Posted on

Конспект урока для 11 класса «Генератор. Трансформатор. Применение трансформатора»

Генератор переменного тока.

Генератор тока – устройство, преобразующее механическую энергию в электрическую.

Основные части генератора:

  1. Индуктор – устройство, создающее МП.

  2. Якорь – обмотка, в которой индуцируется ЭДС.

  3. Кольца со щетками – устройство, которым снимают с вращающихся частей индукционный ток или подают ток питания электромагнитом.

ЭДС, индуцируемая в последовательно соединенных витках, будет складываться из суммы ЭДС в каждом из них, поэтому обмотка якоря состоит из множества витков.

Генератор состоит из неподвижной части — статора и подвижной части — ротора. Обычно на роторе располагаются электромагниты с полюсами N и S. Их обмотка, называемая обмоткой возбуждения, питается через кольца и щетки от источника постоянного тока. В пазах статора, собранного из стальных листов, находятся проводники обмотки статора. Они соединены друг с другом последовательно поочередно с передней и с задней сторон статора.

Для технических целей применяется переменный ток синусоидальной формы с частотой 50 Гц, для этого ротор должен вращаться с частотой 50 об/с. Чтобы уменьшить частоту вращения, увеличивают число пар полюсов индуктора. ν = nf, n – число пар полюсов, f — частота вращения ротора.

Трансформатор.

Впервые трансформаторы были использованы в 1878 г. русским учёным П.Н. Яблочковым для питания изобретённых им »электрических свечей» – нового в то время источника света. Идея П.Н. Яблочкова была развита сотрудником Московского университета И.Ф. Усагиным, сконструировавшим усовершенствованный трансформатор. (Демонстрация разборного универсального трансформатора).

С помощью разборного универсального трансформатора рассматриваем устройство трансформатора.

Трансформатор состоит из замкнутого сердечника, на который надеты две (иногда и более) катушки с проволочными обмотками. Одну из обмоток, называемую первичной, подключают к источнику переменного напряжения. Вторую обмотку, к которой присоединяют «нагрузку», то есть приборы и устройства, потребляющие электроэнергию, называют вторичной.

Зарисовать в тетрадь схему устройства трансформатора, его условное обозначение (планшет)

Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Сердечник из трансформаторной стали концентрирует магнитное поле, так, что магнитный поток существует только внутри сердечника и одинаков во всех его сечениях.

В первичной обмотке, имеющей n1 витков, полная ЭДС индукции е1 равна n1е.

Во вторичной обмотке полная ЭДС е2 равна n2е, следовательно

Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах катушки приблизительно равен ЭДС индукции, значит:

,

Мгновенные значения ЭДС е1 и е2 изменяются синфазно (одновременно достигают максимума и одновременно проходят через нуль.) Поэтому отношение можно заменить:

Величину k называют коэффициентом трансформации.

При k > 1, — трансформатор – понижающий. При k

Вывод о назначении трансформатора

  1. Наиболее важное применение трансформатора — это передача электрической энергии на большое расстояние.

  2. Большое практическое применение трансформатор находит в электросварке.

  3. Образование двух противоположных магнитных потоков в сердечнике полностью нагруженного трансформатора положено в основу устройства современного бытового электрического звонка.

  4. В радиотехнике для понижения напряжения (силовые трансформаторы).

КПД трансформатора ɳ = * 100%, или ɳ= I2U2/I1U1.

Р2-мощность вторичной обмотки, Р1-мощность первичной обмотки. В современных мощных трансформаторах суммарные потери 2-3%. КПД составляет 97-98%.

Индукционные генераторы — Электромеханический индукционный генератор — Росиндуктор

ИНДУКЦИОННЫЙ ГЕНЕРАТОР — это преобразователь механической энергии в электрическую. Нужен электромеханический индукционный генератор? Росиндуктор — генератор от профессионалов с нашего склада. Индукционные генераторы работают при возникновении переменного магнитного поля в катушке. Катушка создаёт переменное магнитное поле, вектор которого меняется с заданной генератором частотой. Созданные вихревые токи, индуцированные магнитным полем, производят нагрев металлического элемента, который передаёт энергию теплоносителю.

Принцип действия индукционного генератора

Принцип действия индукционного генератора основан на законе электромагнитной индукции — индуцирование электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле, или наоборот, прямоугольный контур вращается в однородном неподвижном магнитном поле. Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нем индуктируется синусоидальная электродвижущая сила.

Индукционный генератор переменного тока

Это электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока, например, за счет вращения проволочной катушки в магнитном поле, или, наоборот, за счет вращения магнита. До тех пор, пока силовые линии магнитного поля пересекают проводящую катушку, в ней индуцируется электрический ток. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

Устройство индукционного генератора

По конструкции выделяют генераторы:

  • с неподвижными магнитными полюсами и вращающимся якорем,
  • с вращающимися магнитными полюсами и неподвижным статором.

Генераторы с неподвижными магнитными полюсами используются чаще, поскольку при неподвижной статорной обмотке нет необходимости снимать с помощью скользящих контактов (щеток) и контактных колец с ротора большой ток высокого напряжения. Статор (неподвижная часть) собирается из отдельных железных листов, изолированных друг от друга, а на внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора. Ротор (подвижная часть) обычно изготавливают из сплошного железа, а полюсные наконечники магнитных полюсов ротора собирают из листового железа. Для создания максимально возможной магнитной индукции при вращении между статором и полюсными наконечниками ротора желателен минимальный зазор, а геометрическую форму полюсных наконечников подбирают такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному. На сердечники полюсов садят катушки возбуждения, питаемые постоянным током, который подводится с помощью щеток к контактным кольцам, расположенным на валу генератора.

Электромеханический индукционный генератор

Магнитное поле в электромеханическом генераторе создается с помощью постоянного или электромагнита, переменная электродвижущая сила индуцируется в обмотке. В промышленных генераторах поле создается вращающимся магнитом, обмотки остаются неподвижными.

Генератор индукционного тока

Генераторы индукционного тока имеют широкую область применения: чаще всего их используют в местах, в которых требуется непрерывная подача электроэнергии, таких как медицинские учреждения, морозильные склады и т.п. также такие генераторы могут быть востребованы на строительных площадках и для электрификации загородных домов.

Генератор индукционного нагрева

Индукционный нагрев — это нагревание электропроводящих материалов электрическими токами, которые индуцируются переменным магнитным полем. Генераторы индукционного нагрева применяются для:

  • нагрева заготовок из магнитных материалов, в том числе для гибки и термообработки деталей,
  • термической обработки мелких и хрупких деталей,
  • поверхностной закалки изделий,
  • плавки, сварки и пайки металлов,
  • обеззараживания медицинского инструмента.  

Индукционный генератор переменного тока — Мегаобучалка

Индукционный генератор переменного тока. В индукционных генераторах переменного тока механическая энергия превращается в электрическую. Индукционный генератор состоит из двух частей: подвижной, которая называется ротором, и неподвижной, которая называется статором. Действие генератора основано на явлении электромагнитной индукции. Индукционные генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется много типов индукционных генераторов, но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, состоящая из последовательно соединенных витков, в которых индуцируется переменная электродвижущая сила. Так как электродвижущие силы, наводимые в последовательно соединенных витках, складываются, то амплитуда электродвижущей силы индукции в обмотке пропорциональна числу витков в ней.

Рис. 6.9

Число силовых линий, пронизывающих каждый виток, непрерывно меняется от максимального значения, когда он расположен поперек поля, до нуля, когда силовые линии скользят вдоль витка. В результате при вращении витка между полюсами магнита через каждые пол-оборота направление тока меняется на противоположное, и в витке появляется переменный ток. Во внешнюю цепь ток отводится при помощи скользящих контактов. Для этого на оси обмотки укреплены контактные кольца, присоединенные к концам обмотки. Неподвижные пластины – щетки – прижаты к кольцам и осуществляют связь обмотки с внешней цепью (рис. 6.9).

Пусть виток провода вpащается в одноpодном магнитном поле с постоянной угловой скоpостью . Магнитный поток, пронизывающий виток, меняется по закону , здесь S – площадь витка. Согласно закону Фаpадея в обмотке наводится электродвижущая сила индукции, которая опpеделяется следующим обpазом:

,

где N – число витков в обмотке. Таким образом, электродвижущая сила индукции в обмотке изменяется по синусоидальному закону и пpопоpциональна числу витков в обмотке и частоте вpащения.



В опыте с вращающейся обмоткой статором является магнит и контакты, между которыми помещена обмотка. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится электродвижущая сила, уложены в пазах статора и остаются неподвижными. На тепловых электростанциях для вращения ротора используются паровые турбины. Турбины, в свою очередь, приводятся во вращение струями водяного пара, полученного в огромных паровых котлах за счет сжигания угля или газа (теплоэлектростанции) или распада вещества (атомные электростанции). На гидроэлектростанциях для вращения ротора используются водяные турбины, которые вращаются водой, падающей с большой высоты.

Электрогенераторы играют важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии – и, тем не менее, снабжать ею заводы, дома и т.п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей демонстрировал прототип электрогенератора Джону Пилу, канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, все это очень интересно, а какой от всего этого толк?».

«Какой толк? – якобы удивился Фарадей. – Да вы знаете, сэр, сколько налогов эта штука со временем будет приносить в казну?!»

Трансформатор.

Трансформатор. Электродвижущая сила мощных генераторов электростанций велика, между тем практическое использование электроэнергии требует чаще всего не очень высоких напряжений, а передача энергии, наоборот, очень высоких.

Для уменьшения потерь на нагревание проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, для сохранения мощности увеличить напряжение. Напряжение, вырабатываемое генераторами (обычно около 20 кВ), повышают до напряжения 75 кВ, 500 кВ и даже до напряжения 1,15 МВ, в зависимости от длины линии электропередачи. Повышая напряжение с 20 до 500 кВ, то есть в 25 раз, уменьшают потери в линии в 625 раз.

Преобразование переменного тока определенной частоты, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется электромагнитным устройством, не имеющим подвижных частей – электрическим трансформатором. Трансформатор – важный элемент многих электрических приборов и механизмов. Зарядные устройства и игрушечные железные дороги, радиоприемники и телевизоры – всюду трудятся трансформаторы, которые понижают или повышают напряжение. Среди них встречаются как совсем крошечные, не более горошины, так и настоящие колоссы массой в сотни тонн и более.

Рис. 6.10

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из ферромагнитного материала (рис. 6.10). На магнитопроводе располагаются две обмотки – первичная и вторичная. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», то есть приборы, потребляющие электроэнергию, называется вторичной. Ферромагнетик увеличивает количество силовых линий магнитного поля приблизительно в 10 000 раз и локализует поток магнитной индукции внутри себя, благодаря чему обмотки трансформатора могут быть пространственно разделены и все же остаются индуктивно связанными.

Действие трансформатора основано на явлениях взаимной индукции и самоиндукции. Индукция между первичной и вторичной обмоткой взаимна, то есть ток, протекающий во вторичной обмотке, индуцирует электродвижущую силу в первичной, точно так же, как первичная обмотка индуцирует электродвижущую силу во вторичной. Более того, поскольку витки первичной обмотки охватывают собственные силовые линии, в них самих возникает электродвижущая сила самоиндукции. Электродвижущая сила самоиндукции наблюдается также и во вторичной обмотке.

Пусть первичная обмотка подсоединяется к источнику переменного тока с электродвижущей силой , поэтому в ней возникает переменный ток , создающий в магнитопроводе трансформатора переменный магнитный поток

?, который сосредотачивается внутри магнитного сердечника и пронизывает все витки первичной и вторичной обмоток.

При отсутствии внешней нагpузки выделяемая в тpансфоpматоpе мощность близка к нулю, то есть близка к нулю сила тока. Применим к первичной цепи закон Ома: сумма электродвижущей силы индукции и напряжения в цепи равна произведению силы тока на сопротивление. Полагая , можно записать: , следовательно, , где Ф – поток пронизывающий каждый виток первичной катушки. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же электродвижущую силу в каждом витке, то суммарная электродвижущая сила, индуцируемая в обмотке, пропорциональна полному числу ее витков. Следовательно, .

Коэффициент трансформации напряжения равен отношению напpяжения во вторичной цепи к напряжению в первичной цепи. Для амплитудных значений напряжений на обмотках можно записать:

.

Таким образом, коэффициент трансформации определяется как отношение числа витков вторичной обмотки к числу витков первичной обмотки. Если коэффициент , трансформатор будет повышающим, а если – понижающим.

Написанные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике.

Токи Фуко.

Токи Фуко. Индукционные токи могут возникать также в сплошных массивных проводниках. При этом замкнутая цепь индукционного тока образуется в толще самого проводника при его движении в магнитном поле или под влиянием переменного магнитного поля. Эти токи названы по имени французского физика Ж.Б.Л. Фуко, который в 1855 г. обнаружил нагревание ферромагнитных сердечников электрических машин и других металлических тел в переменном магнитном поле и объяснил этот эффект возбуждением индукционных токов. Эти токи в настоящее время называются вихревыми токами или токами Фуко.

Если железный сердечник находится в переменном магнитном поле, то в нем под действием индукционного электрического поля наводятся внутренние вихревые токи – токи Фуко, ведущие к его нагреванию. Так как электродвижущая сила индукции всегда пропорциональна частоте колебаний магнитного поля, а сопротивление массивных проводников мало, то при высокой частоте в проводниках будет выделяться, согласно закону Джоуля–Ленца, большое количество тепла.

Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Рис. 6.11

Вихревые токи широко используются для плавки металлов в так называемых индукционных печах (рис. 6.11), для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток). Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя левитационный нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры), получают особо чистые металлы и сплавы.

Конспект урока тема «Трансформатор! — физика, уроки

~~Класс  11 Б
Учитель  Алимов М.Т.
Тема урока «Генератор. Трансформатор. Применение трансформатора»
Цель урока: • познакомить учащихся с устройством генератора и трансформатора;
• рассмотреть на опытах действие генератора и трансформатора;
• познакомить учащихся с применением генератора и трансформаторов на производстве и в быту.
Повторение: Так как действие трансформатора основано на явлении электромагнитной индукции, следовательно, перед объяснением нового материала необходимо повторить следующие вопросы:
• При каких условиях возникает индукционный ток?
• Что называется электромагнитной индукцией?
• В каких опытах можно получить индукционный ток?
• Как возникает ЭДС индукции в неподвижных проводниках?
• Что является причиной возникновения ЭДС в движущихся проводниках?
Объяснение нового материала.
Генератор переменного тока.
Генератор тока – устройство, преобразующее механическую энергию в электрическую.
Основные части генератора:
1. Индуктор – устройство, создающее МП.
2. Якорь – обмотка, в которой индуцируется ЭДС.
3. Кольца со щетками – устройство, которым снимают с вращающихся частей индукционный ток или подают ток питания электромагнитом.
ЭДС, индуцируемая в последовательно соединенных витках, будет складываться из суммы ЭДС в каждом из них, поэтому обмотка якоря состоит из множества витков.
Генератор состоит из неподвижной части — статора и подвижной части — ротора. Обычно на роторе располагаются электромагниты с полюсами N и S. Их обмотка, называемая обмоткой возбуждения, питается через кольца и щетки от источника постоянного тока. В пазах статора, собранного из стальных листов, находятся проводники обмотки статора. Они соединены друг с другом последовательно поочередно с передней и с задней сторон статора.
Для технических целей применяется переменный ток синусоидальной формы с частотой 50 Гц, для этого ротор должен вращаться с частотой 50 об/с. Чтобы уменьшить частоту вращения, увеличивают число пар полюсов индуктора. ν = nf, n – число пар полюсов, f — частота вращения ротора.
Трансформатор.
Впервые   трансформаторы  были  использованы  в  1878 г. русским  учёным  П.Н.  Яблочковым  для питания изобретённых им  »электрических  свечей» – нового  в  то  время  источника  света.  Идея  П.Н. Яблочкова  была  развита  сотрудником  Московского  университета  И.Ф. Усагиным, сконструировавшим усовершенствованный  трансформатор.  (Демонстрация разборного универсального  трансформатора).
С  помощью  разборного универсального  трансформатора рассматриваем устройство трансформатора.
Трансформатор состоит из замкнутого сердечника, на который надеты две (иногда и более) катушки с проволочными обмотками. Одну из обмоток, называемую первичной, подключают к источнику переменного напряжения. Вторую обмотку, к которой присоединяют «нагрузку», то есть приборы и устройства, потребляющие электроэнергию, называют вторичной.
Зарисовать в тетрадь схему устройства трансформатора, его условное обозначение (планшет)
                   
Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Сердечник из трансформаторной стали концентрирует магнитное поле, так, что магнитный поток существует только внутри сердечника и одинаков во всех его сечениях.
В первичной обмотке, имеющей n1 витков, полная ЭДС индукции е1 равна  n1е.
Во  вторичной обмотке полная ЭДС е2 равна  n2е, следовательно 
Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах катушки приблизительно равен ЭДС индукции, значит:
 ,             
Мгновенные значения ЭДС е1 и е2    изменяются синфазно (одновременно достигают максимума и одновременно проходят через нуль.) Поэтому отношение   можно заменить:              

Величину k называют коэффициентом трансформации.
При  k > 1, — трансформатор – понижающий. При k < 1 – повышающий.
 Вывод о назначении трансформатора
1) Наиболее важное применение трансформатора — это передача электрической энергии на большое расстояние.
2) Большое практическое применение трансформатор находит в электросварке.
3) Образование двух противоположных магнитных потоков в сердечнике полностью нагруженного трансформатора положено в основу устройства современного бытового электрического звонка.
4) В радиотехнике для понижения напряжения (силовые трансформаторы).
КПД трансформатора   ? =    * 100%, или    ?= I2U2/I1U1.
Р2-мощность вторичной обмотки, Р1-мощность первичной обмотки. В современных мощных трансформаторах суммарные потери 2-3%. КПД составляет 97-98%.
Закрепление:
1. Почему сердечники трансформаторов изготовляют из отдельных листов, изолированных лаком?
2. Почему трансформатор выходит из строя, когда замыкаются накоротко хотя бы два соседних витка?
3. Почему сердечники трансформаторов собирают из пластин электротехнической стали?
Дома:
1. Подготовить доклад: передача электрической энергии, и ее использование.
2. Изготовить модель понижающего трансформатора.
3. Доклад: успехи и перспективы электрификации России.
4. Доклад: экономия электроэнергии.
                                                                               Вопрос:
1. Какой электрический ток называется переменным?
1) Электрический ток, периодически меняющийся со временем по модулю и направлению
2) Электрический ток, периодически меняющийся со временем
3) Электрический ток, периодически меняющийся по модулю
4) Электрический ток, периодически меняющийся со временем по направлению
 
2. Где используют переменный электрический ток?
1) в домах.  2) квартирах.  3) на производстве.  4) на автомобилях.
5) велосипедах.
 
3. Почему генераторы переменного тока называют индукционными?
1) их действие основано на явлении электрического тока
2) их действие основано на магнитном действии
3) их действие основано на явлении электромагнитной индукции
4) их действие основано на явлении постоянного магнита:

4. Из чего состоит электромеханический индукционный генератор?
1) генератора.  2) станины.  3) статора.
4) ротора.   5) полукольца.  6) щетки.
5. Какая часть индукционного генератора подвижная?
1) статор.  2) ротор.  3) щетки.  4) обмотка.

6. Какая часть индукционного генератора не подвижна?
1) обмотка.   2) ротор.   3) статор.

7. Чем приводится во вращение ротор генератора на тепловых станциях?
1) водой.  2) паром от сгоревшего топлива.  3) бензином.  4) керосином.

8. Чем приводится во вращение ротор генератора на гидроэлектростанции?
1) паром.  2) водой.  3) керосином.   4) кувалдой.

9. Какова стандартная частота переменного тока?
1) 65Гц.  2) 55 Гц.  3) 40 Гц.  4) 50 Гц.  5) 70 Гц.

10. Из каких элементов состоит трансформатор?
1) сердцевина.  2) сердечник.   3) первичная обмотка.
4) вторичная обмотка. 5) обмотки из проволоки.

11. Для чего предназначен трансформатор?
1) Трансформатор предназначен для увеличения или уменьшения переменного напряжения и силы тока
2) Трансформатор предназначен для увеличения или уменьшения переменного напряжения
3) Трансформатор предназначен для увеличения или уменьшения силы тока
4) Трансформатор предназначен для уменьшения переменного напряжения и силы тока
5) Трансформатор предназначен для увеличения напряжения и силы тока

12. Сколько видов трансформаторов существует?
1) 1.  2) 2.  3) 3.  4) 4.  5) 5.

13. К какой обмотке трансформатора подключают переменный электрический ток?
1) к первичной.   2) к вторичной.  3) к первичной и вторичной.

14. По какому физическому закону можно определить потери электроэнергии в ЛЭП?
1) закон Джоуля.  2) закон Джоуля-Ленца.  3) закон Ленца.
4) закон Паскаля.  5) закон Ньютона.   
15.  Кто изобрел трансформатор?
1) Лебедев.  2) Тимирязев.  3) Яблочков.  4) Паскаль.


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1,2,3 3 3,4,5,6 2 3 2 2 4 2,3,4 1 2 1 2 3

Просмотр содержимого документа
«Конспект урока тема «Трансформатор! »

Класс

11 Б

Учитель

Алимов М.Т.

Тема урока

«Генератор. Трансформатор. Применение трансформатора»

Цель урока:

  • познакомить учащихся с устройством генератора и трансформатора;

  • рассмотреть на опытах действие генератора и трансформатора;

  • познакомить учащихся с применением генератора и трансформаторов на производстве и в быту.

Повторение:

Так как действие трансформатора основано на явлении электромагнитной индукции, следовательно, перед объяснением нового материала необходимо повторить следующие вопросы:

  • При каких условиях возникает индукционный ток?

  • Что называется электромагнитной индукцией?

  • В каких опытах можно получить индукционный ток?

  • Как возникает ЭДС индукции в неподвижных проводниках?

  • Что является причиной возникновения ЭДС в движущихся проводниках?

Объяснение нового материала.

Генератор переменного тока.

Генератор тока – устройство, преобразующее механическую энергию в электрическую.

Основные части генератора:

  1. Индуктор – устройство, создающее МП.

  2. Якорь – обмотка, в которой индуцируется ЭДС.

  3. Кольца со щетками – устройство, которым снимают с вращающихся частей индукционный ток или подают ток питания электромагнитом.

ЭДС, индуцируемая в последовательно соединенных витках, будет складываться из суммы ЭДС в каждом из них, поэтому обмотка якоря состоит из множества витков.

Генератор состоит из неподвижной части — статора и подвижной части — ротора. Обычно на роторе располагаются электромагниты с полюсами N и S. Их обмотка, называемая обмоткой возбуждения, питается через кольца и щетки от источника постоянного тока. В пазах статора, собранного из стальных листов, находятся проводники обмотки статора. Они соединены друг с другом последовательно поочередно с передней и с задней сторон статора.

Для технических целей применяется переменный ток синусоидальной формы с частотой 50 Гц, для этого ротор должен вращаться с частотой 50 об/с. Чтобы уменьшить частоту вращения, увеличивают число пар полюсов индуктора. ν = nf, n – число пар полюсов, f — частота вращения ротора.

Трансформатор.

Впервые трансформаторы были использованы в 1878 г. русским учёным П.Н. Яблочковым для питания изобретённых им »электрических свечей» – нового в то время источника света. Идея П.Н. Яблочкова была развита сотрудником Московского университета И.Ф. Усагиным, сконструировавшим усовершенствованный трансформатор. (Демонстрация разборного универсального трансформатора).

С помощью разборного универсального трансформатора рассматриваем устройство трансформатора.

Трансформатор состоит из замкнутого сердечника, на который надеты две (иногда и более) катушки с проволочными обмотками. Одну из обмоток, называемую первичной, подключают к источнику переменного напряжения. Вторую обмотку, к которой присоединяют «нагрузку», то есть приборы и устройства, потребляющие электроэнергию, называют вторичной.

Зарисовать в тетрадь схему устройства трансформатора, его условное обозначение (планшет)

Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Сердечник из трансформаторной стали концентрирует магнитное поле, так, что магнитный поток существует только внутри сердечника и одинаков во всех его сечениях.

В первичной обмотке, имеющей n1 витков, полная ЭДС индукции е1 равна n1е.

Во вторичной обмотке полная ЭДС е2 равна n2е, следовательно

Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах катушки приблизительно равен ЭДС индукции, значит:

,

Мгновенные значения ЭДС е1 и е2 изменяются синфазно (одновременно достигают максимума и одновременно проходят через нуль.) Поэтому отношение можно заменить:

Величину k называют коэффициентом трансформации.

При k 1, — трансформатор – понижающий. При k

Вывод о назначении трансформатора

  1. Наиболее важное применение трансформатора — это передача электрической энергии на большое расстояние.

  2. Большое практическое применение трансформатор находит в электросварке.

  3. Образование двух противоположных магнитных потоков в сердечнике полностью нагруженного трансформатора положено в основу устройства современного бытового электрического звонка.

  4. В радиотехнике для понижения напряжения (силовые трансформаторы).

КПД трансформатора ɳ = * 100%, или ɳ= I2U2/I1U1.

Р2-мощность вторичной обмотки, Р1-мощность первичной обмотки. В современных мощных трансформаторах суммарные потери 2-3%. КПД составляет 97-98%.

Закрепление:

1. Почему сердечники трансформаторов изготовляют из отдельных листов, изолированных лаком?

2. Почему трансформатор выходит из строя, когда замыкаются накоротко хотя бы два соседних витка?

3. Почему сердечники трансформаторов собирают из пластин электротехнической стали?

Дома:

1. Подготовить доклад: передача электрической энергии, и ее использование.

2. Изготовить модель понижающего трансформатора.

3. Доклад: успехи и перспективы электрификации России.

4. Доклад: экономия электроэнергии.

Вопрос:
1. Какой электрический ток называется переменным?
1) Электрический ток, периодически меняющийся со временем по модулю и направлению
2) Электрический ток, периодически меняющийся со временем
3) Электрический ток, периодически меняющийся по модулю
4) Электрический ток, периодически меняющийся со временем по направлению

2. Где используют переменный электрический ток?
1) в домах. 2) квартирах. 3) на производстве. 4) на автомобилях.
5) велосипедах.

3. Почему генераторы переменного тока называют индукционными?
1) их действие основано на явлении электрического тока
2) их действие основано на магнитном действии
3) их действие основано на явлении электромагнитной индукции
4) их действие основано на явлении постоянного магнита:

4. Из чего состоит электромеханический индукционный генератор?
1) генератора. 2) станины. 3) статора.
4) ротора. 5) полукольца. 6) щетки.
5. Какая часть индукционного генератора подвижная?
1) статор. 2) ротор. 3) щетки. 4) обмотка.

6. Какая часть индукционного генератора не подвижна?
1) обмотка. 2) ротор. 3) статор.


7. Чем приводится во вращение ротор генератора на тепловых станциях?
1) водой. 2) паром от сгоревшего топлива. 3) бензином. 4) керосином.

8. Чем приводится во вращение ротор генератора на гидроэлектростанции?
1) паром. 2) водой. 3) керосином. 4) кувалдой.

9. Какова стандартная частота переменного тока?
1) 65Гц. 2) 55 Гц. 3) 40 Гц. 4) 50 Гц. 5) 70 Гц.

10. Из каких элементов состоит трансформатор?
1) сердцевина. 2) сердечник. 3) первичная обмотка.
4) вторичная обмотка. 5) обмотки из проволоки.

11. Для чего предназначен трансформатор?
1) Трансформатор предназначен для увеличения или уменьшения переменного напряжения и силы тока
2) Трансформатор предназначен для увеличения или уменьшения переменного напряжения
3) Трансформатор предназначен для увеличения или уменьшения силы тока
4) Трансформатор предназначен для уменьшения переменного напряжения и силы тока
5) Трансформатор предназначен для увеличения напряжения и силы тока

12. Сколько видов трансформаторов существует?

1) 1. 2) 2. 3) 3. 4) 4. 5) 5.

13. К какой обмотке трансформатора подключают переменный электрический ток?
1) к первичной. 2) к вторичной. 3) к первичной и вторичной.

14. По какому физическому закону можно определить потери электроэнергии в ЛЭП?
1) закон Джоуля. 2) закон Джоуля-Ленца. 3) закон Ленца.
4) закон Паскаля. 5) закон Ньютона.

15. Кто изобрел трансформатор?
1) Лебедев. 2) Тимирязев. 3) Яблочков. 4) Паскаль.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

1,2,3

3

3,4,5,6

2

3

2

2

4

2,3,4

1

2

1

2

3

Генерирование электрической энергии. Трансформаторы

В данной теме речь пойдёт о способах генерирования электрической энергии. А также изучим устройство простейшего трансформатора.

Электромагнитная индукция – это явление заключается в том, что при всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока. А полученный таким способом ток называется индукционным током.

Переменным называется ток, периодически изменяющийся со временем.

Для того чтобы в цепи существовал синусоидальный переменный ток, источник в этой цепи должен создавать переменное электрическое поле, изменяющееся синусоидально. На практике синусоидальная ЭДС создается генераторами переменного тока, работающими на электростанциях.

Генераторы — это электрические машины, преобразующие механическую энергию в электрическую.

К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи и т.д.

В настоящее время также исследуются возможности создания принципиально новых типов генераторов. Так, например, разрабатываются и уже частично используются топливные элементы, в которых энергия, освобождающаяся в результате реакции водорода с кислородом, непосредственно превращается в электрическую.

Область применения различных генераторов различна и определяется их характеристиками. Так, например, электростатические машины создают высокую разность потенциалов, но они не способны создать в цепи сколько-нибудь значимую силу тока. Гальванические же элементы наоборот могут дать большой ток, но продолжительность их невелика.

В современной энергетике применяют индукционные генераторы переменного тока, в которых используется явление электромагнитной индукции. Такие генераторы позволяют получать большие токи при достаточно высоком напряжении.

В прошлой теме была рассмотрена простейшая модель такого генератора — рамка с током, вращающаяся в однородном магнитном поле вокруг своей оси.

В настоящее время имеется много различных типов индукционных генераторов. Но все они состоят из одних и тех же основных частей.

Ранее нами рассматривался пример получения индукционного тока в плоском контуре при его вращении в магнитном поле. На этом принципе и работает электромеханической генератор переменного тока. Неподвижная часть генератора, аналогичная магниту, называется статором, а вращающаяся, т. е. рамка, — ротором.

В мощных промышленных генераторах вместо постоянного магнита используется электромагнит.

Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока вектора магнитной индукции.

В рассмотренной нами ранее модели генератора, вращается проволочная рамка, играющая роль ротора.

Разумеется, можно было бы поступить и наоборот, т.е. вращать магнит, а рамку оставить неподвижной. В больших промышленных генераторах приводится во вращение именно электромагнит.

Статор промышленного генератора представляет собой стальную станину цилиндрической формы (станина — это основная несущая часть машины, на которой монтируются различные рабочие узлы, механизмы и прочее). Во внутренней его части прорезаются пазы, в которые укладывается толстый медный провод. Именно в них и индуцируется переменный электрический ток при изменении пронизывающего их магнитного потока. Магнитное поле создается ротором. Он представляет собой электромагнит: на стальной сердечник сложной формы надета обмотка, по которой протекает постоянный электрический ток. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток; а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Ток к этой обмотке подводится через щетки и кольца от постороннего источника постоянного тока, называемого возбудителем.

На рисунке представлена полная схема генератора переменного тока. При вращении ротора какой-либо внешней механической силой, создаваемое им магнитное поле тоже вращается. При этом магнитный поток, пронизывающий витки обмотки статора, периодически меняется, в результате чего в них индуцируется переменный ток.

На тепловых электростанциях ротор генератора вращается с помощью паровой турбины, на гидроэлектростанциях — с помощью водяной турбины.

Обратите внимание, что ротор гидрогенератора имеет не одну, а несколько пар магнитных полюсов. Чем больше пар полюсов, тем больше частота переменного электрического тока, вырабатываемого генератором при данной скорости вращения ротора. Поскольку скорость вращения водяных турбин обычно невелика, то для создания тока стандартной частоты используют многополюсные роторы.

Таким образом, электрическую энергию производят на электростанциях. Но ее каким-то образом надо передать потребителям, часто находящимся очень далеко от станции. Для этого между станцией и потребителем строят линии электропередач.

Однако при передаче электроэнергии неизбежны потери, связанные с нагреванием проводов. Чем дальше от электростанции находится потребитель тока, тем больше энергии тратится на нагревание проводов и тем меньше доходит до потребителя.

Уменьшение потерь электроэнергии при ее передаче от электростанций к потребителям является важной народнохозяйственной задачей. Из закона Джоуля-Ленца следует, что уменьшить потери можно либо за счет уменьшения сопротивления проводов, либо уменьшения силы тока в них. Сопротивление проводов будет тем меньше, чем больше площадь их поперечного сечения и чем меньше удельное сопротивление металла, из которого они изготовлены. Провода делают из меди или алюминия, так как среди относительно недорогих металлов они обладают наименьшим удельным сопротивлением. Однако увеличивать же толщину проводов экономически невыгодно, т.к. это ведет к перерасходу дорогостоящего цветного металла, а также возникновению трудностей при закреплении проводов на столбах. Поэтому такой способ снижения потерь практически невозможен.

Поэтому существенного снижения потерь можно добиться только за счет уменьшения силы тока. Но приданной мощности уменьшение силы тока возможно лишь при увеличении напряжения. Без такого преобразования силы тока и напряжения передача электроэнергии на большие расстояния становится невыгодной из-за существенных потерь.

Так, электроэнергия Волжской ГЭС передается в Москву при напряжении 500 кВ, от Саяно-Шушенской ГЭС — при напряжении 750 кВ. Хотя на самих электростанциях генераторы вырабатывают электрическую энергию при напряжениях, не превышающих 20 кВ.

Решение этой важнейшей технической задачи стало возможным только после изобретения трансформатораустройства, служащего для преобразования силы и напряжения переменного тока при неизменной частоте.

Первый трансформатор был изобретен в 1876 году русским ученым Павлом Николаевичем Яблочковым для питания изобретенных им электрических свечей — нового в то время источника света. А первый технический трансформатор впервые создал Иван Филиппович Усагин в 1882 г.

В основе работы трансформатора лежит явление электромагнитной индукции. Простейший трансформатор представляет собой две изолированные друг от друга катушки (их еще называют обмотками), намотанные на общий замкнутый сердечник. По одной из обмоток (первичной) пропускается преобразуемый переменный ток, а вторичная обмотка соединяется с потребителем.

Переменный ток в первичной обмотке создает в сердечнике переменный магнитный поток, который возбуждает ЭДС индукциив витках каждой обмотки. Сердечник из трансформаторной стали концентрирует магнитное поле так, что магнитный поток существует практически только внутри сердечника и одинаков во всех его сечениях.

Мгновенное значение ЭДС индукции во всех витках первичной или вторичной обмотки одинаково. Согласно закону Фарадея, оно будет определяться формулой

e = –Ф’

где Ф’ — производная потока магнитной индукции по времени.

Если первичная обмотка имеет N1 витков, а вторичная N2 витков, то в обмотках индуцируются (без учета потерь на рассеивание магнитного потока) соответственно e1 и e2, а их отношение будет равно

Т.е. возникающие в катушках ЭДС индукции (или самоиндукции) пропорциональны числу витков в них.

Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах первичной обмотки примерно равен модулю суммарной ЭДС индукции.

При разомкнутой вторичной обмотке трансформатора ток в ней не идет, поэтому суммарная ЭДС индукции равна напряжению на зажимах вторичной обмотки.

Изменение мгновенных значений ЭДС происходит так, что они одновременно достигают максимума и одновременно проходят через ноль, т.е. изменяются синфазно. Поэтому их отношения можно заменить отношением действующих значений этих ЭДС или отношением действующих значений напряжений.

Отношение числа витков в первичной обмотке к числу витков во вторичной называют коэффициентом трансформации k.

В зависимости от того, какое значение принимает коэффициент трансформации, различают повышающий и понижающий трансформатор.

Его обычно определяют при холостом ходе трансформатора, т.е. при разомкнутой цепи вторичной обмотки.

Если коэффициент трансформации меньше единицы, то трансформатор называется повышающим, а если больше единицы — то понижающим.

При включении во вторичную цепь какой-либо нагрузки (это рабочий ход трансформатора) в ней начинает проходить ток нагрузки (он переменный и такой же частоты). Этот ток создает в сердечнике магнитный поток, направленный по правилу Ленца навстречу потоку первичной обмотки. В результате суммарный поток магнитной индукции в первичной катушке уменьшается, уменьшается и ЭДС, а, следовательно, сила тока будет увеличиваться. Это увеличение силы тока в первичной цепи приводит к увеличению магнитного потока, ЭДС индукции и силы тока во вторичной цепи. Но, как мы знаем, увеличение тока во вторичной цепи сопровождается увеличением тока самоиндукции и, следовательно, уменьшением магнитного потока который только что возрастал.

В конце концов, при постоянной нагрузке устанавливаются определенные магнитный поток, ЭДС индукции во вторичной цепи и ток в первичной цепи. Получается, что трансформатор сам, автоматически регулирует потребление энергии в зависимости от нагрузки во вторичной цепи.

При рабочем ходе трансформатора происходит непрерывная передача энергии из первичной цепи во вторичную.

Мощность, потребляемая в первичной цепи, будет определяться формулой

а выделяемая на нагрузке

Коэффициент полезного действия трансформатора будет определяться отношением выделяемой мощности на нагрузке к потребляемой мощности в первичной цепи.

Однако не вся энергия, вырабатываемая генератором, передается потребителю. При работе трансформатора имеются потери на нагревание обмоток трансформатора, на рассеивание магнитного потока в пространство, на вихревые токи Фуко в сердечнике и его перемагничивание.

Для уменьшения этих потерь принимаются следующие меры:

1) обмотка низкого напряжения делается большего сечения, так как по ней проходит ток большей силы;

2) сердечник делают замкнутым, что уменьшает рассеивание магнитного потока;

3) сердечник делают из изолированных пластин для уменьшения токов Фуко.

Благодаря этим мерам коэффициент полезного действия современных трансформаторов достигает 95—99%, а сдвиг фаз между колебаниями силы тока и напряжения близки к нулю.

Если иногда можно пренебречь потерями в трансформаторе, т.е. считать его коэффициент полезного действия равным 100%, то мощность, потребляемая в первичной цепи, будет равна мощности, выделяемой на нагрузке. Тогда отношение силы тока в первичной обмотке к силе тока во вторичной обмотке будет обратно пропорционально соответствующим напряжениям. А это значит, что увеличивая с помощью трансформатора напряжение, во столько же раз будем уменьшать силу тока и наоборот.

В настоящее время трансформаторы нашли широкое применение, как в технике, так и в быту. Например, для передачи электроэнергии на большие расстояния используются как повышающие, так и понижающие трансформаторы (об этом, кстати, мы более подробно будем говорить в одном из следующих уроков).При подзарядке сотового телефона имеющийся в зарядном устройстве трансформатор понижает напряжение, полученное из осветительной сети до 5.5 В, пригодного для телефона. В телевизоре имеется несколько трансформаторов (как понижающих, так и повышающих), поскольку для питания различных его узлов требуется напряжение от 1,5 В до 25 кВ и так далее.

Основные выводы:

Генератор переменного тока – устройство, преобразующее механическую энергию в электрическую.

– В современной энергетике применяются индукционные генераторы, работа которых основана на явлении электромагнитной индукции, и позволяющие получить большие токи при достаточно высоком напряжении.

– Конструкций индукционных генераторов существует достаточное количество, однако, неизменными в каждом из них, остаются ротор — подвижная часть генератора, и статор — неподвижная часть генератора.

Трансформатор – устройство, служащее для преобразования силы и напряжения переменного тока при неизменной частоте.

– Трансформатор характеризуется коэффициентом трансформации, т.е. отношением числа витков в первичной обмотке к числу витков во вторичной обмотке.

– В зависимости от значения этого коэффициента, различают повышающий и понижающий трансформаторы.

Т. Генератор пер. тока — PhysBook

Генератор переменного тока

Электрические машины, преобразующие механическую энергию в электрическую, называют генераторами. В современной энергетике применяют индукционные генераторы переменного тока, в которых используется явление электромагнитной индукции. Они позволяют получать большие токи при достаточно высоком напряжении.

Простейшей моделью такого генератора может служить рамка abcd (рис. 1), вращающаяся в однородном магнитном поле вокруг своей оси ОО’, перпендикулярной индукции магнитного поля.

Рис. 1

Пусть в начальный момент времени t = 0 плоскость рамки перпендикулярна вектору магнитной индукции (рис. 1, а), ее пронизывает максимальный магнитный поток \(~\Phi_m \left( \alpha = 0\right).\) При равномерном вращении рамки пронизывающий ее магнитный поток уменьшается. Вследствие этого, согласно закону электромагнитной индукции, в рамке возникает ЭДС индукции \(~\varepsilon_i.\) Когда плоскость рамки станет параллельна вектору индукции магнитного поля (рис. 1, б), пронизывающий ее магнитный поток станет равным нулю \(~\left( \Phi = 0, \alpha = \frac {\pi}2\right).\) Скорость же изменения магнитного потока при прохождении рамки через это положение наибольшая, так как проводники рамки аЬ и cd движутся в этот момент перпендикулярно линиям индукции. Возникающая ЭДС индукции, пропорциональная скорости изменения магнитного потока, будет максимальная, и создаваемый ею в этом случае индукционный ток направлен (согласно правилу правой руки) от Ь к a и от d к с. При дальнейшем повороте рамки магнитный поток увеличивается, ЭДС, не изменяя своего знака, будет уменьшаться по величине и в положении (рис. 1, в) \(~\Phi = \Phi_0, \frac {\Delta \Phi}{\Delta t} = 0,\) так как при прохождении через это положение проводники витка аЬ и cd скользят вдоль линии поля, не пересекая их. Следовательно, ЭДС индукции, возникающая в контуре в этом случае, \(~\varepsilon_i = 0.\) При дальнейшем вращении рамки магнитный поток уменьшается. Скорость изменения магнитного потока увеличивается и ЭДС индукции возрастает. Согласно рисунку 1, г \(~\Phi = 0, \left | \frac {\Delta \Phi}{\Delta t} \right | = \left( \frac {\Delta \Phi}{\Delta t}\right)_0 \) и \(~\left | \varepsilon_i \right | = \left | \varepsilon_{i0} \right |,\) но направление индукционного тока в витках (согласно правилу правой руки) совпадает с направлением от a к и от с к d (противоположно таковому на рис. 1, б). Это направление будет сохраняться и при дальнейшем движении рамки и начнет убывать, так как магнитный поток хотя и увеличивается, но скорость изменения его уменьшается.

При последующих оборотах рамки все эти явления будут повторяться вновь. Таким образом, ЭДС индукции во вращающейся рамке за один оборот изменяется от \(~ — \varepsilon_{i0}\) до \(~ + \varepsilon_{i0}.\)

Выясним, по какому закону будет изменяться ЭДС индукции в рамке площадью S, если рамка вращается с постоянной угловой скоростью ω (ω = const) в однородном магнитном поле с индукцией \(~\vec B \) вокруг оси, расположенной в плоскости рамки и перпендикулярной вектору \(~\vec B. \)

За время t рамка повернется на угол \(~\varphi = wt,\) и угол между нормалью к рамке и вектором магнитной индукции будет \(~\alpha = wt.\) Магнитный поток, пронизывающий рамку, в момент времени t равен \(~\Phi = BS \cos wt.\)

Согласно закону Фарадея, мгновенное значение ЭДС индукции, возникающей в рамке, равно первой производной магнитного потока по времени \(~\varepsilon_i = — \Phi’.\) Поэтому

\(~\varepsilon_i = wBS \sin wt = \varepsilon_0 \sin wt,\)

где \(~\varepsilon_0 = wBS \) — амплитудное значение ЭДС, которое, как видно, тем больше, чем быстрее вращается рамка, чем больше площадь рамки, тем больше магнитная индукция поля.

Таким образом, при равномерном вращении рамки в однородном магнитном поле в ней возникает синусоидальная ЭДС с частотой колебаний, равной частоте вращения рамки, которая будет создавать синусоидальный ток в цепи той же частоты, но фаза колебания тока не обязательно должна совпадать с фазой изменения ЭДС. Поэтому в общем случае мгновенное значение силы тока \(~I = I_0 \sin \left( wt + \varphi,\right)\) где \(~\varphi \) — разность фаз между колебаниями силы тока и ЭДС (рис. 2).

Рис. 2

Чтобы использовать переменный ток, рамки соединяют с двумя изолированными кольцами, к кольцам прижимают щетки, к которым присоединяют контакты внешней цепи (рис. 3).

Рис. 3

Мы рассмотрели принцип работы генератора переменного тока. Устройство генератора переменного тока гораздо сложнее. В настоящее время имеется много различных типов индукционных генераторов. Однако в каждом из них есть одни и те же основные части: 1) электромагнит (или постоянный магнит), создающий магнитное поле. Он называется индуктором;

2) обмотка, в которой индуцируется ЭДС. Эта часть носит название якорь;

3) состоящий из металлических колец коллектор;

4) щетки, соединяющие неподвижные проводники с вращающимися проводниками.

Неподвижная часть генератора называется статором. В описанном случае статором является индуктор. Подвижная часть генератора — ротор. В рассмотренном случае ротором является якорь. Для получения ЭДС индукции важно относительное перемещение проводника и магнитного поля. Поэтому на практике индуктор делают вращающимся, а якорь — неподвижным. Это вызвано тем, что с помощью подвижных контактов практически невозможно отводить от генератора токи высокого напряжения (большой амплитуды) из-за сильного искрения в подвижных контактах. Индуктором же является электромагнит, для питания которого нужен сравнительно слабый постоянный ток, и при таком слабом токе скользящие контакты хорошо работают.

Для того чтобы увеличить амплитуду ЭДС, необходимо увеличить магнитный поток через витки якоря. А это можно сделать, сконцентрировав магнитный поток в том месте, где находится якорь. Поэтому магнитную систему генератора изготавливают в виде замкнутой цепи, состоящей из двух сердечников, сделанных из железа. Обмотки индуктора размещены в пазах одного из сердечников, а обмотки якоря — в пазах другого. Один из сердечников, обычно внутренний, вращается вместе с индуктором. Другой сердечник с якорем в пазах неподвижен (статор). Зазор между сердечниками статора и ротора делают как можно уже. Этим достигается наибольшее значение потока магнитной индукции.

Сердечники изготавливают из тонких изолированных друг от друга железных пластин, чтобы уменьшить токи Фуко (см. Закон электромагнитной индукции), при протекании которых происходит нагревание сердечников.

Для увеличения амплитудного значения ЭДС индукции якорь изготавливают из большого числа витков. Амплитуда возникающей ЭДС индукции будет равна в этом случае \(~\varepsilon_0 = N \Phi_0 w,\) где N — число витков.

Когда у ротора имеется одна пара магнитных полюсов, то частота вращения совпадает с частотой переменного тока. В нашей стране и странах СНГ используется промышленный переменный ток частотой 50 Гц. В случае N пар полюсов частота переменного тока в N раз больше частоты вращения ротора. Одну пару полюсов делают у турбогенераторов, роторы которых приводятся во вращение паровой турбиной, а тихоходные многополюсные генераторы устанавливаются на гидростанциях. Так, на Братской ГЭС — 24, на Волжской ГЭС — 44, на Угличской на Волге — 48 пар полюсов.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 396-399.

Получение и передача переменного электрического тока. Трансформатор

Тест Получение и передача переменного электрического тока. Трансформатор

Задание #1
Вопрос:
Какой электрический ток называется переменным?
Выберите один из 4 вариантов ответа:
1) Электрический ток, переодически меняющийся со временем по модулю и направлению
2) Электрический ток, переодически меняющийся со временем
3) Электрический ток, переодически меняющийся по модулю
4) Электрический ток, переодически меняющийся со временем по направлению
Задание #2
Вопрос:
Где используют переменный электрический ток?
Выберите несколько из 5 вариантов ответа:
1) в домах
2) квартирах
3) на производстве
4) на автомобилях
5) велосипедах
Задание #3
Вопрос:
Почему генераторы переменного тока называют индукционными?
Выберите один из 4 вариантов ответа:
1) их действие основано на явлении электрического тока
2) их действие основано на магнитном действии
3) их действие основано на явлении электромагнитной индукции
4) их действие основано на явлении посточнного магнита
Задание #4
Вопрос:
Из чего состоит электромеханический индукционный генератор?
Выберите несколько из 6 вариантов ответа:
1) генератора
2) станины
3) статора
4) ротора
5) полукольца
6) щетки
Задание #5
Вопрос:
Какая часть индукционного генератора подвижная?
Выберите один из 4 вариантов ответа:
1) статор
2) ротор
3) щетки
4) обмотка
Задание #6
Вопрос:
Какая часть индукционного генератора не подвижна?
Выберите один из 3 вариантов ответа:
1) обмотка
2) ротор
3) статор
Задание #7
Вопрос:
Чем приводится во вращение ротор генератора на тепловых станциях?
Выберите один из 4 вариантов ответа:
1) водой
2) паром от сгоревшего топлива
3) бензином
4) керосином
Задание #8
Вопрос:
Чем приводится во вращение ротор генератора на гидроэлектростанции?
Выберите один из 4 вариантов ответа:
1) паром
2) водой
3) керосином
4) кувалдой
Задание #9
Вопрос:
Какова стандартная частота промышленного тока в России?
Выберите один из 5 вариантов ответа:
1) 65Гц
2) 55 Гц
3) 40 Гц
4) 50 Гц
5) 70 Гц
Задание #10
Вопрос:
Из каких элементов состоит трансформатор?
Выберите несколько из 5 вариантов ответа:
1) сердцевина
2) сердечник
3) первичная обмотка
4) вторичная обмотка
5) обмотки из проволоки
Задание #11
Вопрос:
Для чего предназначен трансформатор?
Выберите один из 5 вариантов ответа:
1) Трансформатор предназначен для увеличения или уменьшения переменного напряжения и силы тока
2) Трансформатор предназначен для увеличения или уменьшения переменного напряжения
3) Трансформатор предназначен для увеличения или уменьшения силы тока
4) Трансформатор предназначен для уменьшения переменного напряжения и силы тока
5) Трансформатор предназначен для увеличения напряжения и силы тока
Задание #12
Вопрос:
Сколько видов трансформаторов существует?
Выберите один из 5 вариантов ответа:
1) 1
2) 2
3) 3
4) 4
5) 5
Задание #13
Вопрос:
К какой обмотке трансформатора подключают переменный электрический ток?
Выберите один из 3 вариантов ответа:
1) к первичной
2) к вторичной
3) к первичной и вторичной
Задание #14
Вопрос:
По какому физическому закону можно определить потери электроэнергии в ЛЭП?
Выберите один из 5 вариантов ответа:
1) закон Джоуля
2) закон Джоуля-Ленца
3) закон Ленца
4) закон Паскаля
5) закон Ньютона
Задание #15
Вопрос:
Кто изобрел трансформатор?
Выберите один из 4 вариантов ответа:
1) Лебедев
2) Темерязев
3) Яблочков
4) Паскаль

Ответы:
1) (1 б.) Верные ответы: 1;
2) (1 б.) Верные ответы: 1; 2; 3;
3) (1 б.) Верные ответы: 3;
4) (1 б.) Верные ответы: 3; 4; 5; 6;
5) (1 б.) Верные ответы: 2;
6) (1 б.) Верные ответы: 3;
7) (1 б.) Верные ответы: 2;
8) (1 б.) Верные ответы: 2;
9) (1 б.) Верные ответы: 4;
10) (1 б.) Верные ответы: 2; 3; 4;
11) (1 б.) Верные ответы: 1;
12) (1 б.) Верные ответы: 2;
13) (1 б.) Верные ответы: 1;
14) (1 б.) Верные ответы: 2;
15) (1 б.) Верные ответы: 3.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *