выбираем сетевые фильтры и стабилизаторы / М.Видео-Эльдорадо corporate blog / Habr
Причины, по которым старое доброе электричество в домашней розетке выходит за пределы допустимых отклонений, бывают разные. Порой это временные скачки напряжений и всплески помех, иногда это систематические отклонения за пределы ГОСТов. В конечном итоге за это расплачивается домашняя техника, мгновенно или медленно умирая от «электрической интоксикации».В этом посте мы расскажем о простых и недорогих способах «электрической гигиены» в зависимости от типа проблем в вашей электросети.
Зачем все это нужно
Лишь в идеальном мире ток в электрической розетке имеет только два состояния: он есть или его нет. В реальности «поведение» электрического питания имеет «аналоговый» непредсказуемый характер, неприятно удивляющий каждый раз, когда этого ждешь меньше всего.
Существует множество причин, по которым «питание от сети» может отклониться от нормы и даже выйти за пределы стандартных отклонений. Так, вечернее напряжение в сети – когда в каждой розетке каждой квартиры по включенному чайнику, телевизору или компьютеру — значительно отличается от напряжения в ночные или дневные часы с минимальной нагрузкой.
Другой пример: гражданин подключил к домашней сети промышленный сварочный аппарат, и все соседи по подъезду или дому наслаждаются импульсными помехами в виде полосок на экранах и треска в акустике.
В большинстве случаев снижение качества электропитания непредсказуемо и неизбежно из-за внешнего характера источника – как, например, импульсные скачки напряжения во время грозы. Иногда проблема известна очень даже хорошо – например, мощный фен, чайник или старинный холодильник, периодически рассылающие «электроикоту» по хлипкой домашней или офисной электропроводке, избавиться от которой выше наших сил, хотя в некоторых случаях вопрос решается простой подтяжкой контактов на всем пути.
Список возможных источников проблем с электричеством можно продолжить и дальше. Но будь то искрящие контакты в подъезде или регулярные перепады на подстанции – для владельца «внезапно» сгоревшей не по гарантии техники итог один.
Фильтр фильтру рознь
В самом названии устройства – «сетевой фильтр» — заложен ключевой принцип защиты: путем пассивной фильтрации входного напряжения. Простейшие недорогие варианты могут фильтровать высокочастотные помехи с помощью встроенных индуктивно-емкостных элементов (LC-фильтров) или бороться с импульсными помехами с помощью варисторных фильтров. Более дорогие экземпляры включают в себя оба вида фильтров.
Входное сетевое напряжение с высокочастотными и импульсными помехами
Напряжение после фильтрации импульсных помех варисторами
Выходное напряжение после LC-фильтрации высокочастотных помех
В действительно хорошем сетевом фильтре есть дополнительные средства защиты. Например, автоматический предохранитель, отключающий питание при определенной токовой перегрузке. Или специальные метал-оксидные варисторы, срабатывающие при экстремальных пиках напряжения во время грозы или в случае короткого замыкания.
ЭРА SF-6es-2m-B: типичный сетевой фильтр
Некоторые сетевые фильтры предлагают дополнительные «сопутствующие услуги», например, обеспечивают фильтрацию и защиту для телефонной линии / факса, Ethernet-сети и телевизионной антенны. Возникновение подобных помех — не такая уж большая редкость в старых зданиях, кабельная разводка в которых за многие годы эксплуатации превратилась в многослойное и порой даже хаотичное переплетение силовых и сигнальных проводов с ветхими и проржавевшими контактами. Функции подобной фильтрации с равным успехом могут быть востребованы как в офисе, так и в домашних условиях.
Стабилизатор: полет нормальный
В отличие от сетевого фильтра, сглаживающего импульсные и высокочастотные искажения (помехи) пассивными средствами, сетевой стабилизатор активно воздействует на ключевой параметр электропитания – напряжение, компенсируя его отклонения.
До недавнего времени в России нормой для однофазной сети считалось напряжение 220 В ±10% (ГОСТ 5651-89), то есть нормальным считалось любое напряжение переменного тока в пределах от 198 до 244 вольт. С недавнего времени в силу вступил приведенный к европейским нормам межгосударственный стандарт ГОСТ 29322-2014 (IEC 60038:2009), по которому стандартным считается сетевое напряжение 230 В ±10%, или от 207 до 253 В. Старые добрые 220 В, впрочем, пока никто не отменял – стандарты действуют параллельно, так что в целом можно учитывать примерный диапазон 200-250 В.
Почти вся современная компьютерная и бытовая электроника оснащается импульсными блоками питания, которые сами себе — прекрасные стабилизаторы и способны работать в широком диапазоне питающих напряжений. Так, например, подавляющее большинство компьютерных блоков питания – как встраиваемых в ПК, так и внешних, для ноутбуков и планшетов — рассчитаны на глобальное использование в большинстве стран мира с номинальным напряжением сети от 110 В до 240 В. В некоторых случаях такая техника «запускается» даже при напряжении всего 90-100 В. Соответственно, снижение напряжения в розетке по любым причинам для них не помеха, повышающая компенсация происходит автоматически.
Defender AVR Typhoon 1000: компактный стабилизатор на 320 Вт и 2 розеткиС повышенным напряжением немного сложнее: даже самая современная электроника рассчитана максимум на 250-260 В, но если такое напряжение в питающей сети почему-то стало нормой (в городских условиях в это трудно поверить), конечно же, лучше его стабилизировать внешними средствами.
Вне зависимости от повышенного или пониженного напряжения в особую группу риска попадают все любители теплого лампового звука – раритетных виниловых вертушек, плееров, усилителей и другой старинной техники. В этом случае применение стабилизаторов, как говорится, не обсуждается.
В настоящее время наиболее популярными и многочисленными представителями класса бытовых стабилизаторов напряжения являются электронные, где входящий ток с частотой 50 Гц преобразуется в высокочастотные импульсы с частотой в десятки килогерц и управляется с помощью широтно-импульсной модуляции (ШИМ). Из существенных минусов таких стабилизаторов можно отметить лишь то, что синусоида на выходе таких стабилизаторов далека от идеала. Список плюсов гораздо длиннее: компактность, небольшой вес, огромный рабочий диапазон, универсальность, устойчивость к перегрузкам, и, главное, невероятно доступная цена.
Помимо этого, в рознице изредка также можно встретить «классику»: внушительных размеров блоки, ступенчато снижающие или поднимающие выходное напряжение за счет электронного или релейного переключения обмоток размещенного внутри полноценного автотрансформатора. Такие стабилизаторы громоздки, имеют изрядный вес, но при этом практически не искажают синусоиду входного тока. Как правило, стабилизаторы этого класса ориентированы на питание целого дома или выполнение специфической задачи – вроде питания газового котла, однако при определенных условиях именно такое устройство может оказаться идеальным выбором аудиофила.
PowerCom TCA-2000: стабилизатор на 2000 ВА (1000 Вт) и 4 розеткиХороший стабилизатор, как правило, оснащается всеми пассивными фильтрами, характерными для сетевых фильтров, а также имеет все мыслимые виды защиты, в том числе от перенапряжения, перегрузки, перегрева, короткого замыкания и т.д.
Что надо знать при выборе сетевого фильтра
При выборе любого промежуточного сетевого устройства – удлинителя, сетевого фильтра, стабилизатора или источника бесперебойного питания, прежде всего следует помнить главное правило: «электротехника – наука о контактах». Красивые надписи, громкие имена брендов, многочисленные индикаторы и USB-порты не должны отвлекать от главной проблемы: включая что-либо между сетью и устройством, мы добавляем лишние контакты в и без того длинную и неравномерную цепь.
- Даже самые совершенные схемотехнические решения для стабилизации, фильтрации и защиты попросту бессмысленны, если контакты в розетках вырезаны из консервной банки и болтаются по чем зря, а пайка разъемов сделана некачественно. В таких условиях любые перепады нагрузки в сети будут автоматически создавать многочисленные помехи.
Сетевой фильтр Power Cube PROПри покупке надо обратить внимание на качество исполнения розеток, вилок, кабелей и контактов. Вилки должны максимально плотно входить в розетки, кабель устройства, если имеется, должен быть надежным, из многожильного провода, с качественной изоляцией, рассчитанным на достаточно большую пиковую силу тока в синфазном режиме. Очень хорошо, если розетки устройства оснащены защитными шторками, это внесет дополнительную безопасность в доме с дошкольниками.
- Просчитайте заранее количество необходимых розеток для подключения техники, чтобы впоследствии не пришлось городить огород ненужных дополнительных контактов из удлинителей и других переходников.
Хороший сетевой фильтр или стабилизатор может обладать индикацией наличия заземления или режима перегрузки, это полезный бонус. Что касается встроенного в сетевой фильтр зарядного устройства с одним или несколькими портами USB – это, скорее, приятная мелочь, несколько влияющая на цену, но никак не связанная с основной функцией устройства.
- В процессе выбора сетевого фильтра важно обратить внимание на суммарную энергию пиковых выбросов паразитного напряжения (в джоулях), которую устройство теоретически в состоянии отфильтровать и погасить в каждый момент времени без саморазрушения. Впрочем, максимальное число джоулей в спецификации фильтра – тоже не истина в последней инстанции, поскольку правильно спроектированный фильтр способен «заземлять» часть энергии через варисторы. Тем не менее, в процессе выбора маркировку фильтра в джоулях не стоит сбрасывать со счетов.
- Следующий важный параметр – максимальный ток помехи, на который рассчитан фильтр, в амперах. В дополнение, сетевой фильтр также может быть промаркирован по максимальной нагрузке, при этом она может быть указана как в амперах, так и в ваттах.
- Некоторые производители также добавляют в список характеристик сетевых фильтров максимально допустимое напряжение (в вольтах) уровень ослабления высокочастотных помех для разных частот (в децибелах) и наличие защиты от перегрузки – например, от перегрева.
Наконец, ряд параметров фильтра, определяющий его выбор в каждом отдельном случае: длина кабеля, количество розеток, возможность настенного монтажа, наличие дополнительных фильтров для телефонной линии и витой пары, наличие портов USB и так далее.
Вариант 1: новостройка
Рассмотрим для начала наиболее оптимистичный сценарий: только что сданная в эксплуатацию новостройка с новенькой подстанцией; проводка выполнена исключительно медью с идеальным монтажом, высококачественными, еще не окислившимися контактами и автоматическими предохранителями на соответствующий ток.
Казалось бы, напряжение в розетке должно быть максимально близким к идеальной синусоиде. Увы, даже такую идиллию легко может испортить на пару месяцев приглашенная соседом на ремонт гоп-группа с раздолбанным инструментом: каждый электродвигатель в каждой помирающей болгарке, дрели или отбойнике будет искрить из последних сил до финальной своей черты, рассылая по проводке дома «импульсы смерти».
Это еще цветочки: наиболее активные и неугомонные жильцы периодически будут подключать к домашней сети промышленные сварочные аппараты, чтобы все соседи по подъезду или дому смогли «насладиться» импульсными помехами в виде полосок на экранах ТВ и ПК и забористым треском в колонках и наушниках.
Итак, даже жители относительно новых микрорайонов в крупных городах и мегаполисах с относительно новой инфраструктурой не защищены от импульсных и высокочастотных помех силового питания – по крайней мере, локального происхождения.
Как минимум, несколько первых лет жизни нового дома неизбежно будут посвящены различным ремонтам и перестройкам. В такой ситуации, возможно, покупка самого «мощного» сетевого фильтра не нужна, но совсем без фильтрации силового напряжения никак не обойтись.
Из недорогих вариантов можно присмотреться к сетевым фильтрам отечественной компании «Эра». В ее ассортименте много моделей, отличающихся по уровню защиты и наличию дополнительных функций.
Наиболее доступным и простым решением для фильтрации сетевого напряжения можно назвать недорогой сетевой фильтр ЭРА SF-5es-2m-I. Устройство выполнено в пожаробезопасном корпусе, имеет кабель длиной 2 м и оснащено пятью розетками формата EURO с заземляющим контактом.
Максимальная нагрузка фильтра составляет 2200 Вт (10 А), максимальный ток помехи заявлен на уровне 7000 А, а максимальная рассеивающая энергия – на уровне 300 Дж при максимальном отклонении напряжения нагрузки 275 В.
Сетевой фильтр ЭРА SFU-5es-2m-W
Этот фильтр оснащен индикатором включения, фильтром импульсных помех, защитой от короткого замыкания и перегрева. В дополнение устройство ослабляет высокочастотные помехи (0,1 – 10 МГц) на 10-40 дБ.
Те, кому высокочастотная фильтрация некритична, могут обратить внимание на сетевой фильтр ЭРА USF-5es-1.5m-USB-W: при схожих характеристиках по нагрузке, максимальному току (за вычетом ВЧ-фильтра) это устройство оснащено выключателем и обеспечивает максимальное рассеивание энергии до 125 Дж, а также оснащено двумя встроенными портами USB для зарядки портативной техники и имеет настенный крепеж.
Несколько более дорогой вариант – сетевой фильтр ЭРА SFU-5es-2m-B, объединяет все преимущества двух названных выше фильтров, включая ВЧ-фильтр, порты USB, настенный монтаж, выключатель и максимальное рассеивание энергии до 300 Дж, но при этом выполнен в надежном корпусе из поликарбоната стильного черного цвета.
Тем, кому необходимы длинные кабеля, есть смысл присмотреться к сетевым фильтрам серии Sven Optima на шесть розеток, поставляемым в розницу с 1,8-метровым, 3-метровым или 5-метровым сетевым кабелем. Эти фильтры рассчитаны на максимальную нагрузку до 2200 Вт, максимальный ток помехи до 2500 А и максимальное рассеивание энергии до 150 Дж при отклонении напряжения нагрузки до 250 В.
Несмотря на небольшую цену они оснащены встроенным выключателем, индикатором включения, фильтром импульсных помех, защитой от короткого замыкания и автоматической защитой от перегрузки.
К этому же классу устройств можно отнести сетевой фильтр Pilot L 1,8 m от ZIS Company. Особенностью этого фильтра является наличие пяти розеток стандарта EURO плюс одной дополнительной розетки российского образца, а также поддержка максимального тока помехи до 2500 А и максимальной рассеиваемой энергии до 800 Дж.
Особняком в ряду сетевых фильтров стоят однорозеточные решения, которые сегодня присутствуют в ассортименте большинства производителей. На эти фильтры в обязательном порядке стоит обратить внимание владельцам Hi-Fi и Hi-End техники, особенно той, что выпущена 20 и более лет назад. «Индивидуальный» сетевой фильтр позволит оградить слушателя от щелчков и других фоновых звуков, а любимые усилители, вертушки, фонокорректоры и деки – от преждевременного старения без того уже «не молодых» компонентов.
Сетевой фильтр Pilot S-Max
Например, однорозеточный сетевой фильтр Pilot BIT S с максимальной нагрузкой до 3500 Вт, максимальным током помехи до 10000 А и рассеиваемой энергией до 150 Дж обеспечит полную защиту техники с помощью фильтра импульсных помех, защиты от короткого замыкания и перегрузки.
Еще одно интересное однорозеточное решение – сетевой фильтр APC Surge Arrest P1-RS от компании Schneider Electric, несмотря на свои компактные размеры, гарантирует максимальную нагрузку до 16 А, максимальный ток помехи до 26000 А и рассеивание энергии до 903 Дж. Такая мощная защита с успехом может использоваться в качестве фильтра-переходника на обычный многорозеточный удлинитель.
Сетевой фильтр APC P1-RSВариант 2: для дачи
От «почти идеальных» условий городских новостроек перейдем к менее удачливым примерам – домам с видавшей виды проводкой, офисам, пригородным домам и другим случаям с нестабильным электропитанием. В особой «группе риска» здесь оказываются именно офисы, поскольку ко всевозможным источникам помех, типичным для домашних пользователей, в офисах добавляются помехи от мощных промышленных кондиционеров, а в некоторых случаях — от промышленных холодильников и другого силового оборудования с огромными импульсными выбросами пусковых токов.
У того же APC для таких случаев имеются сетевые фильтры на четыре или пять розеток, такие как APC P43-RS или APC PM5-RS из серии Essential. При максимальной нагрузке до 10 А, они обеспечивают напряжение отключения нагрузки до 300 В при максимальном токе помехи до 36000 А и максимальной рассеиваемой энергии до 918 Дж.
Сетевой фильтр APC SurgeArrest PM5B-RS
В дополнение к пожаробезопасному корпусу, фильтрации импульсных помех и защите от короткого замыкания, эти фильтры оснащены выключателями и евро-розетками с механической защитой.
Интересным решением вопроса фильтрации и защиты также может стать сетевой фильтр Sven Platinum 1,8 м Black. Уникальность этого фильтра в том, что, помимо общего механического выключателя, каждая из его пяти розеток оборудована индивидуальным выключателем с индикатором работы. Устройство рассчитано на нагрузку до 2200 Вт, максимальный ток помехи до 2500 А и максимальную рассеиваемую энергию до 350 Дж.
Сетевой фильтр Sven Platinum 1,8 м Black
Для перфекционистов сегодня в России доступны уникальные сетевые фильтры компании Monster. Цена на изделия этой марки в два-три раза выше схожих предложений от других брендов, однако применение керамических варисторов, технология Clean Power для снижения электромагнитного излучения, цепи дополнительной защиты и уникальный внешний вид вполне компенсируют эту разницу.
Самый универсальный сетевой фильтр Monster – Core Power 800 USB, оснащен восемью евро-розетками, двумя портами USB для зарядки портативной техники, а также входом и выходом LAN для дополнительной защиты Ethernet-кабеля от импульсных помех. Он держит нагрузку до 16 А и обеспечивает рассеивание помех с энергией до 1440 Дж. Фильтр имеет индикацию включения и заземления, защиту от короткого замыкания и перегрузки, а также механическую защиту розеток.
Сетевой фильтр Monster Core Power 800 USB
«Ближайший родственник» этой модели — сетевой фильтр Monster Core Power 600 USB, рассчитан на шесть розеток и не имеет LAN-фильтра, но при этом обеспечивает максимальное рассеивание энергии помех до 1836 Дж.
Список достойных сетевых фильтров можно продолжить несколькими заслуживающими доверия торговыми марками – такими как InterStep, Uniel, Ippon, IEK, Defender, Powercom, ExeGate и др.
При выборе фильтра самое главное – правильно оценить ситуацию с качеством электропитания в вашем доме или офисе, а также определиться с потребностями и количеством электроники и бытовой техники, которая будет подключена к фильтру. Например, тем, кто получает в дом интернет по оптике или витой паре, совершенно не нужен фильтр для телефонной линии, чего не скажешь о тех, кто подключен к Сети по ADSL.
В любом случае выбор сетевого фильтра заслуживает особого внимания, поскольку от этого, казалось бы, малозначительного устройства иногда зависит срок службы техники, цена которой в десятки и сотни раз превышает стоимость этого фильтра.
Выбираем стабилизатор напряжения
Сетевой стабилизатор — устройство специфическое и значительно более сложное, нежели сетевой фильтр, поэтому и список производителей значительно короче.
Тем не менее, имена наиболее популярных торговых марок здесь практически те же, а выбор несколько упрощается благодаря тому, что ключевых параметров для определения наиболее подходящего решения значительно меньше.
Да, большинство сетевых стабилизаторов содержат встроенные фильтры помех и также могут быть промаркированы по максимальной энергии рассеивания, но наиболее важными параметрами при выборе все же являются максимальная нагрузка и диапазон стабилизации входных напряжений.
Классифицировать сетевые стабилизаторы лучше всего по максимально допустимой нагрузке, и уже после этого смотреть диапазон стабилизации напряжений.
В России допустимая максимальная нагрузка обычно нормируется в ваттах (Вт) или киловаттах (кВт), в других странах – в частности, в Китае, принята маркировка в вольт-амперах (ВА) или киловольт-амперах (кВА).
Ватты активной мощности и вольт-амперы полезной мощности – величины отнюдь не тождественные, последние для достижения примерного равенства необходимо умножать на так называемый коэффициент мощности, который у бытовой техники и электроники колеблется в пределах 0,6-1,0.
На практике обычно просчитывают примерную суммарную мощность нагрузки, и затем, чтобы узнать искомую полезную мощность в вольт-амперах, умножают ее на 1,4. И наоборот: при необходимости выяснить примерную нагрузку стабилизатора в ваттах полезную мощность умножают на коэффициент 0,7.
И еще один полезный практический совет: высчитав суммарную максимальную мощность предполагаемой нагрузки стабилизатора, добавьте к результату еще 25%, небольшой запас позволит не только избежать перегрузки в будущем, при подключении новых устройств, но также избавит стабилизатор от работы в предельном режиме, где у него заметно падает КПД.
Выбирая стабилизатор, также стоит обратить внимание на наличие «умного» режима Bypass («обход»): при номинальном напряжении сети такое устройство не будет попусту расходовать энергию и включится в работу только тогда, когда в этом действительно появится необходимость.
Определяясь с максимально допустимой мощностью нагрузки сетевого стабилизатора напряжения, следует смотреть на его характеристики, а не на название: совсем не факт, что цифры в наименовании имеют хоть какое-либо практическое отношение к мощности устройства.
Для стабилизации сетевого напряжения при относительно небольшой нагрузке — в пределах до 300 Вт — есть очень интересные решения у Sven. Компактные стабилизаторы выполнены в необычном «кубическом» дизайне и имеют достаточно широкий диапазон стабилизации напряжения – как правило, в пределах от 150 до 280-295 В.
Здесь как раз тот случай, когда не следует доверять цифрам в названии и особо внимательно читать характеристики: у стабилизатора Sven VR-V 600 максимальная нагрузка составляет 200 Вт, у Sven Neo R 600 — не более 300 Вт.
Оба «кубика» имеют защиту от перегрузки и короткого замыкания, рассчитаны на максимальный ток помехи до 6500 А и рассеиваемую энергию до 220 Дж, и оба оснащены розетками с механической защитой.
Для более мощных нагрузок компания выпускает стабилизатор Sven VR-V1000, обеспечивающий подключение техники мощностью до 500 Вт. К такому «кубику» уже можно подключить не только домашнюю аудиосистему, но также дополнительные устройства, такие как телевизор, игровая приставка, персональный компьютер.
Стабилизатор напряжения Sven VR-V1000
В модельном ряду стабилизаторов напряжения производства Schneider Electric представлены две популярные модели APC LS1000-RS Line-R и APC LS1500-RS Line-R, рассчитанные на нагрузку до 500 Вт и 750 Вт, соответственно. Оба стабилизатора работают с входными напряжениями в диапазоне 184-248 В, оснащены индикаторами рабочего напряжения и перегрузки, фильтрами импульсных помех, защитой от короткого замыкания и перегрузки.
Стабилизатор напряжения APC LS1000-RS Line-RНе поленитесь перед покупкой также проверить максимальное рабочее напряжение стабилизатора — если этот параметр действительно критичен для вашей сети. Так, например, стабилизатор APC LS1500-RS Line-R рассчитан на диапазон входных рабочих напряжений 184-248 В, в то время как модель APC Line-R 600VA Auto, хоть и рассчитана на меньшую мощность, до 600 Вт, в то же время обеспечивает значительно более широкий диапазон стабилизации входных напряжений, от 150 до 290 В, чем, в частности, и объясняется его более высокая цена.
Стабилизатор напряжения APC Line-R 600VA AutoСтабилизаторы напряжения от 1000 Вт (1 кВт) и выше следует выделять в отдельную категорию, рассчитанную на обслуживание мощной офисной техники, бытового оборудования для домов (например, для отопительных котлов) или стабилизации напряжения во всем доме. Для таких целей часто применяют мощные системы с автотрансформаторами.
Sven — одна из немногих компаний, кто производит и продает в России стабилизаторы с автотрансформатором, рассчитанные на значительную нагрузку и при этом обладающие доступной ценой. Так, например, модель Sven AVR PRO LCD 10000 справляется с нагрузкой до 8 кВт в диапазоне стабилизации от 140 до 260 В — отличный выбор для подключения всего загородного жилого дома.
Стабилизатор напряжения Sven AVR PRO LCD 10000
Очень большой ассортимент мощных компактных стабилизаторов выпускает ранее упомянутая «Эра».
Стабилизатор напряжения ЭРА СНК-1000-М
Обратите внимание на маркировку ее изделий: в названии стабилизаторов, как правило, указывается полезная мощность в ватт-амперах. Например, стабилизатор ЭРА СНК-1000-М рассчитан на 1000 ВА, то есть, с ним можно смело закладывать максимальную активную нагрузку до 700 Вт.
Стабилизатор напряжения ЭРА STA-3000
Для питания мощной домашней нагрузки – от 3000 Вт и более, также отлично подходят стабилизаторы с релейной регулировкой нагрузки. Они доступны по цене, компактны, обладают широким диапазоном стабилизации – от 140 до 270 В и оснащены всеми мыслимыми видами защиты.
Стабилизатор напряжения ЭРА STA-3000
Наиболее доступная модель этой серии – ЭРА STA-3000 — выдержит нагрузку до 3 кВт, при этом автоматически отключится при длительном стабильном напряжении сети. Вдобавок, устройство оснащено многоцветным ЖК-дисплеем для наглядной индикацией текущего режима работы.
По сути мы прошлись по всем основным проблемным случаям, связанным с электропитанием, и подобрали модели для каждого из них. Надеемся, с ее помощью вы сможете выбрать наиболее подходящий именно вам вариант защиты.
схема, видео, инструкция по сборке
Для подключения компьютера и периферии к электросети обычно потребуется большое количество розеток. При этом работа блока питания компьютера, монитора, аудиосистемы и других устройств имеет импульсный характер. Такие потребители могут портить качество питающей электросети, насыщая её ненужными гармониками, которые могут мешать работе других устройств, подключенных к ней. Особо чувствительными к качеству питающей сети являются телевизоры, мониторы, зарядки для телефонов и вычислительная техника. Кроме помех в сети могут присутствовать всплески напряжения и тока, которые также могут повредить дорогостоящую аппаратуру. Для решения всех этих проблем рекомендуется подключать устройства через сетевой фильтр. Однако его стоимость может серьезно ударить по карману, особенно если необходимо приобрести несколько приборов в разные места, поэтому домашних умельцев интересует вопрос, можно ли собрать его самостоятельно. В этой статье мы как раз и расскажем читателям сайта https://samelectrik.ru, как сделать сетевой фильтр своими руками и какие материалы для этого понадобятся.Конструкция
Прибор напоминает по своему виду удлинитель с кнопкой выключения, отчасти это так, но кроме колодки с розетками дополнительно расположены и фильтрующие элементы. Они как раз и нужны для защиты от скачков напряжения, фильтрации помех и паразитных гармоник.
В самом простом сетевом фильтре внутри стоит только варистор. Это полупроводниковый прибор, который при превышении определенного напряжения превращается в резистор, уходит в короткое замыкание. Вследствие этого, может сработать автоматический выключатель, установленный у вас дома, или, если импульс короткий, то его энергия рассеется варистором в виде тепла. Этот элемент применяют в сетевых фильтрах и блоках питания для защиты от всплесков высокого напряжения. В зависимости от типа варистора он может погасить импульсы разной величины.
Такой вариант исполнения на варисторе самый дешевый, однако кроме всплесков напряжения, он ни от чего не защищает и не фильтрует. Помехи продолжают сочиться в сеть и мешать окружающей и запитанной аппаратуре.
Для фильтрации высокочастотных гармоник широко применяются L, LC и RLC- фильтры, которые также могут быть установлены в сетевом фильтре.
Кроме таких вариантов встречаются еще и модели, где сетевой шнур проходит через ферритовое кольцо, или делает вокруг него пару витков. По сути — это еще один L (индуктивный) элемент, который нужен для фильтрации высокочастотной составляющей помехи.
Сетевой фильтр своими руками
Схема простейшего фильтра состоит из выключателя и варистора, вот как она выглядит:
V1 – это и есть варистор, его маркировка «471», значит, что его напряжение срабатывания 470В, при этом чем больше его диаметр, тем большую энергию он сможет погасить не взорвавшись при этом. Таким образом, чем больших размеров варистор вы поставите, тем лучше, лишь бы он влез по габаритам. Вот пример сетевого фильтра, собранного по этой схеме, но в заводском исполнении. Это дешевый прибор, который гасит лишь импульсы высокого напряжения. При этом он может безвозвратно выйти из строя при особо сильном всплеске.
Чтобы ваш сетевой фильтр еще и действительно был фильтром помех, необходимо добавить еще один фильтрующий элемент – дроссель.
Схемы – это, конечно, хорошо, но как сделать сетевой фильтр из подручных средств? Достаточно просто! Почти всегда у любителя что-нибудь мастерить, можно найти старый ненужный или нерабочий блок питания, в нём есть такой фильтр на входе. Осталось только его выпаять. На фото он стоит в ближнем к нам углу платы. Эта деталь представляет собой ферритовый сердечник и медную лакированную проволоку, намотанную вокруг него.
Это дроссель с двумя обмотками, через одну из них проходит фаза, а через другую ноль, таким образом индуктивность входит в состав сетевого фильтра и снижает уровень помех.
Кстати блок питания может работать и без него, многие китайцы так и делают свои товары, часто это встречается в дешевых БП для компьютера и не только. Из-за этого в сети и возникает такое большое количество нежелательных помех.
Если вы не нашли такого элемента в своих запасах – можно поискать ферритовое колечко с магнитной проницаемостью 400-2000 НМ и обмотать медной лакированной проволокой ПЭВ-2 (можно использовать первичную обмотку с 50 Гц сетевого трансформатора) диметром от 0,5 мм, это зависит от мощности нагрузки, которую вы хотите подключать. Намотать на колечко так, как показано на картинке, предварительно обмотав его несколькими слоями диэлектрика, например: изолентой, лакотканью, каптоновым скотчем.
Используйте провод с качественным, не поврежденным лаковым покрытием. А после намотки для надежности покройте деталь несколькими слоями лака. Петельку на конце нужно разрезать, в идеале – сразу мотать двумя параллельными проводами.
Хорошая схема, которую легко сделать своими руками выглядит следующим образом:
А вот конкретный вариант его реализации «в железе». За основы взята пара фильтров от БП.
Конденсаторы лучше применять керамические или пленочные. Их можно также достать из блока питания, они часто там встречаются возле сетевого разъема в прямоугольном корпусе в виде параллелепипеда.
Если есть ненужный БП можно просто отрезать часть платы с фильтром и использовать её. Вот пример на фото с указанием, что нужно отпилить для получения сетевого фильтра за пару минут. Только будьте осторожны и не перемкните металлическими опилками слои платы, это может привести к короткому замыканию. А готовое устройство обязательно поместите в токонепроводящий корпус для безопасности.
И вот еще один вариант схемы для повторения. Именно она и используется во множестве блоков питания стандарта ATX:
Сетевой фильтр – полезное и простое устройство, которое не сложно сделать самому в домашних условиях. А если учесть, что у многих есть несколько ненужных, неработоспособных приборов, то выходит, что запчасти буквально валяются у нас под ногами. Поэтому изготовление устройства, которое может продлить или даже спасти жизнь дорогостоящей аппаратуре, является очень выгодным занятием. Напоследок рекомендуем просмотреть несколько интересных видео-инструкций по сборке самодельного сетевого фильтра:
Материалы по теме:
Как подобрать аналог варистора
В предыдущей статье, посвящённой варисторам, мы рассказали как именно заменить варистор и маркировку варисторов.
Но очень часто нам задают вопрос, каким варистором заменить сгоревший, как подобрать аналог и у всех-ли варисторов одинаковая маркировка.
Подбирать варисторы для замены логичней не по фирме производителю и не по цвету, а по:
- напряжению
- диаметру.
Диаметр соответствует способности варистора поглотить определённую мощность импульса, поэтому следует заменять на такой же, или больше.
Напряжение срабатывания можно узнать по маркировке — из таблицы и по нему подобрать аналог из имеющихся.
Если маркировка не сохранилась, то подобрать можно по:
- функциональному назначению
- по электронной схеме
К примеру, если он стоит на входе прибора работающего от переменной сети 220 В, то как правило, он рассчитан на классификационное напряжение — 470 В, 560 В реже 430 В.
Это соответствует среднеквадратичному значению переменного напряжения 300 В, 350 В и 275 В соответственно. В подавляющем большинстве случаев ставят на напряжение 470 В, тогда исключаются частые сгорания предохранителя и радиоэлементы платы защищены надёжней.
Параметры и маркировка варисторов разных производителей
Как измерить параметры варистора
Если у вас есть варистор со стёртой маркировкой или такой нет в таблице аналогов, то вполне возможно измерить напряжение срабатывания варистора.
Для этого достаточно подключить его к блоку питания, который может обеспечить необходимое напряжение и у которого можно ограничить максимальный ток, чтобы варистор не разрушился (полярность подключения не имеет значения)
У меня к сожалению такого под рукой не оказалось, поэтому я выбрал другой способ. Я подключил варистор к мегомметру, который измеряет сопротивление высоким напряжением, у данного прибора три предела 250 В, 500 В и 1000 В, что оказалось вполне достаточно.
Я проверял два варистора — на 470 В и на 680 В, первый на пределе 500 В, второй 1000 В.
Как видно на фото, параметры вполне укладываются в допуск 10%.
Перед измерением обязательно прочтите инструкцию к прибору и убедитесь, что данная операция не повредит его, а также соблюдайте все требования по технике безопасности при работе с высоким напряжением.
Как варистор защитит бытовую технику от молнии? SW19.ru
Удар молнии в соседнюю опору электропередач или просто рядом с вашим домом событие не очень приятное. Для мастера-электронщика работа в этом случае часто неблагодарная. Не рядовой случай, когда после всех объяснений и рассказов о целесообразности ремонта слышим в конце недовольное: «А почему так дорого?», «А я у другого мастера спросил и мне сказали, что сгореть должно было меньше» и всякий подобный бред жадины-профана, который не ценит чужой труд. Вариант, когда после вскрытия пациента наблюдаем пробитый «трансик» или обугленный варистор много приятнее для обеих сторон.Современные полупроводники крайне чувствительны к превышениям допустимого напряжения и причина этого не только природные явления. Список причин можно продолжать — от доморощенного сварщика-соседа, до перекомутаций на линии. Нас больше интересует не сами причины, а как с ними бороться. Коротко об этом.
Начнём с исходных данных. Какой ток в розетке?
Смешной ответ: «220 вольт», — кому-то не режет слух. Вариант: «Переменный», — тоже не много лучше, потому как без нагрузки тока нет. А какое напряжение? Может быть уже и не 220 вольт – стандарт однако изменился.
Когда мы говорим о напряжении бытовой сети, то речь идёт о действующем значение переменного напряжения – 220 (230) В. Амплитудное значение будет больше приблизительно в 1.4 раза – 311 (325) В. Учитывая допуск в 10 процентов, получим допустимый разброс амплитуды — от 280 до 342 (292 — 358) вольт. Вот эти 358 В – законно допустимая амплитуда переменного напряжения в нашей розетке. Но и это не всё. Может меняться частота, а синусоида не всегда имеет правильную форму. Перенапряжения различной природы суровая реальность и их допустимые параметры тоже регламентируют.
И наша бытовая техника проектируется с учётом возможности эти перепады выдерживать (хотелось бы верить что это так).
Для этого в цепи питания ставят входные фильтры, разрядники, супрессоры и варисторы (первый эшелон защиты на входе радиоаппаратуры).
Входной LC-фильтр неотъемлемая часть любого импульсного БП (его отсутствие говорит о «качестве» изделия). Основное назначение – не пропускать высокочастотные помехи от работы самого БП в сеть.
Разрядник – устройство с искровым промежутком, может быть как элементом печатного монтажа так и отдельным устройством (газонаполненный, с элементами гашения дуги). Разрядники имеют относительно большое время срабатывания (несколько миллисекунд), при срабатывании искровой промежуток со временем увеличивается из-за обгорания контактов, имеют большой разброс параметров, которые к тому же сильно зависят от внешней среды.
Супрессор (он же защитный диод (стабилитрон), диодный предохранитель, TVS-диод, трансил). В цепи переменного тока используются симметричные супрессоры. При превышении порогового напряжения, внутреннее сопротивление супрессора резко падает. Результат зависит от мощности вредного импульса – нагреется и остынет или сгорит вместе с предохранителем.
Варистор Вольтамперная характеристика (ВАХ) очень похожа на ВАХ супрессора. Соответственно и принцип работы схож. Сопротивление варистора зависит от приложенного к нему напряжения. На участке малых токов (несколько миллиампер) варистор практически не влияет на работу защищаемого устройства. Защитные свойства он проявляет на участке больших токов – когда приложенное к нему напряжение превысит определённый порог.
При превышении этого порога, варистор резко уменьшает собственное сопротивление до десятков ом. Высокочастотные импульсы перенапряжения не проникают на вход устройства, а преобразуются в тепловую энергию нагрева самого варистора. Если энергия этих импульсов больше допустимой, то варистор закорачивает входную цепь и сгорает вместе с плавким предохранителем.
При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При этом через варистор может протекать импульсный ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после исчезновения помехи его сопротивление вновь становится большим. Таким образом, включение варистора параллельно защищаемому устройству не влияет на работу последнего в нормальных условиях, но гасит импульсы опасного напряжения
Знания схемотехники входных цепей питания радиоаппаратуры и принципов работы элементов этих цепей несомненно нужны. Но обычному ремонтёру важнее знать как это проверить и чем заменить. Обугленный варистор потерял свою маркировку и вопрос что ставить взамен возникает не только у новичков (ведь цепи защиты бывают разные). Просто выпаять и забыть – не наш вариант!
Самый распространённый вариант – варистор на 470 вольт. Вспоминаем цифру сверху – 358 вольт в предполагаемом максимуме. Запас 112 вольт? Не совсем так. Варисторы имеют класс точности, и 10 процентов это лучший вариант. Считаем 20 процентов. Получаем возможный нижний предел напряжения срабатывания – 376 вольт. Теперь понятна логика производителя. Но и это не всё. Вариант ставим что есть на складе никто не отменял, главное, чтобы не было ложных срабатываний. Здесь необходимо понимание основного назначения варистора – защита от высоковольтных импульсных перенапряжений. Отвал нулевого провода в вашем доме и в результате неисправная аппаратура, а варистор целый — не редкость. Высоковольтные перенапряжения случайны и результат их воздействия непредсказуем. И если штатно варистор рассеивает высоковольтные импульсы, но когда-то наступает случай, что он не выдерживает мощности паразитного импульса и сгорает. Горит с переходом в проводящее состояние. По этой причине обязательна защита плавким предохранителем. Такая вот обязательная защита защиты.
На практике (особенно для себя любимого) лучше использовать варисторы на 390В или 430В постоянного напряжения. Воздействие высоковольтных импульсов очень не полезно для электролитов (а они чаще всего на 400В, а в дешевом ширпотребе даже на 350В).
Варисторы имеют достаточно большую емкость (до 50 нф), что ограничивает их применение на высоких частотах.
Как проверить варистор? Сразу напрашивается вариант собрать простейшую цепь из резистора для ограничения тока, варистора, нагрузки и повышающего трансформатора с возможностью регулирования напряжения. Важно выяснить точно напряжение перехода в проводящее состояние. Вариант проще – подключаем нашу цепочку к мегоометру с напряжением 500 вольт, и убеждаемся в срабатывании варистора. Косвенная проверка – измерить ёмкость варистора. Я не ошибся, именно ёмкость.
Маркировка на варисторе — это не всегда напряжение (иногда это условный код), а если и напряжение то не всегда одно и то же. Разные производители маркируют варисторы по-разному. Используются как максимальное значение рабочего действующего синусоидального напряжения (EPCOS), иногда действующее значение синусоидального напряжения при котором происходит отпирание варистора, а китайцы ставят постоянное напряжение отпирания. Надо обязательно читать документацию конкретного производителя.
Для примера: варистор EPCOS/TDK с маркировкой 241 это фактически аналог 431 у китайского TKS с маркировкой TVR оба отпираются постоянным напряжением около 430В.
Напряжение отпирания варистора величина не точная. Классический разброс составляет -15%…+20%. А у лучших производителей — не менее 10%. И зависимость от температуры никто не отменял.
Отличия варисторов от супрессоров.
Супрессор проигрывает варистору в поглощаемой энергии. Варистор тем и хорош, что тепло в нем выделяется по всей толщине материала и отсутствуют локальные перегревы. Супрессор обладает отличным быстродействием, но легко перегревается и выходит из строя при миллисекундных импульсах. Энергию варистор при коротких перенапряжениях, не рассеивает (не успевает), а поглощает.
Крутизна характеристики варистора довольно большая (но меньше чем у супрессоров).
Варисторы применяются в схемах с большой мощностью импульса, но относительно низким значением скорости его нарастания (крутизна фронта). К примеру, тиристорные преобразователи.
Супрессоры — в схемах с большей крутизной, но меньшей длительностью. Это преобразователи на основе IGBT или MOSFET-транзисторов. Работа транзисторов в ключевом режиме характеризуется малой длительностью выбросов напряжения (не более сотен нс; очень редко мкс), но при этом крутым фронтом импульса.
Стабилитроны тоже можно применять, то только в низковольтных транзисторных схемах с малыми скоростями изменения напряжения.
Короткие выводы:
1. Варисторы хорошо защищают сети питания радиоаппататуры от коротких высоковольтных выбросов напряжения, которые физически не поглощаются входными фильтрующими конденсаторами. Но не являются защитой от перенапряжений ниже напряжения открывания самого варистора.
2. Супрессоры хорошо использовать для защиты силовых ключей от переходных процессов и пиковых перенапряжений короткими импульсами.
3. При выборе варистора в качестве замены ориентируемся на напряжение открывания варистора. Обращать внимание на производителя, смотреть документацию по конкретному прибору.
4. Для защиты от перенапряжений в сети (не высоковольтных импульсных) хорошее решение применять ограничители напряжения и ограничители тока короткого замыкания (это для себя, а клиенту как совет).
P.S Всё, что выше никак не учебник и не претендует на полноту. Целенаправленно не перечислены все параметры рассмотренных элементов. Замечания на рассмотренную тему будут полезны не только автору.