Параллельное и последовательное соединение силовых полупроводниковых приборов (СПП)
Максимальные токи и блокирующие напряжения выпускаемых СПП ограничены и часто однотипные СПП приходится соединять в группы для увеличения мощности разрабатываемого оборудования.
Основные типы соединений:
- Параллельное — используется при необходимости увеличения максимального тока;
- Последовательное — используется при необходимости увеличения максимального блокирующего напряжения;
- Смешанное — параллельное + последовательное.
Соединяя тиристоры или диоды параллельно, необходимо стремиться к равному распределению тока нагрузки по приборам. Нужно обеспечить идентичность условий работы СПП и равенство вольтамперных характеристик, учитывая технологический разброс параметров.
Для решения этой задачи необходимо следующее:
- Последовательно с каждым полупроводниковым прибором устанавливать индуктивные или омические делители тока;
- Осуществлять подбор полупроводниковых приборов по статическим потерям в рабочей точке (по значению U tm /U fm на рабочем токе). Следует заметить, что всегда существует определенный технологический разброс параметров СПП;
- При проектировании преобразователей, имеющих параллельное соединение полупроводниковых приборов, рекомендуется выбирать рабочие токи, находящиеся выше точки инверсии вольтамперной характеристики СПП. В этом случае выравнивание токов в параллельных ветвях будет происходить автоматически, так как в области ВАХ, лежащей выше точки инверсии, действует отрицательная обратная связь, то есть при увеличении температуры р-n перехода увеличивается его сопротивление и уменьшается прямой ток, что приводит к снижению температуры р-n перехода;
- Для минимизации влияния времени включения отдельных тиристоров и — как следствие — неравномерного распределения тока по ветвям в первоначальный момент времени, необходимо применять мощные импульсы управления с крутым фронтом, что приводит к уменьшению времени задержки включения тиристора и минимизации влияния этого эффекта на распределение тока по параллельным ветвям;
- В схемах, где применяются мощные высоковольтные тиристоры; тиристоры, выполненные на кристаллах больших диаметров (более 56 мм), а также при наличии больших индуктивностей в силовой части, которые ограничивают скорость изменения силового тока, необходимо дополнительно учитывать время распространения включенного состояния тиристора. Это связанно с тем, что мощные тиристоры в первоначальный момент времени включаются в ограниченной области вблизи управляющего электрода, после этого за ограниченное время происходит продольное распространение включенного состояния;
- Конструктивное расположение параллельных ветвей должно обеспечивать равенство сопротивлений токоведущих шин, включая предохранители;
- Для всех приборов, входящих в параллельное соединение, условия охлаждения должны быть одинаковы.
Соединяя тиристоры или диоды последовательно, необходимо стремиться к равному распределению блокирующего (прямого и(или) обратного) напряжения как в стационарном состоянии, так и в динамических режимах, а именно — при включении тиристоров и при восстановлении блокирующих свойств во время выключения тиристора или диода.
Причины неравномерного распределения блокирующих напряжений:
- Различия утечек в последовательно соединенных приборах вследствие естественного технологического разброса и (или) различных рабочих температур вследствие, например, различных условий охлаждения (к сведению: в среднем изменение температуры на 8°С приводит к изменению утечек в два раза). Перенапряжение возникает на приборах, имеющих меньшее значение тока утечки;
- Разброс времени включения отдельных тиристоров, соединенных последовательно в ветви, ведет к перераспределению напряжения между включившимися ранее и включающимися с запозданием тиристорами. Перенапряжение возникает на тиристорах, включающихся с опозданием;
- Разброс величин заряда обратного восстановления в последовательно соединенных приборах приводит к тому, что в момент восстановления такие приборы принимают обратное напряжение в различное время. Перенапряжение возникает на тиристорах, имеющих меньший заряд обратного восстановления.
Способы выравнивания распределения блокирующих напряжений:
- Для снижения влияния неравномерности токов утечки последовательно включенных СПП используют включение шунтирующих высокоомных резисторов параллельно каждому полупроводниковому прибору (диоду или тиристору). Чем выше требование к выравниванию напряжения в этом режиме, тем меньше должны быть значения шунтирующих резисторов;
- Для уменьшения неравномерности распределения блокирующих напряжений, которое возникает из-за разброса значений зарядов обратного восстановления СПП, применяются снабберные RC-цепи, включенные параллельно каждому полупроводниковому прибору. Чем больше значение снабберной емкости, включенной параллельно прибору, тем меньше неравномерности распределения блокирующих напряжений. Однако увеличение емкости — это не всегда рациональный способ, поэтому необходимо подбирать приборы для последовательного соединения по заряду обратного восстановления. Как правило, разброс зарядов принимают равным 5% или 10%.
- Для уменьшения разброса времени включения СПП применяют мощные импульсы управления с крутым фронтом, что приводит к уменьшению времени задержки включения тиристора и минимизации влияния этого эффекта на распределение напряжения. Наличие снабберных RC-цепей параллельно каждому прибору оказывает положительное воздействие, так как до момента включения к тиристорам прикладывалось некоторое прямое напряжение, до которого также были заряжены снабберные конденсаторы. Это напряжение в первый момент времени после включения тиристора прикладывается к нему и обеспечивает равномерность распределения напряжения.
Большой спектр мощных преобразователей содержат в себе СПП, включенные параллельно и (или) последовательно. При их проектировании, обслуживании и ремонте важно учитывать вышеназванные требования и особенности групповых включений приборов. Это позволит максимально использовать ресурс СПП, разрабатывать и изготавливать надежное и долговечное оборудование.
Основы электроники и электротехники — Лабораторная работа №3
Исследование сопротивлений резисторов при последовательном и параллельном соединениях.
Цель работы: Опытом проверить закономерности электрической цепи при последовательном и паралельном соединениях резисторов.
1.Пояснение к работе
Краткие теоретические сведения
Последовательным соединением сопротивлений называется такое соединение, при котором конец первого сопротивления соединяется с началом второго, конец второго — с началом третьего и т. д.
Общее сопротивление последовательно соединенных резисторов равно сумме их сопротивлений.
Rобщ.=R1+R2+R3
Rобщ=5ом+10ом+25ом=40ом
Величина тока в последовательной цепи
Следовательно во всех точках последовательной цепи величина тока одинакова.
Эти четыре амперметра покажут одинаковые величины тока. Поэтому при последовательном соединении для измерения тока достаточно включать один амперметр на любом участке цепи.
Распределение напряжения в последовательной цепи
Напряжение источника тока приложенное к внешнему участку цепи распределяется по участкам цепи прямо пропорционально сопротивлениям этих участков. Напряжение приложенное к каждому из этих резисторов определяется по формуле:
Так как ток в последовательной цепи везде одинаков значит действительно напряжение на ее участках зависит от сопротивления чем больше сопротивление тем большее напряжение приложено к данному участку.
Сумма напряжений на участках последовательной цепи равна напряжению источника тока
Параллельным соединением сопротивлений называется такое соединение, при котором к одному зажиму источника подключаются начала сопротивлений, а к другому зажиму — концы.
Общее сопротивление параллельно включенных сопротивлений определяется по формуле:
Общее сопротивление параллельно включенных сопротивлений всегда меньше наименьшего сопротивления, входящего в данное соединение.
На вышеуказанном рисунке мы можем сразу сказать что общее сопротивление будет меньше 10 ом.
Первый частный случай
Если параллельно включено только два резистора то их общее сопротивление можно определить по формуле:
Второй частный случай
Если параллельно включено любое количество резисторов одинаковых сопротивлений то их общее сопротивление можно определить если сопротивление одного резистора разделить на количество резисторов.
Распределение токов и напряжения в параллельных ветвях
Так как начала всех сопротивлений сведены в одну общую точку, а концы — в другую, то очевидно, что разность потенциалов на концах любого из параллельно включенных сопротивлений равна разности потенциалов между общими точками.
Итак, при параллельном соединении сопротивлений напряжения на них равны между собой.
Если разветвление подключено непосредственно к зажимам источника тока, то напряжение на каждом из сопротивлений равно напряжению на зажимах источника.
Второе свойство цепи с параллельным соединением заключается в том, что электрический ток распределяется по параллельным ветвям обратно пропорционально их сопротивлениям.
Это значит что, чем больше сопротивление, тем меньше по нему пойдет ток.
Рассматривая точку разветвления А, замечаем, что к ней притекает ток I, а токи I1, I2, I3 утекают из нее. Так как движущиеся электрические заряды не скапливаются в точке, то очевидно, что суммарный заряд, притекающий к точке разветвления, равен суммарному заряду утекающему от нее:
Следовательно, третье свойство параллельного соединения может сформулирована так:
Величина тока в не разветвленной части цепи равна сумме токов в параллельных ветвях.
2.Техническое задание
2.1.Собрать электрическую цепь последовательного соединения резисторов (рисунок 1)
Рисунок 1. Схема электрическая принципиальная.
2.2.Собрать электрическую цепь паралельного соединения резисторов (рисунок 2)
Рисунок 2. Схема электрическая принципиальная.
2.3.Снять показания приборов и записать их в таблицу
2.5. Построить графики
2.6.Ответить на контрольные вопросы
2.7. Сделать вывод
3.Работа в лаборатории
3.1. Исследование последовательного соединения резисторов
3.1.1 Собрать схему (Рисунок 3).
Рисунок 3. Схема исследования.
3.1.2 Установить на схеме величины R1=100 Ом + N, R2=100 Ом + 2N и R3=130 Ом + 4N,
где N — номер студента по журналу (мощность резисторов 1 Вт).
3.1.3. Включить источник и установить напряжение U=15 В, 24 В.
3.1.4. Измерить величину тока, протекающего в цепи и занести значение в таблицу 1.
3.1.5. Измерить напряжение на каждом резисторе и записать в таблицу 1.
3.1.6. Измерить сопротивление каждого резистора и записать в таблицу 1.
3.1.7. Отключить схему.
3.1.8. Рассчитать сопротивление резисторов по формулам:
Таблица 1 — Измеренные параметры
№измерения
|
Измерением |
Расчетом |
|||||||||||
U |
I |
U1 |
U2 |
U3 |
R1 |
R2 |
R3 |
RЭ |
R1 |
R2 |
R3 |
RЭ |
|
В |
А |
В |
В |
В |
Ом |
Ом |
Ом |
Ом |
Ом |
Ом |
Ом |
Ом |
|
1 |
15 |
|
|
|
|
|
|
|
|
|
|
|
|
2 |
24 |
|
|
|
|
|
|
|
|
|
|
|
3.2. Исследование параллельного соединения реисторов
3.2.1. Собрать схему (Рисунок 4).
Рисунок 4. Схема исследования.
3.2.2. Установить на схеме величины R1=70 Ом + N, R2=100 Ом + N и R3=150 Ом + N,
где N — номер студента по журналу (мощность резисторов более 1 Вт).
3.2.3. Включить источник и установить напряжение U=15 В, 24 В.
3.2.4. Измерить величину тока, протекающего во всей цепи и занести значение в таблицу 2.
3.2.5. Измерить величину тока, протекающего в каждом резисторе и записать в таблицу 2.
3.2.6. Расчитать проводимость каждого резистора и записать в таблицу 2 (установкой):
3.2.7. Рассчитать проводимость каждого резистора через ток и напряжение и записать в таблицу 2 (расчетом):
3.2.8. Отключить схему.
Таблица 2 — Измеренные параметры
№ измер. |
Измерением |
Установкой |
Расчетом |
||||||||||||
U |
I |
I1 |
I2 |
I3 |
g1 |
g2 |
g3 |
gэ |
Rэ |
g1 |
g2 |
g3 |
gэ |
Rэ |
|
А |
А |
А |
А |
А |
См |
См |
См |
См |
Ом |
См |
См |
См |
См |
Ом |
|
1 |
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. Содержание отчета
4.1. Название и цель работы
4.2. Схемы
4.3. Таблицы
4.4. Расчеты по формулам
4.5. Ответы на контрольные вопросы
4.6. Вывод
5.Контрольные вопросы
5.1. Какое соединение резисторов называют последовательным?
5.2. Как определить общее сопротивление резисторов при последовательном соединении?
5.3. Что называется проводимостью и в каких единицах она измеряется?
5.4. Чему равен общий ток цепи и напряжение на участках при последовательном соединении?
5.5. Как определяется мощность на участках цепи и всей цепи при последовательном соединении?
5.6. Какое соединение резисторов называют паралельным?
5.7. Как определить общее сопротивление резисторов при паралельным соединении?
5.8. Чему равен общий ток цепи и напряжение на участках при паралельным соединении?
5.9. Как определяется мощность на участках цепи и всей цепи при паралельным соединении?
Соединение элементов питания и батарей
Источники напряжения обычно называют источниками питания. Для увеличения тока или напряжения, а может и того и другого источники питания (элементы, батареи) могут соединяться вместе. Существует три типа соединения элементов питания:
1. Последовательное соединение элементов.
2. Параллельное соединение элементов.
3. Последовательно-параллельное (смешанное) соединение элементов.
Последовательное соединение элементов.
При последовательном соединении элементов питания выделяются две схемы: последовательно-дополняющая и последовательно-препятствующая.
В последовательно-дополняющей схеме положительный вывод первого элемента питания соединяется с отрицательным выводом второго элемента питания; положительный вывод второго элемента питания соединяется с отрицательным выводом третьего элемента питания и т.д. (рисунок 3.11.)
Рисунок 3.11.Последовательное соединение элементов питания.
При таком соединении источников питания через все элементы будет течь одинаковый ток:
Iобщ=I1=I2=I3
Индексы в обозначениях токов указывают на номера отдельных источников питания (элементов или батарей питания)
А полное напряжение при последовательном соединении равно сумме напряжений (ЭДС) отдельных элементов:
Еобщ = Е1 + Е2 + Е3.
При последовательно-препятствующем включении источников питания, они соединяются друг с другом одноименными выводами. Но на практике такая схема не применяется или применяется, но очень редко.
Параллельное соединение элементов.
При параллельном соединении элементов питания, их одноименные выводы соединяются вместе, то есть плюс к плюсу, минус к минусу (рис 3.12).
Рисунок 3.11.Параллельное соединение элементов питания.
В этом случае общий ток будет равен сумме токов каждого элемента:
Iобщ=I1+I2+I3
Общее напряжение при параллельном включении источников питания будет равно напряжению каждого отдельного источника.
Еобщ = Е1 = Е2 = Е3.
Последовательно-параллельное соединение элементов напряжения.
Источники питания включают по последовательно-параллельной схеме для увеличения, как тока, так и напряжения. При этом основываются на том, что параллельное включение увеличивает силу тока, а последовательное увеличивает общее напряжение. На рисунке 3.13 показаны примеры последовательно-параллельных схем включения элементов питания.
Рисунок 3.11.Последовательно-параллельное соединение элементов питания.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Параллельное и последовательное соединение конденсаторов
В предыдущих статьях были рассмотрены вопросы работы и характеристики конденсаторов. Сейчас Я расскажу о всех методах соединения конденсаторов для подключения в схему. Сразу скажу, что в жизни практически везде, за исключением редких случаев используется только параллельная схема подключения.
Следует знать, что в цепи переменного тока конденсатор выступает еще как емкостное сопротивление. При чем с увеличением величины емкости конденсатора- уменьшается сопротивление в цепи переменного тока.
Параллельное соединение конденсаторов
При параллельной схеме подключения все обкладки конденсаторов соединяются в две группы, причем один вывод с каждого конденсатора соединяется в одну группу с другими, а второй — в другую. Наглядный пример параллельного соединения и схема на картинке.
Все параллельно соединенные конденсаторы подключаются к одному источнику напряжения, поэтому существует на них две точки разности потенциалов или напряжения. На всех выводах конденсаторов будет абсолютно одинаковое напряжение.
При подключении параллельно все конденсаторы вместе, образуют принципиально одну емкость, величина которой будет равняться сумме всех емкостей подключенных в цепи конденсаторов.При параллельном подключении через каждый из конденсаторов потечет разный ток, который будет зависеть от величины емкости каждого из них. Чем выше емкость, тем больший ток потечет через неё.
Параллельное соединение очень часто встречается в жизни. С его помощью можно из группы конденсаторов собрать любую необходимую емкость. Например, для запуска 3 фазного электродвигателя в однофазной сети 220 Вольт в результате расчетов Вы получили что необходима рабочая емкость 125 мкФ. Такой емкости конденсаторов Вы не найдете в продаже. Для того, что бы получить необходимую емкость придется купить и соединить параллельно 3 конденсатора один на 100 мкФ, второй- на 20, и третий на 5 мкФ.
Соединение конденсаторов последовательно
При последовательном соединении конденсаторов каждая из обкладок соединяется только в одной точке с одной обкладкой другого конденсатора. Получается цепочка конденсаторов. Крайние два вывода подключаются к источнику тока, в результате чего происходит перераспределение между ними электрических зарядов. Заряды на всех промежуточных обкладках одинаковые величине с чередованием по знаку.
Через все соединенные конденсаторы последовательно протекает одинаковой величины ток, потому что у него нет другого пути прохождения.
Общая же емкость будет ограничиваться площадью обкладок самого маленького по величине, потому что как только зарядится полностью конденсатор с самой маленькой емкостью- вся цепочка перестанет пропускать ток и заряд остальных прервется. Высчитывается же емкость по этой формуле:Но при последовательном соединении увеличивается расстояние (или изоляция) между обкладками до величины равной сумме расстояний между обкладками всех последовательно подключенных конденсаторов. Например, если взять два конденсатора с рабочим напряжением 200 Вольт и соединить последовательно, то изоляция между их обкладками сможет выдержать 1000 Вольт при подключении в схему.
Из выше сказанного можно сделать вывод, что последовательно соединять необходимо:
- Для получения эквивалентного меньшего по емкости конденсатора.
- Если необходима емкость, работающая на более высоких напряжениях.
- Для создания емкостного делителя напряжения, который позволяет получить меньшей величины напряжение из более высокого.
Практически, для получения первого и второго достаточно просто купить один конденсатор с необходимой величиной емкости или рабочим напряжением. Поэтому данный метод соединения в жизни не встречается.
Смешанное соединение конденсаторов
Встречается смешанное соединение только на различных платах. Для него характерно наличие в одной цепи параллельного и последовательного соединения конденсаторов. При чем смешанное соединение может быть как последовательного, так параллельного характера.
В жизни подробные знания о смешанном соединении могут только пригодится радиолюбителям, поэтому не буду на этом подробно останавливаться.
Из следующей статьи Вы узнаете как правильно проверить и определить емкость конденсатора.