Posted on

Как из 30 вольт постоянного получить 12-14 вольт переменного тока.

вопрос и комментарий взамопротивоположные поэтому непонятно, чего ты там задумал

После 30 вольт диодный мостик и линейный стабилизатор

Трансформатор имеет две вторичные обмотки на 30 В и 8 В. Отмоткой вторичной обмотки это проще сделать

ты заговариваешься… то у тебя 30В постоянного, то переменного…

Моторчик печки от ВАЗа кренка не потянет) Да и трансформатору достанется..

Линейным стабилизатором очень не экономично. Импульсным преобразователем – сложно. Но если ток до 1А, то можно… R1=3 кОм 0,25W, R2 =10 кОм, стабилитрон КС213 , ёмкости на U=50V и транзистор на здоровенный радиатор. <img src=»https://otvet.imgsmail.ru/download/62604757_6e42e460262ddf834e8eca96f2d21797_800.jpg» data-big=»1″ data-lsrc=»//otvet.imgsmail.ru/download/62604757_6e42e460262ddf834e8eca96f2d21797_120x120.jpg»>

Здесь по-видимому закралась ошибка перевода: не «трансформатор» а «конвертер» — «преобразователь».

Диодный мост и кусок спирали от электроплитки. Длину подбери.. будет работать шо надо..

touch.otvet.mail.ru

Самодельный регулируемый блок питания от 0 до 14 Вольт. Окончание.

Здравствуйте уважаемые читатели сайта sesaga.ru. Вот и подошла к завершению статья о самодельном регулируемом блоке питания, и сегодня мы произведем окончательную сборку и наладку, так сказать, наведем лоск.

В предыдущей статье мы собрали корпус, разместили все элементы на свои места и подготовили блок питания для окончательной сборки.

Блок питания. Вид с задней стороны

Остался еще один момент, про который хотелось сказать отдельно.
Мощный транзистор VT3 необходимо разместить на радиатор (теплоотвод), так как при работе на нем выделяется большое количество тепла, и транзистор может выйти из строя из-за перегрева. Радиатор используйте заводского изготовления или самодельный, сделанный из алюминиевой или дюралевой пластины. Я использовал заводского изготовления.

Между транзистором и радиатором ставим изоляционную прокладку, которая способствует отводу тепла от корпуса транзистора к радиатору и изолирует коллектор транзистора от радиатора.

Прокладка между транзистором и радиатором

На выводы транзистора надеваем трубки из хлорвиниловой изоляции или термоусадки — это не даст выводам замкнуться между собой или на радиатор.

Еще раз внимательно проверяем монтаж, и если есть ошибки – исправляем. Особое внимание уделите транзисторам, так как при неправильной распайке выводов транзистор может выйти из строя.

1. Проверяем работу блока питания.

Включаем блок питания в сеть и измеряем напряжение на выходе.
Установите движок переменного резистора R3 в крайнее правое положение и измерьте напряжение – оно должно быть в пределах 12 — 14 вольт.
Теперь вращайте движок в левую сторону и следите за напряжением – оно должно плавно уменьшиться почти до нуля. Если при вращении движка резистора вправо напряжение уменьшается, а влево — увеличивается, поменяйте местами проводники, идущие к крайним выводам переменного резистора.

Если напряжение на выходе не изменяется, или оно очень мало, или греется какая-нибудь деталь — отключаем блок питания от сети и еще раз внимательно проверяем монтаж на ошибки.

Принципиальная схема регулируемого блока питания

После устранения возможных ошибок подаем питание на блок и сразу измеряем напряжение на конденсаторе C1 – оно должно быть в пределах 15 – 20 вольт. Если напряжение намного меньше, значит, проверяем исправность и правильность распайки диодов диодного моста VD1VD4.

Если на конденсаторе С1 напряжение нормальное, то проверяем работу стабилитрона VD6. Подключаем к его выводам вольтметр и измеряем напряжение — оно должно быть равно напряжению стабилизации стабилитрона Uст и находиться в пределах 11,5 – 14 вольт. Если же оно ниже, проверяем сопротивление резистора R2.

Напряжение на конденсаторе С1 нормальное, на стабилитроне соответствует напряжению стабилизации Uст, а на выходе блока питания оно так и не изменяется, значит, проверяйте исправность и правильность распайки выводов транзисторов

VT2, VT3.

Как блок питания заработает, проверяем автомат защиты от короткого замыкания.
Щупами измерительного прибора подключитесь к выходу блока и установите выходное напряжение равное 6 вольт. Кратковременно замкните между собой «плюс» и «минус» на выходной колодке.

Напряжение на выходе должно упасть, а затем сразу восстановиться до первоначальных 6 вольт. Если это так, то автомат работает исправно, если нет, проверьте исправность транзистора VT1 и правильность подключения его выводов.

Теперь можно приступать к градуировке вольтметра.

2. Подбираем добавочный (токоограничивающий) резистор.

Перед градуировкой необходимо подобрать добавочный резистор, который нужен для ограничения тока через рамку микроамперметра. Обычно ток полного отклонения стрелки микроамперметра составляет не более 100 мкА, и если такого резистора не будет, то возникший ток в электрической цепи, оказавшийся значительно больше

100 мкА может привести к тому, что сгорит обмотка рамки, или стрелка, резко отклонившись за пределы шкалы, погнется или сломается.

Для градуировки микроамперметра понадобится образцовый вольтметр, в качестве которого можно использовать аналоговый или цифровой измерительный прибор, например, стрелочный тестер или мультиметр.

К микроамперметру подсоедините добавочный резистор R6 сопротивлением в пределах 120 — 160 кОм.

Соблюдая полярность, подключите микроамперметр согласно принципиальной схеме и включите блок питания. Используя образцовый вольтметр, установите выходное напряжение блока равное 6 — 7 вольтам.

Добавочный резистор для микроамперметра

Стрелка микроамперметра должна подняться ближе к середине шкалы или встать на ее середину. Начинайте плавно поворачивать движок переменного резистора по часовой стрелке, следя по образцовому вольтметру за выходным напряжением. При этом стрелка микроамперметра должна также плавно двигаться и остановиться на конечной отметке шкалы при достижении блоком питания максимального выходного напряжения.

Если показания выходного напряжения на образцовом вольтметре еще не достигли максимального значения 12 -14 вольт, а стрелка микроамперметра уже перешла конечную отметку шкалы — увеличьте сопротивление добавочного резистора еще на 5 – 10 кОм.
Если же показания напряжения на образцовом вольтметре достигли максимального значения 12-14 вольт, а стрелка микроамперметра еще не встала на конечную отметку шкалы — уменьшите сопротивление добавочного резистора на 5 – 10 кОм.

Одним словом, Вы должны добиться такого результата, чтобы при достижении блоком питания максимального выходного напряжения стрелка микроамперметра остановилась напротив последнего деления шкалы.

3. Градуировка шкалы вольтметра.

Градуировать шкалу микроамперметра не требуется, если во время подбора добавочного резистора показания микроамперметра и образцового вольтметра практически совпадали при изменении выходного напряжения блока питания. То есть, стрелка микроамперметра находилась строго напротив или возле деления, соответствующего величине напряжения, на которую указывал образцовый вольтметр. В этом случае точнее подбираем добавочный резистор.

Если же показания расходились на 2-3 вольта по всему диапазону, клеим лист бумаги на шкалу микроамперметра и размечаем свою шкалу.

Снимаем защитную крышку микроамперметра.
Для этого отворачиваем болт в нижней части прибора.

Микроамперметр. Вид сзади

Может получиться так, что герметичная прокладка, расположенная между корпусом и защитной крышкой, не даст сняться крышке. Отделите или прорежьте ее ножом или отверткой по всему периметру крышки.

Микроамперметр со снятой крышкой

Наклеиваем бумагу и делаем отметку первого деления – это будет «0».

Нулевая отметка на шкале микроамперметра

Подсоединяем на место микроамперметр и подаем напряжение питания на блок.
По образцовому вольтметру устанавливаем на выходе блока питания 1 вольт и напротив конца стрелки наносим риску ручкой или простым карандашом. Далее, на выходе устанавливаем 2 вольта и опять наносим риску. И таким образом доходим до конца шкалы.

Наносим деления на шкалу вольтметра

Для дальнейшего удобства пользования вольтметром можно через каждые пять вольт выделить риску и напротив нее написать соответствующее цифровое значение напряжения.

Шкала вольтметра

На этом градуировка микроамперметра закончена.

4. Увеличиваем выходное напряжение.

Если у Вашего трансформатора напряжение на вторичной обмотке больше четырнадцати вольт, тогда есть возможность еще немного поднять выходное напряжение блока питания, как это сделано у меня. Для этого последовательно стабилитрону VD6 нужно включить еще один стабилитрон VD7.

Добавочный стабилитрон

Допустим, у Вашего трансформатора на вторичной обмотке переменное напряжение составляет около 20 вольт, значит, можно увеличить выходное стабилизированное напряжение до 15 – 17 вольт.

Обязательно оставляем три-четыре вольта трансформатору для запаса, чтобы он не работал с перегрузом.

По таблице параметров стабилитронов, данной в первой статье, подбираем по напряжению стабилизации Uст пару стабилитронов, чтобы сумма их напряжений составила 15–17 вольт. Например, чтобы на выходе получить максимальное выходное напряжение около 16 вольт, берем один стабилитрон Д814А, а второй Д814В.

Только сильно этим не увлекайтесь, так как основная масса радиолюбительских конструкций питается напряжением 1,5 – 15 вольт, и при питании конструкций пониженным напряжением, например, 1,5 вольта, на выходном транзисторе VT3 будет гаситься излишек напряжения 14 — 15 вольт, из-за чего транзистор будет греться. Поэтому, шестнадцати вольт на выходе Вам хватит вполне.

На плате, добавление второго стабилитрона будет выглядеть так:

Стабилитрон на плате блока питания

Добавочный стабилитрон на плате блока питания

Ну вот, в принципе и все.
В собранном виде блок питания выглядит так:

Внешний вид самодельного регулируемого блока питания

На этом заканчиваю эпопею о самодельном регулируемом блоке питания, который поможет начинающему радиолюбителю, делающему первые шаги в увлекательный мир радиоэлектроники, и станет ему настоящим другом. Я сам, когда серьезно увлекся радиоэлектроникой, одной из первых конструкций, которые я собрал, был именно такой блок питания, служащий мне до сих пор.
Удачи!

sesaga.ru

Переделка 12В шуруповерта с Ni-Cd на Li-ion аккумуляторы


Аккумуляторный инструмент мобильнее и удобнее в использовании по сравнению со своими сетевыми собратьями. Но не надо забывать и о существенном недостатке аккумуляторного инструмента, это как вы сами понимаете недолговечность батарей питания. Покупать отдельно новые аккумуляторы сопоставимо по цене с приобретением нового инструмента.

После четырех лет службы мой первый шуруповерт, а точнее батареи стали терять емкость. Для начала я из двух батарей собрал одну выбрав рабочие «банки», но и этой модернизации хватило ненадолго. Переделывал свой шуруповерт на сетевой — оказалось очень неудобно. Пришлось, купить такой же, но новый 12 вольтовый «Интерскол ДА-12ЭР». Батареи в новом шуруповерте прослужили еще меньше. В итоге два исправных шуруповерта и не одной рабочей батареи.

На просторах интернета много пишут, как решить данную проблему. Предлагается переделать отслужившие свой срок Ni-Cd батареи на Li-ion аккумуляторы типоразмера 18650. На первый взгляд ничего сложного в этом нет. Удаляешь из корпуса старые Ni-Cd батареи и устанавливаешь новые Li-ion. Но оказалось не все так просто. Ниже описано, на что следует обратить внимание при модернизации аккумуляторного инструмента.

Для переделки потребуется:

Начну с литий ионных аккумуляторов 18650. Приобретались на AliExpress.

Номинальное напряжение элементов 18650 — 3,7 В. По заявлению продавца емкость 2600мАч, маркировка ICR18650 26F, габариты 18 на 65 мм.

Преимущества Li-ion батарей перед Ni-Cd — меньшие габариты и вес, при большей емкости, а так же отсутствие так называемого «эффекта памяти». Но у литий ионных батарей есть серьезные недостатки, а именно:

1. Отрицательные температуры резко снижают емкость, что не скажешь про никель кадмиевые батареи. Отсюда вывод – если инструмент часто используется при отрицательных температурах, то замена на Li-ion не решит проблему.

2. Разряд ниже 2,9 — 2,5В и перезаряд выше 4,2В может быть критичным, возможен полный выход из строя. Следовательно, нужна BMS плата для контроля заряда и разряда, если ее не установить, то новые элементы питания быстро выйдут из строя.

В интернете в основном описывают, как переделать 14 вольтовый шуруповерт – он идеально подходит для модернизации. При последовательном соединении четырех элементов 18650 и номинальном напряжении 3,7В. получаем 14,8В. – как раз, что надо, даже при полной зарядке плюс еще 2В это не страшно для электродвигателя. А как быть с 12В инструментом. Возможны два варианта, установить 3 или 4 элемента 18650, если три то вроде бы маловато, особенно при частичном разряде, а если четыре – многовато. Я выбрал четыре и на мой взгляд сделал правильный выбор.

А сейчас про BMS плату, она тоже с AliExpress.

Это так называемая плата контроля заряда, разряда батареи, конкретно в моем случае CF-4S30A-A. Как видно из маркировки рассчитана она для батареи из четырех «банок» 18650 и ток разряда до 30А. Еще в нее встроен так называемый «балансир», который контролирует заряд каждого элемента отдельно и исключает неравномерную зарядку. Для правильной работы платы аккумуляторы для сборки берутся одной емкости и желательно из одной партии.

Вообще в продаже есть великое множество BMS плат с разными характеристиками. На ток ниже 30А брать не советую – плата постоянно будет уходить в защиту и для восстановления работы на некоторые платы нужно кратковременно подать зарядный ток, а для этого нужно вынуть аккумулятор и подключить к зарядному устройству. На плате, которую мы рассматриваем, такого недостатка нет, просто отпускаешь курок шуруповерта и при отсутствии токов короткого замыкания плата включится сама.

Для зарядки переделанного аккумулятора прекрасно подошло родное универсальное зарядное устройство. В последние годы «Интерскол» стал комплектовать свой инструмент универсальными ЗУ.

На фото видно, до какого напряжения BMS плата заряжает мою батарею совместно со штатным зарядным устройством. Напряжение на аккумуляторе после зарядки 14,95В немного выше нужного для 12 вольтового шуруповерта, но это скорее даже лучше. Мой старый шуруповерт стал резвее и мощнее, а опасения что он перегорит, после четырех месяцев использования постепенно развеялись. Вот вроде бы и все основные нюансы, можно приступать к переделке.

Разбираем старую батарею.

Выпаиваем старые банки и оставляем клеммы вместе с термодатчиком. Если удалить и датчик, то при использовании штатного ЗУ оно не включится.

Переделка 12В шуруповерта с Ni-Cd на Li-ion аккумуляторы

Согласно схеме на фото, спаиваем 18650 элементы в одну батарею. Перемычки между «банками» должны быть выполнены толстым проводом минимум 2,5кв. мм, так как токи при работе шуруповерта большие, а при маленьком сечении резко упадет мощность инструмента. В сети пишут, что паять Li-ion аккумуляторы нельзя так как они боятся перегрева, и рекомендуют соединять при помощи точечной сварки. Паять можно только нужен паяльник по мощней не менее 60 ватт. Самое главное паять надо быстро, чтоб не перегреть сам элемент.

Переделка 12В шуруповерта с Ni-Cd на Li-ion аккумуляторы

Должно получиться примерно так, чтобы вошло в корпус аккумулятора.

Переделка 12В шуруповерта с Ni-Cd на Li-ion аккумуляторы

От платы до клеммы провода должны быть гибкие, как можно короче и сечение минимум 2,5 кв. мм.

Переделка 12В шуруповерта с Ni-Cd на Li-ion аккумуляторы

Всю схему аккуратно помещаем в корпус и фиксируем любым уплотнителем, для предотвращения повреждения деталей.

Переделка 12В шуруповерта с Ni-Cd на Li-ion аккумуляторы

Для фиксации клеммы просто поместил ее на место и расклинил деревянными клиньями. Осталось только собрать корпус.

Переделка 12В шуруповерта с Ni-Cd на Li-ion аккумуляторы

Вес стандартного Ni-Cd аккумулятора как видно 558 грамм.

Переделка 12В шуруповерта с Ni-Cd на Li-ion аккумуляторы

Вес переделанного аккумулятора 376 грамм, следовательно, инструмент стал легче на 182 грамма. В заключении хочу сказать, что данная переделка того стоит. Шуруповерт стал мощнее и заряда хватает намного дольше, чем с родным аккумулятором. Переделывайте, не пожалеете!

Переделка 12В шуруповерта с Ni-Cd на Li-ion аккумуляторы Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *