Расчет теплопотерь дома: калькулятор онлайн теплотехнического расчета
На чтение 11 мин. Просмотров 2.4k. Обновлено
Для того, чтобы спроектировать систему отопления, которая удовлетворяла бы как требованиям комфортного проживания в доме, так и оптимального расходования ресурсов семьи, необходимо сначала рассчитать его возможные теплопотери.
Расчет теплопотерь — это способ, определить примерное количество теплопотерь, которое теряет дом через ограждающий контур за конкретное время, в самый холодный период пятидневки. Единица измерения теплопотерь — Ватты.
Полученный результат приблизительный, и требует экспериментальной проверки, так как не реально учесть все моменты, которые влияют на тепловые потери: неправильная конструкция перегородок, разница между температурой внутри и снаружи, действие осадков, солнечной радиации и ветра. Зная данные показатели, можно выбирать модель системы отопления нужной мощности для любого дома.
Калькулятор онлайн
Логика расчета
Процентное соотношение теплопотерь дома через элементы его конструкции, указанное на картинке, весьма приблизительно, поскольку сильно зависит от их устройства и используемых материалов. Потери тепла на инфильтрацию происходят в результате утечки воздуха через щели, некачественное уплотнение дверей и окон, принудительной и естественной вентиляции помещений. Уносимое с воздухом тепло приходится компенсировать более интенсивной работой системы отопления.
Расчет теплопотерь в данной программе выполняется отдельно для каждой стены, пола и потолка с учетом общих для всех элементов помещения условий. Это сделано исходя из следующих предположений:
- стены могут как непосредственно соприкасаться с атмосферным воздухом, так и выходить в нетапливаемое или плохо отапливаемые помещения;
- исходя из этого толщина стен и используемый для них материал могут отличаться;
- конструкция окон также может быть неодинакова.
Для расчета теплопотерь помещения в общем случае необходима площадь рассматриваемых элементов, характеристики теплопроводности или сопротивления теплопередаче используемых материалов и их толщина, а также разница между температурой воздуха внутри помещения (20-22 градуса) и температурой воздуха снаружи.
Температура атмосферного воздуха должна приниматься по самому холодному периоду отопительного сезона и указывается в общих условиях для расчета; если для какой-то стены она другая, введите ее в поле “температура воздуха снаружи помещения”. Для потолка температура, отличная от атмосферной, может быть введена в поле “температура над”, а для пола – “температура снизу”(вводится обязательно). Температура над потолком зависит от наличия или отсутствия утепления чердачного помещения; под полом – от наличия или отсутствия подвала и его типа (чаще всего принимается 0-7+ градусов).
Наружные двери могут выходить прямо на улицу или в неотапливаемое помещение; последнее обстоятельство учитывается в программе умножением рассчитанных теплопотерь через дверь на коэффициент 0. 7.
Расчетные потери тепла на инфильтрацию воздуха можно регулировать варьируя значения, вводимые в поле “доля объема воздуха в помещении, подлежащая ежечасному обмену”; дело в том, что требуемый СНИПом ежечасный обмен всего объема воздуха, находящегося в доме, на практике считается завышенным и приводящим к большим затратам на отопление.
Коэффициенты теплопроводности используемых в строительстве материалов берутся из соответствующих таблиц или по данным изготовителей. Это касается и сопротивления теплопередачи стеклопакетов и им подобных конструкций. Что касается стеклопакетов, то при их выборе следует обращать внимание на обозначение.
Например, в обозначении стеклопакета 4-10ap-4: 4 -толщина стекла; 10-расстояние между стеклами; ap – указывает, что это пространство заполнено инертным газом аргоном, что повышает его сопротивление теплопередаче.
В обозначении 4-14-4-14-4и “и” указывает,что стекла имеют мягкое низко эмиссионное покрытие; к-стекло имеет более твердое покрытие, защищено от мелких повреждений, его покрытие низко эмиссионное; pi – на стекло нанесена энергосберегающая пленка и др.
Приведенная в правой части рисунка схема относится к случаю, когда под домом нет подвала (“пол на грунте”) для упрощения решения сложной задачи определения теплопотерь через пол в грунт применяется методика разбиения площади ограждающих конструкций на 4 зоны.
Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче в м2·°с/вт:r1=2,1 r2=4,3 r3=8,6 r4=14,2. Зона 1 представляет собой полосу (при отсутствии заглубления грунта под строением) шириной 2 метра, отмеренную от внутренней поверхности наружных стен вдоль всего периметра; зоны 2 и 3 имеют также ширину 2 метра и располагаются за зоной 1 ближе к центру здания; зона 4 занимает всю оставшуюся центральную площадь.
В действительности же зоны 3 и 4 при небольших размерах дома могут отсутствовать. В заключение следует указать, что в программе используются следующие общепринятые коэффициенты:
- 23 – коэфф. теплоотдачи от стен к наружному воздуху
- 8.7 – коэфф. теплоотдачи от внутреннего воздуха к стенам
- 6 – коэфф. теплоотдачи от внутреннего воздуха к полу
- 12 – коэфф. теплоотдачи от потолка к наружному воздуху если неотапливаемый чердак,
- 1.18 – поправочный коэфф. при расчете теплопотерь пола не на грунте (по снип).
А также доступные в калькуляторе коэфф. теплоотдачи от пола к наружному воздуху/грунту для различных видов подвалов. Необходимо также отметить,что по правилам обмера зданий для расчета теплопотерь длина стен определяется по его наружному периметру, а их высота – от поверхности чистового пола до верхней плоскости потолочного перекрытия. Эту величину следует указывать в поле “высота помещений hp”.
Общие замечания по порядку расчета
- Сначала рассчитываются теплопотери через двери, стены и окна, все сразу, то есть после ввода всех данных по ним, или по отдельности – после ввода параметров, например по одной из стен или двери; затем рассчитываются таким же образом теплопотери через потолок, пол и потери на инфильтрацию.
- Каждый элемент может быть пересчитанный повторно после корректировки его параметров; при этом следует учесть, что если вы изменяете количество слоев материалов, сами материалы, наличие или отсутствие окон, перед всеми этими действиями следует нажать кнопку “сброс входных данных”.
- Расчет теплопотерь через пол, потолок и инфильтрацию возможен только после расчета потерь через стены.
- “Температура воздуха снаружи” (для стен) и “температура над” (для потолка) вводятся в случае, если они отличаются от температуры, указанной в общих условиях для расчета.
- Перед расчетом теплопотерь через стены из их площади вычитается площадь окон и двери.
Значительно повышается экономия тепловой энергии при качественном утеплении контура дома и крыши. Необходимость в энергосберегающем ремонте возникает, когда в течение года тратится 100 кВт электрической энергии или 10 кубов природного газа, из расчёта на 1 кв. метр отапливаемой площади, с учётом перегородок.
Энергосберегающее здание — дом, имеющий сплошную теплоизоляцию по всему каркасу нагретой поверхности. В качестве теплоизолирующего материала отлично подходит пеностекло, фанера, пенопласт, гипсокартон. Металл (сталь), также является отличным проводником тепловой энергии. Приобретая стройматериалы, обязательно нужно обращать внимание на коэффициент теплопроводности, который указан в паспорте.
Варианты выхода нагретого воздуха:
- Крыша — толстый слой теплоизоляционного кровельного материала значительно уменьшит теплопотери.
К сведению: Если строение деревянное, то укладка теплозащиты на крыше затруднительна, так как происходит набухание древесины, и она может повредиться от влажности. - Стены — добиться снижения теплопотерь можно также используя специальное наружное покрытие. При утеплении изнутри, особенно если повышенная влажность, будет образовываться конденсат за изоляцией.
- Пол — в данном случае, практичнее делать утепление изнутри.
- Фундамент — его контакт с холодным грунтом значительно увеличивает теплопотерю на первом этаже.
- Термические мосты — наружные теплопроводники, не редко через них уходит большая часть нагретого воздуха. К ним относятся: бетонное половое покрытие, которое продолжается на балконе, дверные проёмы и окна, особенно классические, двойные. Есть также мосты, относящие к временным, когда перегородки крепятся на металлические элементы.
Современные окна — это стеклопакеты однокамерные и двухкамерные, имеющие специальную отражающую поверхность, что понижает потери излучения. Многослойное остекление более эффективно сохраняет тепло, чем обычное двойное окно.
Тепловые потери на вентиляциюОбычно, у дома есть воздушные утечки — это оконные и дверные проёмы, и крыша, что создаёт воздухообмен. Но в зимнее время, этот вариант приводит к значительному выходу тёплого воздуха, поэтому с помощью новых технологий были разработаны конструкции уменьшающие утечку нагретых воздушных масс наружу.
Современные дома нуждаются в постоянном вентилировании, так как они имеют высокую воздухонепроницаемость. Для уменьшения теплопотерь связанных с вентиляцией, которые составляют от 10 до 40%, используются новейшие модели вентиляционных систем. Калькулятор теплопотерь дома делается по каждой комнате отдельно, Далее, определяется тепловой расход на вентиляцию — его объём и сколько раз происходила его смена в здание.
Рассчитывая теплотехнические вентиляционные потери, при помощи онлайн калькулятора, нужно учитывать предназначение дома. Для ванной комнаты и кухни требуется повышенный уровень вентиляции.
Минимальное утепление наружных стенДля проведения онлайн теплотехнического расчёта для внешних стен существует несколько сложных методик, с учётом конвекционного обмена, излучения и т. д., но эти данные часто бывают излишними и не влияющими на итог.
Однако, есть более простой теплотехнический онлайн калькулятор для расчёта теплопотерь дома. Для большей точности, к данному показателю допустимо добавить 1 — 5%.
Важно! Применяя теплотехнический калькулятор, при расчёте потерь тепла дома, следует учитывать время пребывания человека в каждой комнате, чем оно меньше, тем за основу берутся меньшие температурные показания.
Есть два способа рассчитать расход тепла в доме:
- Метод усреднённых величин — получается приблизительный результат. Расчёт делается по специальной таблице, которая составлена для разных областей с учётом особенностей их климата и средних характеристик здания.
- Теплотехнический онлайн расчёт потерь тепла дома по периметру здания — площади всех внешних перегородок суммируются, и отнимается размер окон и дверей. Отдельно учитывается площадь крыши и пола, стройматериала и штукатурки. В дальнейшем калькулятор, для определения теплопотерь дома выглядит так: Q = S x ΔT/R, где S – размер полученной площади; ΔT – сведения о температурной разнице, внутри и снаружи; R – показатель сопротивления передачи тепла. R = n/λ;, где n – показатель толщины стен; λ – уровень удельной теплопроводности (Вт/м °C). Данное значение следует брать из таблицы, для необходимого стройматериала.
Материал | Коэффициент теплопроводимости | Толщина стен в мм |
Пенополистирол | 0,042 | 124 |
Минеральная вата | 0,046 | 135 |
Дерево, брус или бревно (сосна, ель, дуб) | 0,18 | 530 |
Керамические блоки уложенные на теплоизоляционный клей | 0,17 | 575 |
Керамический пустотный кирпич плотностью 1000 кг/м. кв.(Гост 530) уложенный на цементно-песчаный раствор | 0,52 | 1530 |
Силикатный кирпич на цементно-песчаном растворе | 0,87 | 2560 |
Железобетон | 2,04 | 602 |
Полученные результаты, отдельно рассчитанные для перегородок, полового покрытия и крыши, суммируются, прибавляются вентиляционные потери, и данные об утечке тепла через фундамент. В калькулятор теплотехнического расчёта для фундамента заносится меньшая температурная разница.
Данный метод поможет выбрать мощность котла, но не даёт возможность рассчитать необходимое количество радиаторов для каждой комнаты. Приблизительное минимальное качество утеплителя для стен снаружи в мм. выглядит так.
МАТЕРИАЛ | Высокое | Среднее | Низкое |
Слой из дерева плюс пенополистирол или слой каменной ваты | 300:100 | 300:50 | |
Дерево | 200 | ||
Газо и пенобетонный материал | 500 | 400 | 200 |
Газоблок и пенобетонный пласт плюс полистирол или каменная вата | 300:100 | 300:50 | |
Газовый и пенобетонный блок плюс кирпичная кладка | 100:120 | ||
Слой керамзитобетона плюс полистирол или пласт каменной ваты | 400:100 | 200:100 | |
Слой керамзитобетона | 300 | ||
Кирпичная кладка и полистирол или каменная вата | 250:200 | 250:100 | |
Силикатный кирпич | 250 |
Под точкой росы подразумевается температура воздуха, до которой он должен охладится, чтобы начать насыщаться и преобразовываться в росу. На данный показатель влияет давление воздуха.
Необходимо стараться избегать образования точки росы. Если это невозможно, следует сместить её к наружным пластам, кроме того требуется хорошая вентиляция этих слоёв.
Решение проблемы точки росыОсновная причина образования точки росы — это высокий уровень пустотелов во внутренних пластах, что приводит к повышению давления водяных паров в холодных слоях конструкции. Решить проблему можно путём добавления менее паронепроницаемого материала внутрь конструкции, или сделать вентиляционный зазора с наружной стороны.
Это позволит сдерживать водяные поры и не даст проходить им сквозь стены. Однако, если переусердствовать, то накопившиеся пары понизят качество воздуха внутри дома. Если здание эксплуатируется в суровых условиях (-20 и выше градусов), то следует сделать принудительное поступление прогретого воздуха в дом, используя теплообменники или нагреватели. В этом случае применение герметичных строительных пароизоляционных материалов не приведёт к ухудшению микроклимата в помещение. Использование онлайн расчёта облегчит процесс определения размера теплопотерь.
Онлайн калькулятор расчёта теплопотерь даёт возможность узнать коэффициент теплопроводимости стен дома или отдельного помещения, и правильно выбрать материал для простой или многослойной теплоизоляции. Кроме того, точность результата важна для при выборе бойлера, для выделения эффективного тепла без перегрева дома.
Онлайн-калькулятор расчета калорифера: мощность и расход теплоносителя
Автор Евгений Апрелев На чтение 5 мин. Просмотров 59.9k.
При конструировании системы воздушного отопления используются уже готовые калориферные установки.
Для правильного подбора необходимого оборудования достаточно знать: необходимую мощность калорифера, который впоследствии будет монтироваться в системе отопления приточной вентиляции, температуру воздуха на его выходе из калориферной установки и расход теплоносителя.
[contents]Для упрощения производимых расчетов вашему вниманию представлен онлайн-калькулятор расчета основных данных для правильного подбора калорифера.
С помощью него вы сможете рассчитать:
- Тепловую мощность калорифера кВт. В поля калькулятора следует ввести исходные данные об объеме проходящего через калорифер воздуха, данные о температуре поступаемого на вход воздуха, необходимую температуру воздушного потока на выходе из калорифера.
- Температуру воздуха на выходе. В соответствующие поля следует ввести исходные данные об объеме нагреваемого воздуха, температуре воздушного потока на входе в установку и полученную при первом расчете тепловую мощность калорифера.
- Расход теплоносителя. Для этого в поля онлайн-калькулятора следует ввести исходные данные: о тепловой мощности установки, полученные при первом подсчете, о температуре теплоносителя подаваемого на вход в калорифер, и значение температуры на выходе из устройства.
Расчет мощности калорифера
Расчет расхода теплоносителя
Расчета калориферов, в качестве теплоносителя которых используется вода или пар, происходит по определенной методике. Здесь важной составляющей являются не только точные расчеты, но и определенная последовательность действий.
Добавление по теме
Обратите внимание!
Если вы не найдете ответ на свой вопрос в этой статье, то посмотрите вопросы наших читателей. Может быть кто-то уже задавал вопрос, похожий на ваш:Расчет производительности для нагрева воздуха определенного объема
Определяем массовый расход нагреваемого воздуха
G (кг/ч) = L х р
где:
L — объемное количество нагреваемого воздуха, м.куб/час
p — плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м.куб
Определяем расход теплоты для нагревания воздуха
Q (Вт) = G х c х (t кон — t нач)
где:
G — массовый расход воздуха, кг/час с — удельная теплоемкость воздуха, Дж/(кг•K), (показатель берется по температуре входящего воздуха из таблицы)
t
t кон — температура нагретого воздуха на выходе из теплообменника, °С
Вычисление фронтального сечения устройства, требующегося для прохода воздушного потока
Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха.
Фронтальное сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.
f (м.кв) = G / v
где:
G — массовый расход воздуха, кг/час
v — массовая скорость воздуха — для оребренных калориферов принимается в диапазоне 3 — 5 (кг/м.кв•с). Допустимые значения — до 7 — 8 кг/м.кв•с
Вычисление значений массовой скорости
Находим действительную массовую скорость для калориферной установки
V(кг/м.кв•с) = G / f
где:
G — массовый расход воздуха, кг/час
f — площадь действительного фронтального сечения, берущегося в расчет, м.кв
Расчет расхода теплоносителя в калориферной установке
Рассчитываем расход теплоносителя
Gw (кг/сек) = Q / ((cw х (t вх — t вых))
где:
Q — расход тепла для нагрева воздуха, Вт
cw — удельная теплоемкость воды Дж/(кг•K)
t вх — температура воды на входе в теплообменник, °С
t вых — температура воды на выходе из теплообменника, °С
Подсчет скорости движения воды в трубах калорифера
W (м/сек) = Gw / (pw х fw)
где:
Gw — расход теплоносителя, кг/сек
pw — плотность воды при средней температуре в воздухонагревателе (принимается по таблице внизу), кг/м. куб
fw — средняя площадь живого сечения одного хода теплообменника (принимается по таблице подбора калориферов КСк), м.кв
Определение коэффициента теплопередачи
Коэффициент теплотехнической эффективности рассчитывается по формуле
Квт/(м.куб х С) = А х Vn х Wm
где:
V – действительная массовая скорость кг/м.кв х с
W – скорость движения воды в трубах м/сек
A
Расчет тепловой производительности калориферной установки
Подсчет фактической тепловой мощности:
q (Вт) = K х F х ((t вх +t вых)/2 — (t нач +t кон)/2))
или, если подсчитан температурный напор, то:
q (Вт) = K х F х средний температурный напор
где:
K — коэффициент теплоотдачи, Вт/(м.кв•°C)
F — площадь поверхности нагрева выбранного калорифера (принимается по таблице подбора), м. кв
t вх — температура воды на входе в теплообменник, °С
t нач — температура воздуха на входе в теплообменник, °С
t кон — температура нагретого воздуха на выходе из теплообменника, °С
Определение запаса устройства по тепловой мощности
Определяем запас тепловой производительности:
((q — Q) / Q) х 100
где:
q — фактическая тепловая мощность подобранных калориферов, Вт
Q — расчетная тепловая мощность, Вт
Расчет аэродинамического сопротивления
Расчет аэродинамического сопротивления. Величину потерь по воздуху можно рассчитать по формуле:
ΔРа (Па)=В х Vr
где:
v — действительная массовая скорость воздуха, кг/м.кв•с
B, r — значение модуля и степеней из таблицы
Помогла вам статья произвести расчет калорифера?
Помогла, мне все понятноНе помогла, нужно объяснить более подробно
Определение гидравлического сопротивления теплоносителя
Расчет гидравлического сопротивления калорифера вычисляется по следующей формуле:
ΔPw(кПа)= С х W2
где:
С — значение коэффициента гидравлического сопротивления заданной модели теплообменника (смотреть по таблице)
W — скорость движения воды в трубках воздухонагревателя, м/сек.
Калькулятор расчета мощности конвектора по площади помещения
Подобрать конвектор по параметрам
Стены
Общая длина внешних (холодных) стен помещения м
Высота стены м
Количество слоев материала наружних стен 1 2 3 4 5
Тип материала:
Слой 1
ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Слой 2
ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м
Слой 3
ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Слой 4
ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Слой 5
ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м
Остекление
Пол
Кровля
0 Вт Тепловая мощность конвектора
Подберите модельРасчет мощности конвектора: полезные таблицы и формулы
При проектировании системы отопления в квартире или доме важно определить необходимую мощность теплового оборудования.
Как рассчитать мощность конвекторов по площади?
В соответствии со строительными нормами номинальная мощность конвектора для комнаты 25 кв. м составит:
(25 кв. м : 10 кв. м) * 1 кВт = 2,5 кВт
или
25 кв. м * 0,1 кВт = 2,5 кВт
Полученный результат приведен без учета особенностей помещения. Для повышения точности вычислений учтите следующие факторы:
- расположение конвектора под окном снижает теплоотдачу, поэтому для компенсации тепловых потерь выбирайте оборудование на 5 – 10 % мощнее;
- если окна занимают большую площадь стены (панорамные, французские), а также выходят на север и северо-восток, при расчетах увеличьте результат на 15 %;
- угловое расположение помещения требует увеличения мощности на 20 %, а при наличии в такой комнате 2 окон полученный результат повышают на 30 %.
Сделать расчеты наиболее точными вам поможет таблица повышающих коэффициентов:
Особенность помещения | Коэффициент |
---|---|
Отсутствие утепления стен | 1,1 |
Установка конвектора под окном | 1,05 |
Монтаж конвектора в угловом помещении с 1 окном | 1,2 |
Монтаж конвектора в угловом помещении с 2 окнами | 1,3 |
Наличие однослойных стеклопакетов | 0,9 |
Высота потолков от 2,8 до 3 м | 1,05 |
Произведем расчет мощности электрического конвектора отопления для угловой комнаты с двумя внешними стенами и площадью 18 кв. м:
(18 кв. м * 0,1 кВт) * 1,2 = 2,16 кВт
В некоторых регионах при расчете учитывают климатические особенности, но в средней полосе России погодный коэффициент равен 1,0.
Расчет мощности конвектора по объему помещения
Согласно положениям СП 60.13330.2012, для обогрева помещений с очень высокими и низкими потолками необходимо 41 Вт на 1 куб. м объема. Зная длину, ширину комнаты и высоту потолка, вы сможете рассчитать мощность отопления на калькуляторе по формуле:
abc * 0,041 кВт,
где abc – формула расчета объема;
0,041 кВт – норматив тепловой энергии.
Рассчитаем мощность конвектора для комнаты 3х4 м с потолками 2 м:
(3*4*2) * 0,041 = 0,984 кВт
Для обогрева такой комнаты потребуется конвектор мощностью 1 кВт (без учета повышающих коэффициентов).
Онлайн-калькулятор расчета тепловой мощности промышленных калориферов
На данной странице представлен онлайн-расчет паровых калориферов. В режиме онлайн можно рассчитать следующие данные:
1. необходимую мощность
отопительного калорифера, в зависимости от объема и температуры нагреваемого воздуха;
2. расход пара,
в зависимости от мощности подобранного воздухонагревателя и давления теплоносителя;
3. производительность по теплу
парового теплообменника, в зависимости от расхода и давления теплоносителя.
Онлайн-расчет мощности парового калорифера
Расход тепла паровым калорифером отопления на подогрев приточного воздуха. В поля калькулятора вносятся показатели: объем проходящего через сечение калорифера воздуха, температура воздуха на входе и требуемая на выходе из теплообменника. По результатам онлайн-расчета выводится необходимая мощность парового калорифера для соблюдения заложенных условий.
1 поле. Объем проходящего через калорифер приточного воздуха, м³/ч
2 поле. Температура воздуха на входе в паровой калорифер, °С
3 поле. Необходимая температура воздуха на выходе из калорифера, °С
4 поле (результат). Требуемая мощность парового калорифера для введенных данных, кВт
Онлайн-подбор парового калорифера
Онлайн-подбор парового калорифера по объему нагреваемого воздуха и тепловой мощности. Ниже выложена таблица с номенклатурой паровых калориферов отопления производства ЗАО Т.С.Т. Изначально ориентируясь на показатели объема нагрева воздуха в час, выбирается промышленный калорифер для наиболее часто используемых тепловых режимов. Показатели представлены при использовании в качестве теплоносителя сухого насыщенного пара давлением 0.1 МПа и температурой 99.6°С. Кликнув мышкой по названию выбранного воздухоподогревателя, можно перейти на страницу с подробными теплотехническими параметрами и рабочими расчетами данного парового калорифера.
Купить паровые калориферы производства ЗАО Т.С.Т. Вы можете, отправив в адрес нашего предприятия заявку на электронную почту zao_tst@mail. ru. В выставленном коммерческом предложении или документе на оплату будут представлены цена запрашиваемого отопительного оборудования, сроки изготовления и условия поставки. Доставка до покупателей приобретенных паровоздушных калориферов осуществляется, как на условиях самовывоза, так и автотранспортом нашего предприятия, транспортными компаниями. До местных терминалов транспортных компаний паровые воздухонагреватели довозятся бесплатно.Онлайн-расчет расхода пара калорифером
Расход пара в зависимости от мощности калорифера. В верхнее поле калькулятора вносится значение тепловой мощности подобранного промышленного воздухонагревателя. В выпадающем меню выбирается давление сухого насыщенного пара, поступающего в калорифер приточной вентиляции. По результатам онлайн-расчета показывается необходимый расход теплоносителя для выработки указанной производительности по теплу.
1 поле. Производительность по теплу (фактическая или требуемая) парового воздухонагревателя, кВт
2 поле. Давление используемого теплоносителя, МПа
3 поле (результат). Расход насыщенного пара калорифером, кг/час
Онлайн-расчет тепловой производительности парового калорифера
Онлайн-расчет тепловой мощности парового воздухонагревателя в зависимости от расхода и давления теплоносителя. В верхнее поле калькулятора вносится расход пара калорифером. В выпадающем меню выбирается давление сухого насыщенного пара, поступающего в теплообменник. По результатам онлайн-расчета показывается вырабатываемая калорифером мощность.
1 поле. Расход пара калорифером, кг/час
2 поле. Давление используемого теплоносителя, МПа
3 поле (результат). Соответствующая тепловая мощность, кВт
Калькуляторы онлайн-расчета паровых калориферов служат для начального подбора воздухоподогревателей. Подробный пошаговый расчет и подбор паровоздушных калориферов представлен на странице сайта: Калориферы КПСк. Расчет и подбор.
Калькулятор для расчет количества конвекторов
По СНИПу (хорошее утепление)
Стена с утеплением мин. ватой 150мм, кровля 200мм мин.ваты или аналоги (для средней полосы России)
Пеноблок/газоблок (дополнительно утеплен)
Стена из пеноблока/газоблока 400мм утеплена ЭППС 50мм; кровля и пол – утеплитель типа мин.вата 200 мм. (для средней полосы России)
Пеноблок/газоблок
Стена из пеноблока/газоблока 400мм, без утеплителя; кровля и пол – утеплитель типа мин.вата 200 мм. (для средней полосы России)
Брус 240мм (дополнительно утеплен)
Стена из брус 240мм утеплена мин.ватой 50мм; кровля и пол – утеплитель типа мин.вата 200 мм. (для средней полосы России)
Брус 240мм
Стена из брус 240мм, без утеплителя; кровля и пол – утеплитель типа мин. вата 200 мм. (для средней полосы России)
Брус 150мм (дополнительно утеплен)
Стена из брус 150мм утеплена мин.ватой 50мм; кровля и пол – утеплитель типа мин.вата 200 мм. (для средней полосы России)
Брус 150мм
Стена из брус 150мм, без утеплителя; кровля и пол – утеплитель типа мин.вата 150 мм. (для средней полосы России)
Плохое утепление
Стена пеноблок 300мм или брус 240мм, кровля 120мм мин.ваты или аналоги (для средней полосы России)
Хорошее
Стена пеноблок 30см, с дополнительным утеплением каменной ватой 100мм
On-line калькулятор расчета работы солнечной электростанции
On-line калькулятор солнечной, ветровой и тепловой энергии
Выберите месторасположение объекта, воспользовавшись поиском по названию города или передвигая метку на карте. Введите параметры солнечных панелей, ветрогенераторов, воздушных и/или тепловых коллекторов.
Для расчета солнечных панелей и ветрогенераторов укажите среднесуточное потребление (кВт·ч/сутки) или воспользуйтесь «калькулятором» средней нагрузки, расположенным под картой, справа. Рассчитайте время автономной работы системы, задав данные ёмкости и напряжения аккумуляторных батарей.
Для расчёта тепловой энергии или объема горячей воды выберите тип и количество солнечных коллекторов.
Вы можете воспользоваться подсказками, расположенными под калькулятором или обратиться за помощью в расчётах к нашим специалистам по телефону +7(812)903-28-88, [email protected].
Как подобрать комплектацию солнечной и/или ветровой электростанции?
1. Мы рекомендуем начать с расчёта необходимого количества энергии или суточного потребления вашего дома/объекта в кВт*ч/сутки. Эти данные можно получить, списав с электросчетчика или рассчитать в калькуляторе средней нагрузки, справа под картой. Обратите внимание, что данные средней нагрузки в летний и зимний период могут отличаться. Рекомендуем заполнить оба показателя. На графике появятся две прямые: синяя линия указывает зимнее потребление, красная – летнее.
2. Выберите регион установки, для этого используйте «поиск города по названию» или двигайте метку на карте. Инсоляция в разных регионах может значительно отличаться.
3. Выберите тип и количество солнечных панелей в соответствии с суточным потреблением вашего объекта. На графике появится кривая жёлтого цвета, она показывает выработку выбранного вами солнечного массива, при условии ориентации его строго на юг и соблюдении рекомендуемого угла наклона (зенитный угол).
4. Чтобы увидеть количество энергии, вырабатываемое панелями в разные месяцы года – наведите курсор на точку на графике, над интересующим вас месяцем. Получить данные вырабатываемой энергии в разрезе всего года можно в нижнем, общем графике «Суммарная выработка электроэнергии», для этого достаточно нажать закладку «Среднемесячная выработка, кВт*ч».
5. Подберите необходимую ёмкость аккумуляторных батарей, для этого справа под картой выбирайте желаемую ёмкость аккумуляторов и их напряжение. Время автономной работы системы (часов) с выбранным массивом аккумуляторов и при указанной суточной нагрузке высветится ниже.
6. Обратите внимание, что в большинстве случаев перекрыть зимнее (ноябрь-февраль) потребление сложно. Поэтому для зимней эксплуатации используют резервные источники энергии, при полном отсутствии сети это может быть ветрогенератор или топливный генератор.
7. Чтобы добавить к вашей резервной системе ветрогенератор откройте вкладку «Расчет энергии, вырабатываемой ветрогенераторами». Выберите количество и модель ветрогенератра, высоту мачты и окружающий ландшафт. На графике появится голубая кривая, отображающая выработку ветрогенератора в кВт*ч. Чтобы увидеть количество энергии, вырабатываемое в определенные месяцы года – наведите курсор на точку на графике, над интересующим вас месяцем. Получить данные вырабатываемой энергии в разрезе всего года можно в нижнем, общем графике «Суммарная выработка электроэнергии», для этого достаточно нажать закладку «Среднемесячная выработка, кВт*ч». Обратите внимание, что в нижнем графике «Суммарная выработка электроэнергии» отображаются общие данные как солнечной, так и ветровой системы в сумме.
Как подобрать тип и количество водяных солнечных коллекторов?
Объем горячей воды, получаемой от того или иного водного солнечного коллектора можно рассчитать, открыв вкладку «Расчет энергии, вырабатываемой водяными солнечными коллекторами».
Выберите модель и количество коллекторов и укажите угол наклона коллектора в графе «зенитный угол». На графике появится жёлтая кривая, указывающая количество воды в литрах нагреваемой в сутки в различные месяцы года. Температура нагрева 25°С.
Как рассчитать количество тепловой энергии и выбрать воздушный солнечный коллектор?
Для расчета объема нагреваемого солнечным коллектором воздуха откройте вкладку «Расчёт энергии, вырабатываемой воздушными солнечными коллекторами» выберите модель и количество коллекторов. Обязательно укажите угол наклона коллектора в графе «зенитный угол». Для моделей с креплением на стену установите значение 90.
На графике появится желтая кривая, отображающая объем горячего воздуха в м³/сутки при нагреве на 44°С.
Обратите внимание, что полученные при расчетах данные приблизительные. On-line калькулятор в своих расчётах опирается на базы данных о инсоляции на земной поверхности в разных точках земного шара. Период наблюдения, учтённый в базе данных инсоляции земной поверхности — чуть более двадцати лет. Фактическая выработка энергии может отличаться из года в год, и зависит от инсоляции в конкретном периоде. К тому же данные калькулятора предполагают расположение источников тепловой и электрической энергии (солнечных панелей и коллекторов) строго на юг!
Калькулятор расчета мощности обогревателей для шкафа автоматики ОША
Основным критерием для оптимального подбора нагревательного оборудования для шкафа автоматики является мощность нагревательного элемента, которая необходима для прогрева объема шкафа и габариты шкафа управления. Основная формула расчета базируется на таких переменных, как площадь поверхности корпуса шкафа управления, разница температур между наружной и внутренней температурой. На расчет влияет также материал, из которого изготовлен шкаф управления, особенности его размещения, объем выделяемого тепла от электрических компонентов в шкафу.
Также есть дополнительные факторы, которые не могут учитываться стандартной формулой, поэтому данный калькулятор размещается в качестве быстрого инструмента предварительного расчета. Для детального подробного расчета и консультации обращайтесь к нашим специалистам. Расчет и консультация предоставляются абсолютно бесплатно!
Расчет параметров нагревателей шкафа автоматики
Современный мир развивается стремительными темпами, автоматизация всех процессов производства становится все более распространенной задачей. В связи с этим актуальным становится вопрос увеличения срока службы различного электротехнического оборудования.
Самым оптимальным решением задачи защиты электрооборудования является размещение его в защитных шкафах. Электротехнические шкафы защищают приборы внутри от воздействия пыли, влажности, капель воды и прочих негативных воздействий. Правильный подбор шкафа автоматики позволяет обеспечить вашему оборудованию максимальный уровень безопасности от негативного влияния окружающей среды.
Внутри самого шкафа автоматики также имеются различные факторы, которые могут отрицательно сказаться на функциональности оборудования.
Перегрев
Электроприборы, размещаемые в шкафу автоматики, выделяют определенное тепло. При высокой температуре окружающей среды они могут перегреваться, что в большинстве случаев приводит к выходу оборудования из строя. В данном случае необходимо обеспечить достаточную вентиляцию воздуха, помочь с чем могут вентиляторы для шкафов автоматики.
Низкие температуры
Вторым важным фактором, который отрицательно сказывается на работоспособности оборудования, является холод. Большинство приборов абсолютно не рассчитаны на работу при отрицательных температурах, поэтому очень важно установить дополнительные обогреватели в шкафу автоматики, если он расположен на улице или в помещении с недостаточным отоплением.
Низкие температуры воздуха приводят к еще одной проблеме внутри шкафов управления – выпадению конденсата. Конденсат будет появляться в том случае, если температура внутри шкафа будет ниже точки росы. Точка росы – это предельная температура, при которой частицы влаги в воздухе начинают конденсироваться. При использовании обогревателей ОША температура внутри шкафа будет нормализоваться, и конденсат выпадать не будет.
Точка росы зависит от влажности воздуха. В таблице ниже представлены данные о значениях точки росы для определенной влажности окружающей среды.
Относительная влажность среды, % | Температура окружающей среды, °C | |||||||
---|---|---|---|---|---|---|---|---|
20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | |
40 | 6 | 11 | 15 | 19 | 24 | 28 | 33 | 37 |
50 | 9 | 14 | 19 | 23 | 28 | 32 | 37 | 41 |
60 | 12 | 17 | 21 | 26 | 31 | 36 | 40 | 45 |
70 | 14 | 19 | 24 | 29 | 34 | 38 | 43 | 48 |
80 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 |
90 | 18 | 23 | 28 | 33 | 38 | 43 | 48 | 53 |
100 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 |
Для нейтрализации всех негативных факторов, влияющих на работу электрооборудования в электротехнических шкафах управления, нужно произвести правильный расчет параметров обогрева и на их основе подобрать оптимальный набор обогревателей ОША. Для расчета нужно учитывать множество особенностей, которые мы рассмотрим подробнее.
Габариты шкафа автоматики и место расположения
Первым делом нужно измерить габариты шкафа управления и уточнить тип его расположения. На основе этих параметров производится вычисление таких величин:
Эффективная площадь поверхности теплообмена
Площадь поверхности, рассеивающей тепло в окружающую среду
Очевидно, что чем больше будет размер щита управления, тем большей будет площадь поверхности, рассеивающей тепло. Таким образом для охлаждения электроники в шкафу автоматики большего объема понадобится меньший объем охлажденного воздуха, чем для охлаждения того же оборудования в щите меньшего объема.
А в случае обогрева ситуация абсолютно противоположная. Нагреть воздух в шкафу меньшего объема намного проще, чем в большом, плюс к этому, теплоотдача от стенок компактного шкафа будет меньше.
Для проведения расчета эффективной поверхности теплообмена можно воспользоваться данными из таблицы:
Расположение шкафа | Формула расчета |
Отдельное размещение | A = 1,8 · В · (Ш + Г) + 1,4 · Ш · Г |
Расположение на стене | A = 1,4 · Ш · (В + Г) + 1,8 · Г · В |
Крайнее место в ряду шкафов | A = 1,4 · Г · (В + Г) + 1,8 · Ш · В |
Крайнее место в ряду на стене | A = 1,4 · В · (Ш + Г) + 1,4 · Ш · Г |
Расположение в середине ряда | A = 1,8 · Ш · В + 1,4 · Ш · Г + Г · В |
В середине ряда на стене | A = 1,4 · Ш · (В + Г) + Г · В |
Расположение на стене в середине ряда под козырьком | A = 1,4 · Ш · В + 0,7 · Ш · Г + Г · В |
Как видно по данным таблицы, не только площадь поверхности шкафа важна, но и то, как он расположен. Если шкаф стоит отдельно, то тепло с поверхности будет отдаваться от всех стенок щита управления, а размещенный на стене в середине ряда будет отдавать тепло с намного меньшей площади.
Плотность теплового потока
От константы воздуха зависит еще один участвующий в расчетах параметр – плотность теплового потока. По сути это скорость рассеивания тепла внутри электротехнического щита управления. Данный параметр имеет обратно пропорциональную зависимость от значения атмосферного давления. Чем оно ниже, тем дольше будет происходить рассеивание тепла. Как всем известно из курса школьной физики, чем выше точка над уровнем моря, тем меньше будет атмосферное давление. Следовательно, чем выше над уровнем моря будет расположен шкаф управления, тем хуже будет рассеиваться тепло.
Для России в средней полосе высота над уровнем моря равна 170 м, следовательно, константа воздуха для средней полосы России равна 3,2 м3К/Втч.
Материал корпуса шкафа управления
Материал, использующийся при изготовлении корпуса электрощита, является также немаловажным параметром, ведь от него зависит коэффициент теплоотдачи.
Коэффициент теплоотдачи – это количество теплоты, которое за единицу времени переходит через квадратный метр эффективной поверхности теплообмена от более нагретого к менее нагретому теплоносителю.
Для примера шкаф из листовой стали с окрашенной поверхностью будет иметь К=5,5, в случае с нержавейкой К=4,5, а для алюминия коэффициент будет равен 12. Таким образом, если сравнить два щита управления с равными габаритами, но один будет алюминиевый, а второй стальной, то снизить температуру алюминиевого щита управления будет намного проще, ведь его поверхности будут быстрее остывать и передавать тепло окружающей среде. Именно поэтому алюминий часто используется в качестве материала для радиаторов охлаждения.
Тепловыделение оборудования в шкафу управления
Немаловажным критерием для выбора корпуса шкафа управления и климатического оборудования внутри является сами электроприборы. Различное оборудование выделяет различное количество тепла. Есть приборы, которые значительно нагреваются, например, блоки питания, трансформаторы, частотники, реле. Если в вашем шкафу автоматики присутствуют перечисленные или подобные приборы, обязательно включите в расчет суммарную теплоотдачу от них.
Расчет внутренней температуры шкафа управления
Температура внутри шкафа вычисляется по формуле:
Твнут=Qv*k*A+Тнар
Где Твнут – температура внутри шкафа управления,
Тнар – температура окружающей среды
Qv – тепловыделение от установленных в шкафу приборов
k – коэффициент теплоотдачи материала корпуса
А – эффективная поверхность теплообмена
В случае, если вы не знаете точный показатель тепловыделения оборудования вашего ШУ, то подсчитать его самостоятельно вам поможет следующая таблица:
Устройство | Формула для расчета |
Преобразователи частоты | Qпч = суммарная мощность * 0,05 |
Блоки питания | Qбп = суммарная мощность * 0,1 |
Автоматы | Qа = суммарный ток * 0,2 |
Пускатели | Qп = суммарный ток * 0,4 |
Трансформаторы | Qт = суммарная мощность * 0,1 |
Твердотельные реле | Qр = суммарный ток нагрузок по каждой фазе * 1,2 |
Тепловыделение суммарное Qv считается как сумма тепловыделения всех элементов.
Таким образом в результате расчетов мы получим внутреннюю температуру шкафа управления и поймем, является ли она достаточной для стабильного функционирования оборудования. Если вычисленная температура меньше, чем оптимальная, то в электрощите нужен дополнительный обогрев при помощи обогревателей ОША.
Расчет мощности обогрева шкафа автоматики
Мощность, необходимая для обогрева шкафа автоматики, рассчитывается по формуле:
Р=А* k*(Твнутр-Твнеш) — Qv
Где Р – мощность нагревателей
А – эффективная поверхность теплообмена
Твнеш-Твнутр – разница температур между температурой внутри шкафа и окружающей средой
k – коэффициент теплоотдачи материала корпуса шкафа
Qv – суммарное тепловыделение оборудования
На основе полученной мощности производится подбор обогревателей ОША и других климатических устройств. Вы можете произвести расчет самостоятельно, использовав калькулятор на данной странице, и выбрать необходимую модель нагревателя ОША исходя из полученного показателя мощности. Или же просто обращайтесь к нашим специалистам за бесплатной консультацией и расчетами по телефону или через форму заказа звонка прямо сейчас!
Калькулятор удельной теплоемкости
Этот калькулятор удельной теплоемкости представляет собой инструмент, который определяет теплоемкость нагретого или охлажденного образца. Удельная теплоемкость — это количество тепловой энергии, которое необходимо подать на образец весом 1 кг, чтобы повысить его температуру на 1 K . Прочтите, чтобы узнать, как правильно применить формулу теплоемкости для получения достоверного результата.
Как рассчитать удельную теплоемкость
- Определите, хотите ли вы нагреть образец (дать ему некоторую тепловую энергию) или охладить (отнять некоторое количество тепловой энергии).
- Укажите количество подаваемой энергии как положительное значение. Если вы хотите охладить образец, введите вычтенную энергию как отрицательное значение. Например, предположим, что мы хотим уменьшить тепловую энергию образца на 63 000 Дж. Тогда
Q = -63 000 Дж
. - Определите разницу температур между начальным и конечным состоянием образца и введите ее в калькулятор теплоемкости. Если образец остынет, разница будет отрицательной, а если нагретой — положительной.Допустим, мы хотим охладить образец на 3 градуса. Тогда
ΔT = -3 K
. Вы также можете перейти в расширенный режим , чтобы ввести начальное и конечное значения температуры вручную. - Определите массу образца. Примем
м = 5 кг
. - Рассчитайте удельную теплоемкость как
c = Q / (мΔT)
. В нашем примере это будет равноc = -63,000 Дж / (5 кг * -3 K) = 4200 Дж / (кг · K)
. Это типичная теплоемкость воды.
Если у вас возникли проблемы с единицами измерения, воспользуйтесь нашими калькуляторами преобразования температуры или веса.
Формула теплоемкости
Формула для определения теплоемкости выглядит так:
c = Q / (мΔT)
Q
— количество подводимого или отведенного тепла (в джоулях), м
— масса образца, а ΔT
— разница между начальной и конечной температурами. Теплоемкость измеряется в Дж / (кг · К).
Типовые значения удельной теплоемкости
Вам не нужно использовать калькулятор теплоемкости для большинства обычных веществ.Ниже приведены значения удельной теплоемкости некоторых из самых популярных.
- лед:
2,100 Дж / (кг · К)
- вода:
4,200 Дж / (кг · К)
- водяной пар:
2,000 Дж / (кг · К)
- базальт:
840 Дж / (кг · К)
- гранит:
790 Дж / (кг · К)
- алюминий:
890 Дж / (кг · К)
- железо:
450 Дж / (кг · К)
- медь:
380 Дж / (кг · К)
- свинец:
130 Дж / (кг · К)
Имея эту информацию, вы также можете рассчитать, сколько энергии вам нужно подать на образец, чтобы повысить или понизить его температуру.Например, вы можете проверить, сколько тепла вам нужно, чтобы довести до кипения воду, чтобы приготовить макароны.
Хотите знать, что на самом деле означает результат? Воспользуйтесь нашим калькулятором потенциальной энергии, чтобы проверить, насколько высоко вы поднимете образец с таким количеством энергии. Или проверьте, насколько быстро может двигаться образец, с помощью этого калькулятора кинетической энергии.
Что такое удельная теплоемкость при постоянном объеме?
Удельная теплоемкость — это количество тепла или энергии, необходимое для изменения одной единицы массы вещества постоянного объема на 1 ° C .Формула: Cv = Q / (ΔT ⨉ m)
.
Какова формула удельной теплоемкости?
Формула для удельной теплоемкости C
вещества с массой м
равна C = Q / (м ⨉ ΔT)
. Где Q
— добавленная энергия, а ΔT
— изменение температуры. Удельная теплоемкость во время различных процессов, таких как постоянный объем Cv
и постоянное давление Cp
, связаны друг с другом отношением удельной теплоемкости ɣ = Cp / Cv
или газовой постоянной R = ЦП - ЦВ
.
В каких единицах указывается удельная теплоемкость?
Удельная теплоемкость измеряется в Дж / кг K или Дж / кг C , поскольку это тепло или энергия, необходимая во время процесса постоянного объема для изменения температуры вещества с единичной массой на 1 ° C или 1 ° K. .
Какое значение удельной теплоемкости воды?
Удельная теплоемкость воды составляет 4179 Дж / кг K , количество тепла, необходимое для повышения температуры 1 г воды на 1 градус Кельвина.
Какие британские единицы измерения удельной теплоемкости?
Удельная теплоемкость измеряется в БТЕ / фунт ° F в британских единицах и в Дж / кг K в единицах СИ.
Какова удельная теплоемкость меди?
Удельная теплоемкость меди 385 Дж / кг K . Вы можете использовать это значение для оценки энергии, необходимой для нагрева 100 г меди на 5 ° C, то есть Q = m x Cp x ΔT = 0,1 * 385 * 5 = 192,5 Дж.
Какова удельная теплоемкость алюминия?
Удельная теплоемкость алюминия 897 Дж / кг K .Это значение почти в 2,3 раза больше теплоемкости меди. Вы можете использовать это значение для оценки энергии, необходимой для нагрева 500 г алюминия на 5 ° C, то есть Q = m x Cp x ΔT = 0,5 * 897 * 5 = 2242,5 Дж.
Онлайн-калькулятор: Количество тепла
Начнем с пары определений:
- Тепло — это количество энергии, перетекающее от одного тела материи к другому, спонтанно из-за разницы температур или любым другим способом, кроме работы или передачи вещества.Исторически для измерения тепла использовалось много единиц энергии. Единицей измерения в Международной системе единиц (СИ) является джоуль (Дж).
- Теплоемкость или теплоемкость — это измеримая физическая величина, равная отношению тепла, добавленного (или удаленного) к объекту, к результирующему изменению температуры. Удельная теплоемкость, часто называемая просто , удельная теплоемкость — это теплоемкость на единицу массы материала.
Из этого определения имеем следующую формулу для удельной теплоемкости:
,
где c — удельная теплоемкость,
Q — тепло, добавленное или отведенное к телу,
m — масса тела,
ΔT — изменение температуры.
На теплоемкость могут влиять многие переменные состояния, которые описывают исследуемую термодинамическую систему. К ним относятся начальная и конечная температура, а также давление и объем системы до и после добавления тепла. Таким образом, приведенная ниже формула будет несколько более правильной:
Однако в школьных задачах мы обычно используем постоянную удельную теплоемкость при стандартном давлении. Таким образом, взаимосвязь между теплом и изменением температуры обычно выражается в форме, показанной ниже:
Обратите внимание, что это соотношение не применяется, если происходит фазовое изменение, потому что тепло, добавленное или удаленное во время фазового перехода, не изменяет температуру.
Калькулятор ниже может найти пропущенное значение в приведенной выше формуле, если указаны все остальные значения. Он может найти добавленное или отведенное тепло, удельную теплоемкость, массу, начальную или конечную температуру:
Количество тепла
Значение для поиска ТеплоУдельная теплоемкость Масса Начальная температура Конечная температура Точность вычисленияЦифры после десятичной точки: 1
content_copy Ссылка сохранить Сохранить расширение Виджет
Калькулятор удельной теплоемкости — [100% бесплатно]
Все мы кое-что знаем о том, что такое удельная теплоемкость, в конце концов, мы изучали физику в старшей школе.Это количество тепла, необходимое для повышения температуры определенного вещества на определенную величину. Количество тепла зависит от свойств вещества. Это означает, что количество тепла будет различным для разных веществ. Удельная теплоемкость — это мера того, насколько термически нечувствительным является вещество, когда оно подвергается воздействию дополнительной энергии. Этот калькулятор удельной теплоемкости — инструмент, который поможет вам рассчитать удельную теплоемкость различных веществ.
Как пользоваться калькулятором удельной теплоемкости?
Этот калькулятор теплоемкости является особенно полезным инструментом, если вам нужно рассчитать удельную теплоемкость вещества без использования уравнения удельной теплоемкости.Это простой в использовании онлайн-инструмент. Чтобы получить удельную теплоемкость вещества, выполните следующие действия:
- Сначала введите значение энергии, затем выберите единицу измерения в раскрывающемся меню. Возможные варианты: джоули, килоджоули, мегаджоули, ватт-часы, киловатт-часы, килокалории или фут-фунты.
- Затем введите значение для изменения температуры, затем выберите единицу измерения в раскрывающемся меню. Возможны следующие варианты: ˚C, ˚F или K.
- Наконец, введите значение массы, затем выберите единицу измерения в раскрывающемся меню.Возможные варианты: г, кг, фунты или унции.
- После ввода всех значений калькулятор удельной теплоемкости автоматически сгенерирует значение удельной теплоемкости.
Как рассчитать удельную теплоемкость?
Этот калькулятор тепла или калориметрический калькулятор может помочь нам определить теплоемкость нагретого или охлажденного образца. Если мы используем метрическую систему, удельная теплоемкость — это количество тепла, необходимое для того, чтобы образец весом 1 кг поднял его температуру на 1 К.Вот шаги для использования формулы для удельной теплоемкости:
- Во-первых, решите, будете ли вы нагревать или охлаждать образец.
- Запишите значение поставленной энергии, используя положительное значение. И наоборот, если вы охлаждаете образец, запишите значение энергии, используя отрицательное значение. Например, если вы хотите снизить тепловую энергию образца на 60000 Дж, тогда:
Q = -60000 Дж.
- . начальное и конечное состояние образца.Запишите эту информацию. Если вы охладите образец, эта разница будет иметь отрицательное значение. И наоборот, если сэмпл разогреть, он будет иметь положительное значение. Например, если вы охлаждаете образец на 3 градуса, тогда:
ΔT = — 3K
- Запишите массу образца:
м = 5 мкг .
- Теперь вы можете рассчитать удельную теплоемкость по следующей формуле:
c = Q / (м * ΔT)
- Если вы замените значения из предыдущих шагов, вы получите
c = -60000 Дж / (5 кг * -3 K) = 4200 Дж / кг * K, что является нормальной теплоемкостью воды
Если вы считаете ручной расчет слишком сложным или если вы хотите проверить точность полученное значение удельной теплоемкости, то вы можете использовать этот калькулятор удельной теплоемкости или калькулятор тепловой энергии.
Что такое пример удельной теплоемкости?
Вы можете увидеть практический пример использования удельного тепла в вашей автоматической посудомоечной машине. Вы кладете в посудомоечную машину разные предметы, такие как керамические тарелки, посуду, пластиковые контейнеры, металлические миски и т. Д. Вы заметите кое-что интересное, если откроете прибор сразу после завершения цикла стирки.
Примерно через 20 минут керамические изделия высохнут. То же и с любыми предметами из хэви-метала.Миски, сделанные из тонкого металла, могут частично высохнуть, но все же в них может оставаться некоторое количество влаги. Однако изделия из пластика будут почти мокрыми.
Причина этого в том, что пластмассы не обладают достаточной теплоемкостью, чтобы позволить каплям воды испаряться на их поверхности. Вместо этого испарение воды охладит материал. С другой стороны, керамические изделия могут сохранять тепло в течение более длительных периодов времени, и они содержат достаточно внутреннего тепла, чтобы позволить воде испаряться. Предметы, сделанные из металла, находятся между керамикой и пластиком, но испарение будет зависеть от того, сколько в нем массы металла по отношению к массе капель воды на их поверхности.
Как рассчитать тепловую мощность?
Теплоемкость — это количество энергии, необходимое для повышения температуры определенного вещества на 1 градус. Это также отражает свойство вещества сохранять тепло. Согласно определению, теплоемкость имеет ограниченное применение, потому что это обширное свойство, то есть оно будет зависеть от массы вещества.В физике обычно используется удельная теплоемкость. Это теплоемкость, нормальная для единицы массы.
Теплоемкость, также называемая «тепловой массой» объекта, также известна как энергия и обычно выражается в джоулях. Вы можете использовать калькулятор тепловой энергии, чтобы получить эту величину или следующую формулу:
Теплоемкость = масса * удельная теплоемкость * изменение температуры или Q = m * C * ΔT
где:
Q относится к теплоемкости
м относится к массе
c относится к удельной теплоемкости
ΔT относится к изменению температуры
Сколько энергии требуется для повышения температура одного грамма воды 1 c?
Обычная вода имеет очень высокий показатель удельной теплоемкости, что означает, что она должна поглотить много тепла, прежде чем начнет нагреваться. Это одна из важных причин, почему это ценный предмет в отрасли. Этот же индекс также помогает регулировать скорость изменения температуры воздуха, и по этой причине изменения температуры между сезонами происходят постепенно, а не скачкообразно. Вы можете рассчитать энергию, необходимую для повышения температуры воды или любого заданного вещества в этом отношении, используя следующую формулу:
Q = m * c * ΔT
, где
Q относится к теплу. требуется
м относится к массе материала
c относится к удельной теплоемкости материала
ΔT относится к изменению температуры, которое происходит
Калькулятор удельной теплоемкости — определение теплоемкости веществ
Онлайн-калькулятор удельной теплоемкости помогает определить удельную теплоемкость, тепловую энергию, массу вещества, начальную и конечную температуры любого вещества. Когда дело доходит до анализа удельной теплоемкости воды или любого другого вещества, он сообщает нам формулу теплоемкости вместе со всем раствором для соответствующего вещества.
Вы попробуете этот калькулятор удельной теплоемкости, чтобы определить теплоемкость нагретого или охлажденного образца.
Что ж, прочтите данный контекст, чтобы понять, как вычислить удельную теплоемкость (шаг за шагом) и с помощью калькулятора уравнения q = mc∠† t. Но давайте начнем с основ!
Что такое удельная теплоемкость?Это количество тепла, необходимое для изменения температуры единицы массы любого вещества всего на один градус.Чтобы найти удельную теплоемкость, мы можем сказать, что это мера общей энергии, необходимой для нагрева 1 килограмма любого материала до 1 ° Цельсия или 1 Кельвина. Эти явления должны происходить в диапазоне температур, в котором вещество не меняет своего состояния, например в случае воды она не должна закипать.
Для удобства используйте этот бесплатный, но лучший калькулятор закона Ома для расчета напряжения (В) и сопротивления (R). Ток (I) и мощность (P).
Формула удельной теплоемкости:Формула теплоемкости:
$$ C = \ frac {Q} {m \ times \ Delta T} $$
А:
- \ (C \) представляет собой удельную теплоемкость
- \ (Q \) представляет наведенную тепловую энергию
- \ (м \) представляет собой массу
- \ (\ Delta T \) — разница температур
- \ (J \) — это джоулей
- \ (° C \) — градусы Цельсия или Цельсия
- \ (K \) — кельвинов
Пример:
Если у вас есть кусок любого металла весом \ (15 г \), который поглощает \ (134 Дж \) тепла, увеличиваясь с \ (24.От 0 ° C \) до \ (62,7 ° C \). Как вы рассчитаете его удельную теплоемкость?
- С учетом тепла \ (q = 134 Дж \)
- Заданная масса \ (m = 15,0 г \)
- Изменение температуры: \ (\ Delta T = 62,7 — 24,0 = 38,7 \)
Чтобы найти удельную теплоемкость, введите значения в приведенное выше уравнение теплоемкости: \ (\ frac {q} {m \ times \ Delta T} = \ frac {134} {15 \ times 38,7} = 0,231 \). Однако калькулятор удельной теплоемкости может помочь вам найти значения без каких-либо ручных расчетов.
Однако плотность имеет решающее значение для определения чистоты веществ, поэтому попробуйте онлайн-калькулятор плотности, чтобы найти взаимосвязь между плотностью, массой и весом объекта.
Единица удельной теплоемкости:Определение удельной теплоемкости показало, что это количество тепла, необходимое для повышения температуры 1 килограмма любого вещества на 1 кельвин. Следовательно, его производная единица \ (SI \) равна \ (J kg − 1 K − 1 \). Калькулятор удельной теплоемкости служит для получения результатов вместе со стандартизованными единицами измерения.
Удельная теплоемкость воды? Удельная теплоемкость водыимеет одно из максимальных значений удельной теплоемкости среди обычных веществ.Это примерно \ (4182 Дж / (К · кг) при 20 ° C \). В случае льда это всего \ (2093 Дж / (К · кг) \).
Как рассчитать удельную теплоемкость (шаг за шагом)?С поддержкой формулы удельной теплоемкости расчет удельной теплоемкости является простым процессом. Посмотрите ниже и выполните несколько простых шагов:
Шаг 1:
Прежде всего, вы должны определить, хотите ли вы нагреть вещество или охладить его. Теперь представьте количество подаваемой энергии как положительное значение.Охлаждая образец, вы должны дать вычтенную энергию как отрицательное значение. Например, предположим, что мы хотим уменьшить тепловую энергию дегустатора на \ (63000 Дж \). Тогда \ (Q \) будет \ (- 63 000 Дж \).
Шаг 2:
Теперь определите разницу между начальным и конечным состоянием образца. Предположим, что разница равна \ (ΔT = -3 K \), а m равно 5 кг.
Шаг 3:
Просто введите значения в уравнение теплоемкости как \ (c = Q / (m x ΔT) \).В этом примере это будет равно c = \ (- 63 000 Дж / (5 кг * -3 K) = 4 200 Дж / (кг • K) \).
Это типичная теплоемкость воды, которую также можно рассчитать с помощью калькулятора удельной теплоемкости за один раз.
Удельная теплоемкость некоторых распространенных веществ:Нет необходимости использовать калориметрический калькулятор, чтобы определить удельную теплоемкость обычных веществ, как мы их перечислили ниже:
Стол:
Как пользоваться калькулятором удельной теплоемкости?Онлайн-калькулятор удельной теплоемкости помогает определить теплоемкость различных веществ. Просто выполните следующие действия, чтобы получить точные результаты для веществ:
Ввод:
- Прежде всего, выберите вариант, вы хотите найти тепловую энергию, удельную теплоемкость, массу, начальную температуру, конечную температуру любого вещества
- Затем выберите вариант, в котором необходимо выполнить расчеты по изменению температуры \ (ΔT) \) или начальной и конечной температуры
- Теперь вы можете добавлять значения в назначенные поля для выбранных опций
- Затем выберите вещество, например (вода, почва, алюминий, асфальт и т. Д.), Для которого вам нужно найти удельную теплоемкость (это поле необязательно).
- Нажмите кнопку «рассчитать»
Выход:
Калькулятор удельной теплоемкости вычисляет:
- Тепловая энергия, удельная теплоемкость, масса, начальная или конечная температура вещества
- Удельная теплоемкость данного вещества
- Формула для выбранного варианта
- Пошаговое решение по формуле по выбранному варианту
Примечание: Калькулятор удельной теплоемкости поддерживает различные единицы измерения, чтобы предоставить вам точные результаты для веществ.
Сколько энергии требуется для повышения температуры одного грамма воды на 1 градус?Калории определяются как количество тепла, которое требуется при давлении 1 для повышения температуры 1 грамма воды при \ (1 ° \) Цельсия. Кроме того, калории были определены в джоулях, и одна калория равна приблизительно \ (4,2 джоуля \). Следовательно, мы можем сказать, что для повышения температуры 1 грамма воды требуется \ (4,2 джоуля \) энергии. Однако калькулятор теплоемкости — лучший способ получить безошибочный ответ.
Часто задаваемые вопросы: Почему у воды такая высокая теплоемкость?Высокая теплоемкость воды обусловлена водородными связями между ее молекулами. Когда тепло поглощается водой, связи водородных тормозов и молекул воды начинают свободно перемещаться. При понижении температуры воды водородные связи выделяют значительное количество энергии.
Сколько тепла нужно, чтобы растопить 200 г льда?Обычно \ (250 × 332 джоулей \) энергии, необходимой для плавления \ (200 нг \) льда.
Сколько энергии нужно, чтобы растопить лед?Если вы хотите растопить, требуется 1 г льда с \ (0 ° C \) общим \ (334 Джоуля \) энергии. Его еще называют скрытой теплотой плавления. Калькулятор удельной теплоемкости может рассчитать джоули энергии для нескольких граммов любого вещества за несколько секунд.
На вынос:У всех нас есть некоторое представление о том, что такое удельная теплоемкость, как мы изучали физику в наших академических кругах. Это количество тепла, которое необходимо для повышения температуры определенного материала на определенное количество, и это количество тепла будет изменяться для разнородных веществ.Конкретный калькулятор — лучший способ найти количество тепла, необходимое для повышения температуры \ (1 (г) \) вещества \ (1 (° C) \).
Каталожные номера:Из информационного источника Википедии: Удельная теплоемкость
Из источника викторины: тепловая энергия (практические задачи)
От источника искры (ИОП): полное обсуждение теплоемкости
Калькулятор удельной теплоемкости— Calculator Academy
Введите общее количество энергии, приложенной к объекту, изменение температуры этого объекта и массу объекта для расчета удельной теплоемкости.
Формула удельной теплоемкости
Удельная теплоемкость определяется следующим термодинамическим уравнением для теплоемкости:
Q = c * m * изменение T
c = Q / м * T
- где Q — полная энергия
- m — масса
- c — удельная теплоемкость
- T — температура
Определение удельной теплоемкости
Удельная теплоемкость — это количество тепла или энергии, необходимое для повышения температуры материала или объекта на 1 градус Цельсия.Это обычно называют способностью материала удерживать тепло.
Например, вода имеет самую высокую удельную теплоемкость из всех обычных веществ. Вот почему это ключевой компонент в регулировании температуры. Он может удерживать значительное количество энергии без резкого изменения температуры.
Как рассчитать удельную теплоемкость?
Вы можете просто использовать калькулятор, приведенный выше, но почти всегда лучше понять расчет, чтобы вы могли настроить результат.
Во-первых, вам нужно определить общее количество энергии, потребляемой системой.Иногда это можно измерить напрямую, а иногда — рассчитывать. В этом примере общая энергия составляет 100 Джоулей.
Во-вторых, вам необходимо измерить массу объекта, который вы тестируете / рассчитываете. В этом примере объект представляет собой шар из неизвестного материала весом 20 кг.
В-третьих, вам необходимо измерить изменение температуры объекта. Изменение температуры составляет 40 ° C, когда к мячу добавляется 100 Джоулей энергии.
Наконец, удельную теплоемкость можно рассчитать по приведенной выше формуле.Окончательное значение составляет 100 * 20 * 40 = 0,125 Дж / кг * C.
Единицы удельной теплоемкости
Стандартными международными единицами измерения удельной теплоемкости являются джоули на кельвин на килограмм. Это обозначается Дж / К / кг или Дж / (К * кг).
Метрические единицы измерения теплоемкости — калории на грамм на градус Цельсия. Это обозначается кал / г / C или кал / (г * C).
Английская система единиц измерения удельной теплоемкости — британские тепловые единицы на фунт на градус Фаренгейта.
Материалы с высокой удельной теплоемкостью
В следующем списке приведены примеры 10 различных материалов с одними из самых высоких теплоемкостей, известных человеку.
- Водород — 14,30 Дж / (г * К)
- Гелий — 5,1932 Дж / (г * К)
- Аммиак — 4,700 Дж / (г * К)
- Литий — 4,379 Дж / (г * К)
- Вода — 4,1813 Дж / (г * К)
- Этанол — 2,44 Дж / (г * К)
- Полиэтилен — 2,3027 Дж / (г * К)
- Бензин — 2,22 Дж / (г * К)
- Метан — 2.191 Дж / (г * К)
- Метанол — 2,14 Дж / (г * К)
Материалы с низкой удельной теплоемкостью
В этом списке приведены примеры известных материалов с одними из самых низких удельных температур на Земле.
- Уран — 0,116 Дж / (г * К)
- Висмут — 0,123 Дж / (г * К)
- Золото — 0,129 Дж / (г * К)
- Свинец — 0,129 Дж / (г * К) K)
- Вольфрам — 0,134 Дж / (г * К)
- Ртуть — 0,1395 Дж / (г * К)
- Сурьма -. 207 Дж / (г * К)
- Олово — 0,227 Дж / (г * К)
- Кадмий -.231 Дж / (г * К)
- Серебро — 0,233 Дж / (г * К)
Удельные теплоемкость
Удельная теплоемкость — это фундаментальное свойство всего вещества, которое описывает, сколько энергии требуется для повышения температуры материала.
Высокая удельная теплоемкость означает, что для повышения температуры материала требуется много энергии. Например, вода имеет очень высокую удельную теплоемкость.
Низкая удельная теплоемкость означает, что для повышения температуры материала требуется очень мало энергии.Например, уран имеет очень низкую удельную теплоемкость около 0,116 Дж / (г · К).
Молярная теплоемкость
Молярная теплоемкость, или иногда называемая молярной удельной теплоемкостью, представляет собой меру удельной теплоемкости на единицу 1 моля материала.
Молярная теплоемкость используется для определения удельной теплоемкости материала по отношению к количеству атомов. Это полезно при просмотре различных материалов, поскольку они различаются по плотности.
FAQ
Что такое удельная теплоемкость?Удельная теплоемкость — это количество тепла или энергии, необходимое для повышения температуры материала или объекта на 1 градус Цельсия.
КалькуляторБТЕ
Калькулятор БТЕ переменного тока
Используйте этот калькулятор для оценки потребностей в охлаждении типичной комнаты или дома, например для определения мощности оконного кондиционера, необходимого для многоквартирного помещения или центрального кондиционера для всего дома.
Калькулятор БТЕ переменного тока общего назначения или отопления
Это калькулятор общего назначения, который помогает оценить количество БТЕ, необходимое для обогрева или охлаждения помещения. Желаемое изменение температуры — это необходимое повышение / понижение температуры наружного воздуха для достижения желаемой температуры в помещении. Например, в неотапливаемом доме в Бостоне зимой температура может достигать -5 ° F. Для достижения температуры 75 ° F требуется желаемое повышение температуры на 80 ° F. Этот калькулятор может делать только приблизительные оценки.
Что такое БТЕ?
Британская тепловая единица или BTU — это единица измерения энергии. Это примерно энергия, необходимая для нагрева одного фунта воды на 1 градус по Фаренгейту. 1 БТЕ = 1055 джоулей, 252 калории, 0,293 ватт-часа или энергия, выделяемая при сжигании одной спички.1 ватт составляет примерно 3,412 БТЕ в час.
БТЕ часто используется в качестве ориентира для сравнения различных видов топлива. Несмотря на то, что они являются физическими товарами и измеряются соответствующим образом, например, по объему или баррелям, их можно преобразовать в БТЕ в зависимости от содержания энергии или тепла, присущего каждому количеству. БТЕ как единица измерения более полезна, чем физическая величина, из-за внутренней ценности топлива как источника энергии. Это позволяет сравнивать и противопоставлять множество различных товаров с внутренними энергетическими свойствами; например, один из самых популярных — это природный газ к нефти.
БТЕ также можно использовать с практической точки зрения как точку отсчета для количества тепла, которое выделяет прибор; чем выше рейтинг прибора в БТЕ, тем выше его теплопроизводительность. Что касается кондиционирования воздуха в домах, хотя кондиционеры предназначены для охлаждения домов, БТЕ на технической этикетке относятся к тому, сколько тепла кондиционер может удалить из окружающего воздуха.
Размер и высота потолка
Очевидно, что меньшая по площади комната или дом с меньшей длиной и шириной требуют меньшего количества БТЕ для охлаждения / обогрева.Однако объем является более точным измерением, чем площадь для определения использования БТЕ, поскольку высота потолка учитывается в уравнении; каждый трехмерный кубический квадратный фут пространства потребует определенного количества использования БТЕ для охлаждения / нагрева соответственно. Чем меньше объем, тем меньше БТЕ требуется для охлаждения или нагрева.
Ниже приводится приблизительная оценка холодопроизводительности, которая потребуется системе охлаждения для эффективного охлаждения комнаты / дома, основанная только на площади помещения / дома в квадратных футах, предоставленной EnergyStar.губ.
Площадь, подлежащая охлаждению (квадратных футов) | Необходимая мощность (БТЕ в час) | |
От 100 до 150 | 5000 | |
от 150 до 250 | 6000 | |
от 250 до 300 | ||
300–350 | 8000 | |
350–400 | 9000 | |
400–450 | 10000 | |
450–550 | 12000 | |
от 700 до 1000 | 18000 | |
от 1000 до 1200 | 21000 | |
от 1200 до 1400 | 23000 | |
от 1400 до 1500 | 90724000 | |
от 2000 до 2500 | 34000 |
Состояние изоляции
Термическая изоляция определяется как уменьшение теплопередачи между объектами, находящимися в тепловом контакте или в диапазоне радиационного воздействия. Важность изоляции заключается в ее способности снижать использование БТЕ за счет максимально возможного управления неэффективным ее расходом из-за энтропийной природы тепла — оно имеет тенденцию течь от более теплого к более прохладному, пока не исчезнет разница температур.
Как правило, новые дома имеют лучшую изоляционную способность, чем старые дома, благодаря технологическим достижениям, а также более строгим строительным нормам. Владельцы старых домов с устаревшей изоляцией, решившие обновить, не только улучшат теплоизоляционные свойства дома (что приведет к более дружественным счетам за коммунальные услуги и более теплым зимам), но и оценят ценность своих домов.
R-значение — это обычно используемая мера теплового сопротивления или способности теплопередачи от горячего к холодному через материалы и их сборку. Чем выше R-показатель определенного материала, тем более он устойчив к теплопередаче. Другими словами, при покупке утеплителя для дома продукты с более высоким R-значением лучше изолируют, хотя обычно они дороже.
Принимая решение о правильном вводе в калькулятор состояния изоляции, используйте обобщенные допущения.Бунгало на пляже, построенное в 1800-х годах без ремонта, вероятно, следует отнести к категории бедных. Трехлетний дом в недавно построенном поселке, скорее всего, заслуживает хорошей оценки. Окна обычно имеют более низкое тепловое сопротивление, чем стены. Следовательно, комната с большим количеством окон обычно означает плохую изоляцию. По возможности старайтесь устанавливать окна с двойным остеклением, чтобы улучшить изоляцию.
Требуемое повышение или понижение температуры
Чтобы найти желаемое изменение температуры для ввода в калькулятор, найдите разницу между неизменной наружной температурой и желаемой температурой.Как правило, температура от 70 до 80 ° F является комфортной температурой для большинства людей.
Например, дом в Атланте может захотеть определить использование БТЕ зимой. Зимой в Атланте обычно бывает около 45 ° F с шансом иногда достигать 30 ° F. Желаемая температура обитателей — 75 ° F. Следовательно, желаемое повышение температуры будет 75 ° F — 30 ° F = 45 ° F.
Дома в более суровых климатических условиях, очевидно, потребуют более радикальных изменений температуры, что приведет к увеличению использования БТЕ.Например, для обогрева дома зимой на Аляске или охлаждения дома летом в Хьюстоне потребуется больше БТЕ, чем для обогрева или охлаждения дома в Гонолулу, где температура обычно держится около 80 ° F круглый год.
Прочие факторы
Очевидно, что размер и пространство дома или комнаты, высота потолка и условия изоляции очень важны при определении количества БТЕ, необходимого для обогрева или охлаждения дома, но следует учитывать и другие факторы:
- Количество жителей, проживающих в жилых помещениях.Тело человека рассеивает тепло в окружающую атмосферу, поэтому требуется больше БТЕ для охлаждения и меньше БТЕ для обогрева комнаты.
- Постарайтесь разместить конденсатор кондиционера в самой тенистой стороне дома, обычно к северу или востоку от него. Чем больше конденсатор подвергается воздействию прямых солнечных лучей, тем тяжелее он должен работать из-за более высокой температуры окружающего воздуха, который потребляет больше БТЕ. Помещение его в более тенистое место не только повысит эффективность, но и продлит срок службы оборудования.Можно попробовать разместить вокруг конденсатора тенистые деревья, но имейте в виду, что конденсаторам также необходим хороший окружающий воздушный поток для максимальной эффективности. Убедитесь, что соседняя растительность не мешает конденсатору, не блокируя поток воздуха в агрегат и не перекрывая его.
- Размер конденсатора кондиционера. Единицы слишком большие, крутые дома слишком быстро. Следовательно, они не проходят запланированные циклы, которые были специально разработаны для работы вне завода. Это может сократить срок службы кондиционера.С другой стороны, если агрегат слишком мал, он будет работать слишком часто в течение дня, а также переутомляясь до изнеможения, потому что он не используется эффективно, как предполагалось.
- Потолочные вентиляторы могут помочь снизить потребление БТЕ за счет улучшения циркуляции воздуха. Любой дом или комната могут стать жертвой мертвых зон или определенных участков с неправильной циркуляцией воздуха. Это может быть задний угол гостиной за диваном, ванная без вентиляции и большого окна или прачечная. Термостаты, помещенные в мертвые зоны, могут неточно регулировать температуру в доме.Работающие вентиляторы помогают равномерно распределять температуру по всей комнате или дому.
- Цвет крыш может повлиять на использование БТЕ. Более темная поверхность поглощает больше лучистой энергии, чем более светлая. Даже грязно-белые крыши (с заметно более темными оттенками) по сравнению с более новыми, более чистыми поверхностями привели к заметным различиям.
- Снижение КПД отопителя или кондиционера со временем. Как и у большинства бытовых приборов, эффективность обогревателя или кондиционера снижается по мере использования.Кондиционер нередко теряет 50% или более своей эффективности при работе с недостаточным количеством жидкого хладагента.
- Форма дома. У длинного узкого дома больше стен, чем у квадратного дома такой же площади, что означает потерю тепла.
Калькулятор теплового индекса
Калькулятор рассчитывает температуру, которую ощущает тело, в зависимости от температуры воздуха и относительной влажности.
Использовать относительную влажность
Использовать температуру точки росы
Калькулятор относительной температуры ветра | Калькулятор точки росы
Что такое индекс жары?
Индекс жары часто называют гумитуром, он похож на охлаждение ветром в попытке измерить воспринимаемую, а не фактическую температуру.Например, температура воздуха 83 ° F при относительной влажности 70% приведет к предполагаемой температуре 88 ° F. Эта разница в воспринимаемой и реальной температуре является результатом сочетания температуры воздуха, относительной влажности и скорости ветра.
Восприятие тепла субъективно и может зависеть от различных факторов, таких как менопауза, беременность, эффекты лекарств или отмены, а также различия в гидратации, форме тела и обмене веществ. Более высокая относительная влажность влияет на нормальное охлаждение тела, снижая скорость испарения пота.Человеческое тело охлаждается за счет потоотделения, при котором тепло отводится от тела в результате испарения пота. Более низкая скорость испарения впоследствии снижает скорость охлаждения тела, увеличивая восприятие тепла. Это восприятие тепла и есть то, что пытается измерить индекс тепла, и, хотя с технической точки зрения он может использоваться в помещении, он чаще всего используется в отношении наружной температуры.
Как рассчитать тепловой индекс?
Как и индекс температуры холода при ветре, индекс жары, используемый Национальной метеорологической службой (NWS) в Соединенных Штатах, основан на многих предположениях, таких как масса тела, рост, одежда, индивидуальная физическая активность, толщина крови и скорость ветра.Таким образом, в зависимости от того, насколько сильно эти предположения отличаются от реальности человека, оценки теплового индекса могут неточно отражать воспринимаемую температуру. Уравнение, используемое NWS для оценки индекса тепла, было разработано Джорджем Винтерлингом в 1978 году и предназначено для использования при температуре 80 ° F или выше и относительной влажности 40% или выше. Ниже представлена диаграмма, основанная на уравнении NWS, которое можно использовать для оценки температуры и уровня опасности, связанной с изменяющимся процентным соотношением относительной влажности.
Возможные эффекты теплового индекса
Как описано выше, тепловой индекс — это температурный эквивалент, воспринимаемый людьми в результате температуры воздуха, относительной влажности и скорости ветра. Эта температура может иметь потенциально серьезные медицинские последствия. В условиях высокой температуры и влажности воздуха (высокий индекс тепла) потоотделение затруднено из-за уменьшения испарения из-за высокой влажности. Пот — это физиологическая реакция человеческого тела на высокие температуры и попытка снизить температуру тела за счет испарения пота. Когда этому препятствуют, могут возникать перегрев и обезвоживание различной степени тяжести. Ниже приведена таблица с указанием возможных осложнений при различных уровнях значений теплового индекса, полученная из Википедии.
Влияние теплового индекса
по Цельсию | по Фаренгейту | Примечания |
27-32 ° C | 80-90 ° F | Осторожно: при длительном воздействии и активности возможна усталость. Продолжение активности может привести к тепловым спазмам. |
32-41 ° C | 90-105 ° F | Особая осторожность: возможны тепловые судороги и тепловое истощение. Продолжение активности может привести к тепловому удару. |
41-54 ° C | 105-130 ° F | Опасность: вероятны тепловые судороги и тепловое истощение; тепловой удар вероятен при продолжении активности. |
Более 54 ° C | Более 130 ° F | Чрезвычайная опасность: неизбежен тепловой удар. |
Обратите внимание, что полное солнечное освещение может увеличить значения теплового индекса до 14 ° F.Значения теплового индекса особенно важны для детей. Маленькие дети, как правило, подвергаются большей опасности из-за таких факторов, как большая поверхность кожи по сравнению с их маленькими телами, более высокое тепловыделение в результате упражнений и, как правило, меньшее потоотделение, чем взрослые. Кроме того, дети часто меньше, чем взрослые, осознают необходимость отдыха и регидратации.
Жажда — это поздний признак обезвоживания, поэтому важно поддерживать водный баланс, особенно до, во время и после занятий на свежем воздухе, особенно тех, которые связаны с тяжелыми физическими нагрузками.Помимо детей, люди с определенными заболеваниями, включая ожирение, диабет, сердечные заболевания, муковисцидоз и умственную отсталость, подвержены большему риску перегрева и обезвоживания.