав растворы. Первый способ более гибок при переходе от одного оптимального соотношения реагентов к другому, однако, при втором − проще осуществлять дозирование.
Сульфат алюминия является наиболее распространенным коагулянтом, применяемым в водоочистке для обработки питьевых и промышленных вод. Наиболее простым и наиболее старым способом получения неочищенного сернокислого алюминия является варка непрокаленного, но подсушенного каолина с серной кислотой. Степень превращения Al2O3 глины в сульфат не превышает 70 − 80%.
Получающиеся по этому способу продукты− неочищенный сернокислотный алюминий или коагулянты − после варки затвердевают и не подвергаются дополнительной обработке. Они содержат все примеси сырья.
Для получения очищенного сернокислого алюминия производят отделение нерастворимых примесей, что значительно усложняет производственный процесс. Усовершенствованием этого метода явились разложение каолина избытком серной кислоты для повышения степени извлечения Al2O3 и нейтрализация избыточной кислоты нефелином. Успешное применение нефелина в качестве добавки к каолину послужило основанием для производства нефелинового коагулянта из одного нефелина (без каолина):
(Na, K)2O·Al2O3·2SiO2 + 4h3SO4 → (Na, K)2SO4 + Al2(SO4)3 + 4H2O + 2SiO2
Нефелиновый коагулянт
При смешении нефелинового концентрата с башенной серной кислотой без последующего разбавления водой смесь быстро загустевает, так как находящаяся в ней вода связывается с образовавшимися солями в твердые кристаллогидраты. Это сопровождается сильным повышением температуры, вызывающим значительное парообразование, что приводит к резкому увеличению объема смеси, которая превращается в твердую пористую массу, легко рассыпающуюся в порошок. Этот продукт, состоящий из смеси сульфата алюминия, калиевых, натриевых квасцов, SiO2 и прочих примесей, находившихся в нефелине и образовавшихся при обработке его серной кислотой, называется нефелиновым коагулянтом. Его правильней было бы назвать неочищенным нефелиновым коагулянтом в отличие от очищенного нефелинового коагулянта, которым является смесь продуктов, полученная кристаллизацией раствора после отделения от него кремнеземистого осадка. Температура реакции, количество испарившейся воды, выход и свойства коагулянта зависят от концентрации исходной кислоты. В продукте, полученном при разложении нефелина 63-84,5%-ной кислотой, обнаружен бисульфат алюминия. Это объясняется неполной нейтрализацией серной кислоты. Наличие в коагулянте гигроскопичных кислых солей обусловливает поглощение им влаги из воздуха. В результате обводнения продукта происходит дальнейшее разложение непрореагировавшего нефелина. Этот процесс «дозревания» протекает на воздухе медленно около 12 суток, вследствие покрытия зерен непрореагировавшего нефелина кристаллами коагулянта. При растворении кристаллов в воде процесс дальнейшего разложения ускоряется и завершается в холодной воде в течение часа, а в горячей воде — в течение 5 минут. Таким образом, замедление взаимодействия нефелина с концентрированной серной кислотой (выше 63% H2SO4) объясняется недостатком воды в жидкой фазе. С наибольшей скоростью нефелин разлагается 47-73%-ной серной кислотой. Получение неочищенного нефелинового коагулянта производится смешением нефелинового концентрата с башенной серной кислотой в котлах с мешалками и выливанием полученной пульпы до ее загустевания в аппараты для «созревания», т.е. затвердевания массы.
Твердая масса подвергается измельчению. При смешении нефелина с 92% серной кислотой реакция идет очень медленно и незагустевшая пульпа может легко перетекать в желоб со шнеком, куда добавляется вода для разбавления кислоты. После этого реакция идет очень быстро, и масса, интенсивно перемешиваемая шнеком и передвигаемая им вдоль аппарата, быстро затвердевает, превращаясь в мелкие зерна. Процесс смешения ведется в двух аппаратах, соединенных последовательно. В один из смесителей подают непрерывно кислоту и нефелиновый концентрат. Образующаяся пульпа перетекает во второй смеситель, откуда выходит из нижней части его через гидравлический затвор в ковшевой дозатор. В выходящей пульпе должно содержаться от 1,5 до 4% избыточной серной кислоты (в зависимости от качества нефелина). Под избыточной понимают кислоту, содержащуюся в пульпе сверх того количества, которое может прореагировать к концу процесса при гидратации. Из ковшевого дозатора пульпа поступает в шнек реактор, куда добавляют воду из расчета разбавления кислоты до 70−73% h3SO4. Продолжительность пребывания массы в шнеке-реакторе составляет 28−30 сек и степень разложения нефелина за это время достигает 85−88%. Из реактора сухая рассыпчатая масса с температурой 80−100оС поступает на склад, где происходит дозревание и охлаждение продукта в течение 2−4 суток. На производство этим методом 1 т нефелинового коагулянта требуется: 0,32 т нефелиновой муки (до 1% влаги) или 0,105 т Al2O3 (100%), 0,378 т серной кислоты (100%). Технология производства нефелинового коагулянта реализована в ОАО «Святогор», а также в ОАО «Апатит», где получаемый реагент используется при сгущении апатитового и нефелинового концентратов. Промышленный процесс комплексной переработки нефелинов, был разработан советскими специалистами и опробован на «Волховском алюминиевом заводе» в 1952 г. Сущность процесса заключается в спекании нефелина с известняком при температуре 1250-1300оC. Полученную массу выщелачивают водным щелочным раствором, раствор алюмината натрия отделяют от шлама, затем освобождают от SiO2, осаждая его в автоклаве при давлении около 0,6 МПа, а затем известью при атмосферном давлении, и разлагают алюминат газообразным CO2. Полученный Al(OH)3, отделяют от раствора, а затем используют по назначению: при взаимодействии с серной кислотой получают сульфат алюминия, при прокаливании (t ~ 1200оС) –глинозем. При таком способе переработки нефелина помимо глинозема и сульфата алюминия получают кальцинированную соду, поташ и цемент. Подобная технология получения сульфата алюминия из нефелина применяется в настоящее время на «Ачинском глиноземном комбинате».
Получение очищенного сульфата алюминия из гидроксида алюминия или оксида алюминия (глинозема)
Большинство российских производителей сульфата алюминия в качестве сырья используют гидроксид алюминия или окись алюминия (глинозем).
2Al(OH)3 + 3H2SO4 → Al2(SO4)3 + 6H2O
Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O
При производстве очищенного сернокислого алюминия растворением в серной кислоте гидроокиси алюминия (или окиси алюминия) процесс осуществляют следующим образом. В реакционный котел (стальной резервуар, футерованный кислотоупорным кирпичом по слою диабазовой плитки) одновременно загружают гидроокись алюминия, серную кислоту и воду в приблизительно стехиометрическом соотношении,соответствующем содержанию в продукте примерно 90% Al2(SO4)3·18H2O и 10% свободной воды.
Перемешивание ведут острым паром, поддерживая температуру на уровне 110−120оС, и заканчивают его через 20-30 минут, когда количество свободной серной кислоты в пробе реакционной массы станет меньше 0,1%. Реакционную массу, содержащую 13,5−15% Al2O3 (в виде сульфата алюминия), для ускорения последующей кристаллизации охлаждают в реакторе до 95оС, продувая через нее в течение 10 мин воздух. Затем ее сливают на кристаллизационный стол, оборудованный автоматической машиной для срезки застывшего продукта. Кристаллизация плава на столе продолжается около 50 мин и столько же времени занимает извлечение продукта из кристаллизатора, имеющего площадь 32-34 м2 (емкость примерно 6 т).
Расход материалов на 1 т продукта составляет: 0,142 т гидроокиси алюминия (в пересчете на Al2O3) и 0,40 т серной кислоты (100%). Кристаллизацию ведут также на охлаждаемой изнутри наружной поверхности горизонтального вращающегося барабана – на холодильных или кристаллизационных вальцах. Барабан частично погружен в находящийся в поддоне плав, имеющий температуру 90−100оС. Кристаллизация на вальцах облегчает условия труда, обеспечивает непрерывный режим производства, улучшает товарные свойства продукта. Снимаемый с вальцев чешуйчатый продукт, содержащий 13,5−14% Al2O3, при хранении
слеживается. Неслеживающийся продукт получают, повышая содержание Al2O3 до 15,3−15,8% (15,3% соответствует концентрации Al2O3 в кристаллогидрате Al2(SO4)3·18h3O). При длине барабана вальцев 2,2 м и диаметре 1,8 м (поверхность теплообмена 12,4 м2), при выпуске продукта с содержанием 13,5–14% Al2O3, число оборотов барабана составляет 4,3 в минуту и средняя рабочая производительность вальцев равна 2,4 т/ч; при выпуске продукта, содержащего 15,3−15,8% Al2O3, барабан делает 1−1,2 об/мин и производительность снижается до 1 т/ч.
Для получения неслеживающегося продукта предложено также смешивать пульпу гидроокиси алюминия с 60%-ной серной кислотой, взятой в количестве 95-97% от стехиометрического и образующийся раствор с температурой 100оС направлять для кристаллизации на холодные вальцы. Продукт содержит примесь основной соли. Запатентован непрерывный способ получения сульфата алюминия, в котором водная суспензия Al(OH)3 и серная кислота в стехиометрическом отношении подаются с большой скоростью дозирующими насосами в смесительные форсунки реактора, в котором масса находится не менее 30 секунд. Затем она охлаждается до температуры ниже 100 оС в проточном холодильнике и продавливается через сопла или прорези для образования мелкогранулированного продукта.
Получение оксихлорида алюминия
Кристаллы оксихлорида алюминия Al2(OH)5Cl·6h3O получаются растворением свежеосажденного гидроксида алюминия в 0,5−1% растворе соляной кислоты. Реагент содержит 40−44% Al2O3 и 20−21% NaCl. Выпускается в виде 35%-ного раствора. Кроме того, полиоксихлорид алюминия получают при взаимодействии HCl с чистым алюминием:
2Al(OH)3 + HCl → Al2(OH)5Cl + h3O
2Al + HCl + 5H2O → Al2(OH)5Cl + 3h3
что это такое, принцип действия, метод флокуляции, какие еще разновидности существуют, а также полезное видео по теме
Принцип метода и его применение
В сточных водах имеются как коллоидные частицы, размеры которых не превышают 0,1 мкм, так и мелкодисперсные структуры с диаметром до 10 мкм, а также более крупные образования.
Последние компоненты легко удаляются механической очисткой. Мелкие крупицы грязи имеют определенный заряд, окружены гидратной рубашкой, стабилизирующей взвешенное состояние, поэтому удалять их нелегко.
При коагуляции заряд молекул насильственно изменяют добавлением легко ионизирующихся соединений — коагулянтов.
После этого происходит агрегация примесей с образованием увеличенных крупиц, способных осаждаться.
Слипанию подлежат как однородные частицы, тогда процесс называется гомокоагуляцией, так и разнохарактерные молекулы, в этом случае явление называется гетерокоагуляцией.
Укрупнение примесных соединений вызывается добавлением коагулянтов, стимулируется одним из следующих способов:
- перемешиванием;
- тепловым воздействием:
- влиянием внешнего силового поля.
В повсеместной практике для очистки сточных вод, основанной на коагуляции, применяют перемешивание компонентов гетерогенной системы.
Это наименее затратный, достаточно эффективный вариант обеспечения слипания загрязняющих частиц.
Коагуляция проводится в свободном пространстве специальных камер, предназначенных для образования хлопьев, либо контактным образом в зернистой массе специальных наполнителей, например песка.
Интенсивность слипания частиц зависит от:
- их вида;
- строения;
- концентрации;
- количества других разнохарактерных примесей;
- электролитов в сточной воде;
- значения ее рН.
В некоторых случаях образование рыхлых хлопьевидных осадков происходит под действием флокулянтов. Модификация коагуляции, при исполнении которой применяются такие реагенты, называется флокуляцией.
Как основной метод коагуляции, так и его разновидности применяются для очистки стоков в:
- химической;
- фармацевтической;
- целлюлозно-бумажной;
- пищевой;
- текстильной промышленности.
Важно! Очистка сточных вод коагуляцией позволяет приводить в экологически безопасное состояние водные суспензии, образующиеся при переработке нефти, сельскохозяйственной продукции, обогащении горных руд.
Как это происходит?
В составе очистных комплексов существует отдельное подразделение, которое называют реагентным хозяйством. Коагулянты могут храниться в полностью растворенном виде или в форме твердого концентрата, помещенного в насыщенный раствор.
Резервуары размещены в помещении или около него в накрытом состоянии. Растворы готовят заранее путем перемешивания сжатым воздухом, мешалками, имеющими лопастную или пропеллерную форму.
Приготовленные жидкие смеси перекачивают в другие резервуары (расходные баки), откуда дозированно вливают в сточные воды.
Массовая доля коагулянтов в растворе может достигать 10 %, флокулянтов – 1 %. Обработку сточных вод реагентами проводят в специальных резервуарах (смесителях), которые делают со следующими конструктивными особенностями:
- перегородками;
- дырками;
- шайбами;
- пропеллерными мешалками;
- лопастями.
Важно! Растворы в смесителях пребывают на протяжении максимум 2 минут, затем по лоткам или трубам поступают в камеры, где образуются хлопья, или сразу в осветлители.
Проходная способность участков, через которые подается смесь сточных вод с реагентами, рассчитывается таким образом, что бы поток перемещался со скоростью 1 м/с, поступал в следующий отсек не более чем за 2 минуты.
Главная стадия очистки – формирование хлопьеобразных агрегатов осуществляется в камерах со следующими конструкционными решениями:
- водоворотами;
- перегородками;
- вихрями;
- механическими мешалками.
Водоворотные камеры имеют вид цилиндра, в которой сверху подается вращающийся поток сточных вод с коагулянтом.
Внизу расположена конструкция для уменьшения вращения раствора, который пребывает в емкости на протяжении 20 минут.
Камеры с перегородками имеют вертикальные или горизонтальные коридоры, по которым перемещается водный поток. Жидкости перемешиваются на поворотах, их количество достигает 8 штук.
В первом коридоре скорость потока равна 0,3 м/с, в последнем она уменьшается в 3 раза. Ширина коридорных протоков не бывает меньше 0,7 м, длина варьируется, зависит от размеров отстойника. Время пребывания очистных вод в камере может достигать получаса.
В вихревой камере, имеющей вид расширяющегося к верху конуса, вода подается в нижнюю часть со скоростью, достигающей 1,2 м/с, в верхнем слое, там где поток выпускают из камеры, его скорость достигает 5 м/с. Продолжительность пребывания растворов в емкости составляет 10 мин.
В камерах, оснащенных лопастными мешалками, сточные воды перемещаются со скоростью до 0,2 м/с, находятся в них на протяжении получаса.
После формирования хлопьев приступают к их удалению, в результате которого сточные воды осветляются. Процесс проводят в отстойниках горизонтального, вертикального или радиального вида.
Образовавшийся шлам отсасывают естественным или принудительным образом. Понятно, что второй вариант уплотняет осадок эффективнее.
В целом метод коагуляции приводит к ощутимому удалению примесей, находящихся в мелкодисперсном или эмульгированном виде.
Многостадийность процесса, необходимость постоянного контроля концентраций добавочных реагентов, интенсивности перемешивания и хлопьеобразования не позволяет считать метод очистки простым и легким в исполнении.
Дополнительные виды
Помимо традиционной схемы проведения очистки посредством коагуляции, в которой к сточным водам добавляют коагулирующие реагенты, существуют другие модификации метода.
Электрокоагуляция
Вещество, инициирующее слипание примесных частиц, может быть получено электролизом, Метод, основанный на пропускании тока через загрязненные воды, называется электрокоагуляцией.
Главное требование к технологии заключается в том, что используемый анод должен быть сделан из алюминия или железа. В этом случае при электролизе в раствор переходят катионы металлов, которые с водой образуют гидроксиды, способные вызвать агрегирование.
В первую очередь электрокоагуляция применяется для очистки вод, загрязненных:
- масляными,
- жировыми,
- нефтяными,
- хроматными,
- фосфатными примесями.
Достоинства электролитической технологии очистки заключаются в том, что установка имеет компактный вид, в приготовлении рабочих растворов нет необходимости. Ограничения в применении данного методы вызваны большими затратами электроэнергии и металлических электродов, которые быстро расходуются.
Флокуляция
В некоторых ситуациях процесс слипания частиц грязи идет недостаточно эффективно и быстро, что приводит к необходимости прибегать к флокуляции.
Увеличивают размеры слипающихся частиц,упрощают их последующее отделение флокулянты — вещества, которые хорошо растворяются в воде, перераспределяя при этом заряды на поверхности дисперсных крупиц.
В качестве флокулирующих добавок применяют:
- крахмалы белковые гидролизаты из дрожжей;
- порошки из водорослей; мезгу картофеля;
- жмых или вещества синтетической природы; например полиакриламиды;
- активные формы кремниевой кислоты.
Флокулянты сокращают потребность в коагулянтах, ускоряют процесс слипания. Они могут применяться параллельно с веществами коагулирующего действия или самостоятельно в концентрации, достигающей 1 % при объеме порции 2 мг/л.
В случае, если функцию флокулянтов выполняют побочные продукты каких-либо производств, экономическая эффективность процесса несоизмеримо увеличивается.
Коагулянты
Коагулирующее действие на примеси в сточных водах оказывают, прежде всего:
- сульфаты;
- хлориды алюминия;
- железа в разных валентностях;
- оксихлорид алюминия;
- натриевая соль алюминиевой кислоты.
Иногда применяют смеси представленных солей или природные минералы, в которых они содержатся, а также:
- глины;
- производственные отходы с алюминиевыми или железными компонентами;
- оксидом кремния.
Часто для увеличения щелочности среды, способствующей склеиванию частиц, в раствор добавляют гидроксиды натрия или калия, соду, известь.
Видео по теме
Предлагаем посмотреть видео с наглядным изображением очистки воды методом коагуляции:
Заключение
Коагуляция в традиционном или модифицированном исполнении – это эффективный способ очистки сточных вод от примесей, находящихся в мелкодисперсном или эмульгированном состоянии.
Затраты на реализацию метода невелики, они могут существенно уменьшаться при использовании недорогих реагентов, а в лучшем случае – отходов или побочных продуктов производств.
Новые современные коагулянты в технологии очистки сточных вод (стр. 1 из 4)
Введение
Загрязнение природных вод – основных источников водоснабжения населения приобрело за последние годы, угрожающие размеры. Это особенно относится к сточным водам с фармацевтических и химических производств, попадания их в ливневые, подземные и поверхностные воды. При существующих технологиях водоподготовки с применением хлора или его производных возникает большая опасность образования в очищаемой воде хлорорганических канцерогенных соединений, что было доказано многочисленными исследованиями. Применяемые же в настоящее время в технологии водоподготовки коагулянты на основе соединений алюминия и железа не способны глубоко очищать воду от органических соединений, особенно в весенне-зимний период при низких температурах очищаемой воды. Поэтому предварительная глубокая очистка природных и сточных вод от органических соединений и микроорганизмов приобретает все более актуальное значение [1,3].
1. Теоретические основы процесса коагуляции
Сточные воды многих химических и фармацевтических производств представляют собой низкоконцентрированные эмульсии и суспензии, содержащие мелкодисперсные частицы размером 0,1–10 мкм и более, а также коллоидные частицы размером 0,001–0,1 мкм. Применяемые методы механической очистки сточных вод позволяют обычно выделять 10–50 мкм. Для очистки сточных вод от мелкодисперсных и коллоидных частиц используют методы коагуляции и флокуляции, обусловливающие слипание частиц с образованием крупных агрегатов, которые удаляются из воды механическими методами [3].
Эффективность и экономичность процессов коагуляционной очистки сточных вод определяются устойчивостью дисперсной системы, которая зависит от ряда факторов: степени дисперсности, характера поверхности частиц, величины электрокинетического потенциала, наличия в сточной воде других примесей (например, электролитов, высокомолекулярных веществ), концентрации частиц и других примесей и т.д.
Сточные воды бывают, загрязнены твердыми частицами (волокна, пластмассы, цемент, каолин, глина, каучук, фосфор, кристаллы солей и др.) или жидкими частицами (нефть, нефтепродукты, смолы). Поверхность этих частиц может быть гидрофона или гидрофильна, может иметь значительную шероховатость или быть сравнительно гладкой.
Частицы примесей обладают различной плотностью, а размеры колеблются в широких пределах. Например: плотность частиц, Диапазон размеров г /см3 частиц, мкм
Нефтепродукты…. …………………. 0,8–1,1 от 0,01–0,1
Полистирол…….……………………. 1,02 0,06–0,6
Фосфор………………………………. 1,8 1,6–5,4
Каолин………….……………………. 2,4 0,5–5,0
Чаще всего концентрация мелкодисперсной и коллоидной фазы в сточных водах относительно невелика (0,2–1%), поэтому сточные воды, как правило, могут быть отнесены к свободнодисперсным коллоидным системам. Присутствующие обычно в сточных водах органические вещества, электролиты поверхностно-активные вещества существенно влияют на устойчивость дисперсных систем, а также на процессы их коагуляции.
Существует несколько способов коагуляции дисперсных систем (сточных вод), целесообразность применения: которых обусловливается действующими факторами устойчивости систем, а также экономическими соображениями. Особенностью коагуляционной очистки сточных вод является необходимость применений коагулянтов, не вызывающих вторичного загрязнения воды.
К основным методам коагуляционной очистки относятся: коагуляция электролитами, гетерокоагуляция, в том числе взаимная коагуляция коллоидов, а также коагуляция под действием физических или химических факторов (перемешивания, нагревание, замораживание и др.).
Следует отметить, что гетерокоагуляция – взаимодействие коллоидных и мелкодисперсных частиц с агрегатами, образующимися при введении коагулянтов (солей – алюминия, железа и т.п.) в воду, является основным процессом коагуляционной очистки сточных вод [2,3].
1.1 Гетерокоагуляционная очистка
Обработка воды минеральными коагулянтами-солями алюминия и железа – впервые применена на рубеже ХIХ–ХХ вв. С тех пор этот метод, с успехом используют для очистки природных и сточных вод и, несмотря на то, что предложены и другие коагулянты, например, солей магния и кальция, ему отдают предпочтение.
При введении в воду солей алюминия и железа в результате реакций гидролиза образуются малорастворимые в воде гидроксиды железа и алюминия:
Рис. 1 Содержание соединений алюминия в осадках при различных рН воды
Образующиеся в процессе гидролиза серная или соляная кислоты должны быть нейтрализованы, иначе равновесие реакции будет сдвинуто влево данные исследований указывают, что при обработке воды сульфатом алюминия помимо гидроксида алюминия образуются соединения.
По другим данным, в результате реакции между ионами алюминия (или железа), молекулами воды и гидроксильными группами в растворе образуются следующие гидроксиды алюминия (или железа):
А) катионного типа – АL2, (ОН)4+2, АL2(ОН)+5, АL4(ОН)4+8, АL6(ОН)3+15, AL7(OH)4+17, AL8(OH)4+20, AL13(OH)5+34, Fe(OH)+2, Fe2(OH)4+2 и Fe(OH)2+;
Б) анионного типа – AL(OH)—4 и Fe(H2O)2(OH)—4;
В) неионогенного типа – AL(OH)3 и Fe(OH)3
Существовавшие ранее представления о коагуляционной очистке воды как процессе взаимной коагуляции коллоидных примесей с противоположно заряженными золями гидроксидов металлов как об электролитической коагуляции не соответствовали наблюдаемым явлениям. В связи с этим было развито представление сорбционном механизме удаления коллоидных примесей из воды на развитой поверхности коагуляционных гелей гидроксидов металлов. Очевидно, что процессы сорбции примесей на хлопьях коагулянта происходят[3].
При введении в воду неорганических коагулянтов (солей алюминия, железа, и др.) происходит, как указывалось, снижение агрегатной устойчивости системы под действием электролита (введенной соли), сорбция ионов на поверхности частиц и образование в результате химической реакции нового малорастворимого соединения, концентрация которого в воде значительно выше его растворимости. Выделение твердой фазы коагулятора из пересыщенного раствора (кристаллизация) [2,3].
1.2 Влияние различных факторов на процессы гетерокоагуляционной очистки
На скорость эффективность процесса очистки сточных вод гетерокоагуляцией оказывают влияние многие факторы: количество и состав растворенных в воде примесей, концентрация коллоидных примесей, температура, перемешивание, магнитные и электрические поля и др.
Растворенные в воде примеси. Механизм влияния примесей сточных вод на кинетику кристаллизации коагулянта многообразен. Он может быть обусловлен процессами комплексообразования, сорбции, химического взаимодействия и т.д.
Неорганические вещества. По характеру своего влияния кристаллизацию коагулянта примеси могут быть разделены, на группы:
а) неорганические вещества, имеющие общий ион с кристаллизующимся коагулянтом;
б) неорганические вещества, не имеющие общего иона с кристаллизующимся коагулянтом
В первом случае примеси ускоряют процесс кристаллизации коагулянта. По степени влияния на процесс коагуляции анионы могут быть расположены в ряд [137, с. 39]: СI—< НСО—3< SО2-4. В присутствии этих примесей сокращается продолжительность инкубационного периода.
Во втором случае при концентрации солей (например, NaС1 или КС1) более скорость кристаллизации коагулянта уменьшается.
Органические вещества. Органические вещества, адсорбируясь на растущих кристаллах коагулянта, образуют пленки, тормозящие: рост кристаллов. Это приводит, к повышению дисперсности кристаллов. Значительное содержание органических веществ в сточных водах может быть причиной, затрудняющей применение метода коагуляции
Небольшое количество органических примесей в сточных водах может вызывать ускорение процесса старения гидроксида алюминия [6].
Проведенные исследования показали, что полиакриламид в количествах, применяемых для флокуляции взвешенных в воде примесей, не оказывает заметного влияния на процесс выведения гидроксида алюминия. Действие поверхностно-активных веществ на стадии образования новой фазы сводится к снижению вероятности образования зародышей новой фазы и скорости их роста. Это обусловливает резкое повышение дисперсности кристаллов и является причиной высокой емкости адсорбционного слоя – предельной величины адсорбционного слоя предельной величины адсорбции.
С возникновением концентрации коллоидных и мелкодисперсных примесей в воде увеличивается скорость коагуляции. Доза коагулята зависит от концентрации и степени дисперсности.
При невысоком содержании мелкодисперсных и коллоидных примесей в воде процесс коагуляции часто протекает неудовлетворительно. Образующиеся мелкие хлопья выносятся из отстойников вместе с водой. Происходит это вследствие недостаточного количества центров кристаллизации коагулянта и спонтанного зародышеобразования в объеме для уменьшения в объеме. Для уменьшения коагулянта повышения эффективности очистки в очищаемую воду добавляют небольшие количества тонкодисперсных порошков – магнезита, мела и т.п. Частицы порошков частицами примесей воды, служат центрами зародышеобразования при кристаллизации коагулянта. В результате коагуляции получаются крупные хлопья, хорошо отделяющиеся от воды. С этой же используют метод рециркуляции осадка.
По этому методу часть осадка полученного в результате коагуляционной очистки воды, смешивается с исходной водой, поступающей на очистку [5,6].