Posted on

Содержание

Как работает датчик движения?

Датчики движения обычно входят в комплекс современных средств защиты. Но могут использоваться и как индивидуальное средство, причем, не только защиты, но и автоматизации некоторых процессов, например, включение/отключение подключенных к ним устройств (свет, сигнализация, открытие-закрытие дверей и прочее). Существуют различные виды датчиков движения: инфракрасные, ультразвуковые, микроволновые, дуальные (то есть совмещающие в себе разные виды). Объединяет их одно – реагирование на передвижение в зоне их действия, хотя у каждого вида датчиков движения свой принцип работы.

Инфракрасные датчики движения реагируют на изменение температуры в зоне действия. То есть реагируют на тепловое излучение человека, животных, движущихся устройств, температура которых отличается от фоновой. Принцип работы такого датчика движения регистрация инфракрасных волн, то есть теплового излучения. А дальше дело техники: полученный от пироэлемента сигнал усиливается, преобразуется в цифровой, подается на реле, которое размыкает контакты и Тревога! Реагирование! Задержание нарушителя! Главное отрегулировать датчик так, чтобы он не реагировал на кошек и собак, если это не предусмотрено специально. Или же, при соответствующих настройках, свет включается и через определенное время выключается. Вообще, возможности применения таких датчиков весьма широки. При необходимости можно использовать датчики движения, выпускаемые серийно, либо, найдя необходимые материалы и инструкции по изготовлению сделать и установить самостоятельно.

Ультразвуковые датчики движения отличаются тем, что реагируют на прерывание сигнала между передатчиком и приемником движущимся телом. Микроволновые датчики движения регистрируют любое движение в зоне своего действия, то есть волны, испускаемые датчиком, отражаются от возникшего препятствия и возвращаются на датчик с изменившейся длиной, что приводит к срабатыванию сигнализации. Объединение возможностей таких датчиков позволяет создавать более качественные датчики движения, сведя к минимуму процент ложных срабатываний. В повседневной жизни датчики движения становятся более востребованными и применяются в разных сферах деятельности: от систем защиты и сигнализации до энергосбережения. Растет не только производство самих датчиков движения, но и расширяется ассортимент товаров с их использованием.

Источник: www.rutvet.ru

Принцип работы ультразвукового датчика

Природа кристаллов пьезоэлектрических элементов позволяет генерировать звук высокой частоты под воздействием электрического напряжения. Оказавшись в поле высокочастотных звуковых колебаний, пьезокристалл, напротив, генерирует электрическую энергию. Включив такие кристаллы в электрическую цепь, и определенным образом обрабатывая получаемые с них сигналы, мы можем видеть изображение на экране УЗИ-аппарата.

Меры предосторожности при работе с ультразвуковыми датчиками

Между кристаллической матрицей датчика и телом пациента располагается ряд согласующих материалов для лучшего проникновения и дополнительной фокусировки УЗ-луча. Это согласующие слои самого датчика, акустическая линза и согласующий акустический гель.

Необходимо помнить, что применять следует гель из рекомендуемого производителем списка, поскольку гели отличаются физическими параметрами. Использование «неправильного» геля будет приводить к перегреву пьезокристаллической матрицы, согласующих слоев и линзы, а также к повышенной нагрузке на электронные блоки формирования высокого напряжения и усиления принятого сигнала.

Таким образом, кажущаяся необоснованность и экономия от использования более дешевого геля приведет к поломке датчика и дорогостоящему ремонту самого аппарата, а в некоторых случаях даже электротравмам пациента или врача, так как на головку датчика подается высокое электрическое напряжение.

Если у Вас все же возникла проблема с датчиком, не спешите его списывать:

Несмотря на всю сложность, ремонт датчиков УЗИ возможен практически в любом случае.

Как работает ультразвуковой датчик в B-режиме

 

 

  1. Через ультразвуковой пьезоэлектрический датчик в ткани отправляется короткий импульс.

  2. Он распространяется и отражается от объектов, расположенных на разной глубине. Скорость распространения ультразвука в тканях известна, поэтому можно определить определить расстояние до объекта, который отразил данный эхо-сигнал.

  3. Амплитуда принятого сигнала кодируется на экране с помощью оттенков серого цвета. Глаз человека больше всего восприимчив именно к оттенкам серого. Таким образом происходит кодировка амплитуды принимаемого сигнала в яркость на мониторе УЗ-сканера.

При этом работа ультразвукового датчика для пользователя заключается в следующем:

твердые объекты выглядят более светлыми, почти белыми, пустоты наоборот  — черными.

Это происходит потому, что амплитуда отраженного от кости сигнала велика. Если же направить луч в полость (в пустоту),  УЗ-луч пройдет очень глубоко, сильно ослабнет и амплитуда принятого отраженного сигнала будет близка к нулю. Биологические ткани, представляющие наибольший интерес для врача, на дисплее аппарата отображаются в промежуточных градациях серого цвета.

Работа линейных, конвексных и секторных датчиков

В линейных и конвексных датчиках пьезокристаллы излучают группами поочередно, пока не отработают все кристаллы от начала пьезокристаллической матрицы до конца. Один кадр на дисплее обновится тогда, когда все группы поочерёдно отправят и примут ультразвуковой сигнал.

В секторных фазированных датчиках все кристаллы излучают почти одновременно. Специально вводятся небольшие электронные задержки сигнала на каждый кристалл для того, чтобы направлять сканирующий луч. Изображение на дисплее обновится тогда, когда луч просканирует весь сектор обзора.

 

Работа ультразвукового датчика в режимах допплера

Рассмотрим прам из видов доплера – режиме постоянного доплера. Суть метода заключается в применении эффекта Доплера.

Звук, отражаясь от подвижного объекта, меняет свою частоту. В зависимости от направления движения объекта и его скорости, Эта разница, или сдвиг частот, называется Допплеровским. Он будет изменяться с течением времени.

В данном режиме одна половина кристаллов датчика работает на излучение ультразвука, а вторая – на приём. Сравнивая принятый сигнал с отправленным, мы получим частотный допплеровский сдвиг ультразвука.

По значению сдвига можно высчитать скорость движения тканей или жидкостей в организме. Допплеровский сдвиг часто лежит в пределах слышимых человеком частот (20Гц-20кГц), поэтому его в качестве дополнительного источника информации выводят в форме звука, через динамик аппарата.

Существуют и другие режимы работы УЗ-сканера, в которых работа датчика отличается от изложенных выше, как программно, так и аппаратно.

Описать все нюансы работы такого сложного оборудования в сжатом виде крайне сложно, поэтому, если у Вас остались вопросы, наши специалисты готовы проконсультировать Вас по телефону, электронной почте или через онлайн-форму на нашем сайте.

 

 

 

Как работают датчики: датчик кислорода

Датчик кислорода, также называемый датчиком O2, выполняет функцию, указанную в его названии, а именно измеряет количество кислорода в отработавших газах. И хотя это может показаться несложной задачей, датчик O2 является одним из наиболее важных датчиков транспортного средства, который отвечает за соблюдение баланса между топливом и воздухом и сведение к минимуму объема вредных выбросов. Поэтому вам полезно будет узнать, для чего он предназначен, почему он выходит из строя, и, что важно, как его заменить в случае поломки.


Как работает датчик O2?

В большинстве автомобилей установлено по крайней мере два кислородных датчика, расположенных в выхлопной системе. Один из них обязательно устанавливается перед каталитическим нейтрализатором, а один или несколько — после каталитического нейтрализатора. Кислородный датчик, установленный перед каталитическим нейтрализатором, регулирует подачу топлива, а датчик, расположенный после него, измеряет эффективность работы каталитического нейтрализатора.

Датчики O2 обычно можно отнести к категории узкодиапазонных или широкодиапазонных.  Чувствительный элемент находится внутри датчика, заключенного в стальной корпус. Молекулы кислорода из выхлопных газов проходят через крошечные прорези или отверстия в стальной оболочке датчика, чтобы достичь чувствительного элемента, или ячейки Нернста. С другой стороны ячейки Нернста кислород из воздуха вне выхлопной системы перемещается вниз по датчику O2 и контактирует с ним. Разница в количестве кислорода между наружным воздухом выхлопными газми вызывает поток ионов кислорода и создает напряжение.

Если смесь выхлопных газов слишком богата и в выхлопе слишком мало кислорода, в электронный блок управления (ЭБУ) двигателя подается сигнал на уменьшение количества топлива, поступающего в цилиндр. Если смесь выхлопных газов слишком бедна, то посылается сигнал на увеличение количества топлива, подающегося в двигатель. Если топлива слишком много, в выхлопных газах присутствуют углеводороды и угарный газ. Если топлива слишком мало — загрязняющие атмосферу оксиды азота. Сигнал датчика помогает поддерживать оптимальный состав смеси. Широкодиапазонные датчики O2 имеют дополнительную насосную ячейку O2 для регулирования количества кислорода, подающегося к чувствительному элементу.  Это позволяет производить измерения в гораздо более широком диапазоне соотношения компонентов топливной смеси.


Почему возникают неисправности датчиков кислорода?

Поскольку датчик кислорода находится в потоке выхлопных газов, он может загрязниться. Обычно причиной загрязнения является чрезмерно богатая топливная смесь или выброс масла в более старых двигателях, а также просачивание в камеру сгорания охлаждающей жидкости через прокладки. Он также подвергается воздействию чрезвычайно высоких температур и, как и любой другой компонент, может со временем изнашиваться. Все это может повлиять на характеристики отклика кислородного датчика, что способно привести к увеличению времени отклика или изменению кривой напряжения датчика, а в долгосрочной перспективе — к снижению эффективности датчика. 


Каковы признаки неисправности датчика кислорода?

При поломке датчика кислорода компьютер больше не может определять соотношение топливно-воздушной смеси, поэтому он вынужден «гадать». В связи с этим существует несколько контрольных признаков, на которые стоит обратить внимание:

  • Индикатор проверки двигателя: хотя он может загореться по многим причинам, обычно это связано с выхлопными газами.
  • Большой расход топлива: неисправный кислородный датчик нарушит правильное смешивание воздуха и топлива, что приведет к увеличению расхода топлива.
  • Неровная работа двигателя на холостом ходу или пропуски зажигания: поскольку выходной сигнал датчика кислорода помогает контролировать синхронизацию двигателя, интервалы сгорания и топливно-воздушную смесь, неисправность датчика может стать причиной неровной работы двигателя.
  • Вялый разгон.


Устранение неисправностей датчика O2


Чтобы определить причину неправильной работы датчика O2, выполните следующие действия:

  • Считайте коды неисправностей с помощью диагностического прибора. Обратите внимание, что при обнаружении проблем с датчиками O2 прибор часто выдает несколько кодов неисправностей.
  • Лямбда-зонды имеют внутренний нагреватель, поэтому следует проверить сопротивление нагревателя — оно обычно бывает довольно низким.
  • Проверьте подачу питания на нагреватель — зачастую это провода одного цвета.
  • Проверьте электрический разъем на наличие повреждений или грязи. 
  • Проверьте выпускной коллектор и топливные форсунки на наличие утечек, а также состояние элементов системы — это может повлиять на правильность работы датчика.
  • Проверьте правильность показаний датчика O2, выполнив замер концентрации кислорода с помощью четырех- или пятикомпонентного газоанализатора.
  • Используйте осциллограф для проверки сигнала на холостом ходу и при 2500 об/мин.
  • Если доступ к проводке датчика затруднен, используйте данные в реальном времени, чтобы проверить наличие сигнала.
  • Проверьте состояние защитной трубки чувствительного элемента датчика на наличие признаков повреждения и загрязнения.


Коды распространенных неисправностей


Ниже приведены коды самых распространенных неисправностей и причины их возникновения:

  • P0135: датчик кислорода перед каталитическим нейтрализатором 1, отопительный контур / разомкнут
  • P0175: богатая топливная смесь (ряд 2)
  • P0713: неправильно сбалансирован состав смеси (ряд 2)
  • P0171: бедная топливная смесь (ряд 1)
  • P0162: неисправность цепи датчика O2 (ряд 2, датчик 3)

Как произвести замену датчика кислорода


Советы по замене кислородных датчиков
  • Прежде чем заменить датчик, вам необходимо выявить причину неисправности.  Подключите диагностический прибор, например Delphi DS, выберите нужный автомобиль и считайте код(-ы) неисправности(-ей).  Подтвердите код неисправности, выбрав действительные данные и сравнив значение с датчика, в котором вы предполагаете неисправность, со значением заведомо рабочего датчика. При необходимости обратитесь к данным производителя автомобиля, чтобы найти правильное значение для сравнения.Чтобы убедиться в том, что проблема обусловлена неисправным датчиком, а не проводкой, могут потребоваться другие инструменты или оборудование. 
  • Поскольку во многих автомобилях новых моделей имеется несколько датчиков кислорода, убедитесь, что вы правильно определили неисправный датчик, чтобы по ошибке не заменить исправный.  Производители транспортных средств несколько по-разному обозначают положение датчиков «ряд 1» и «ряд 2», «перед/зад» и «до/после», поэтому следует убедиться в том, что вы нашли нужный (неисправный) датчик. Лучший способ сделать это — с помощью диагностического инструмента посмотреть данные в реальном времени.
  • После этого отсоедините провод от датчика.
  • С помощью гаечного ключа или специального торцевого ключа для датчиков кислорода выкрутите датчик из его посадочного места.  Затем утилизируйте старый датчик и замените его новым.
  • В большинстве случаев резьбовое соединение датчика имеет специальное токопроводящее покрытие от прикипания, поэтому достаточно просто установить новый датчик на место старого.
  • Чтобы предотвратить схватывание датчика в резьбе, все датчики Delphi поставляются с высокотемпературным противозадирным составом, который либо наносится на заводе-изготовителе, либо прилагается в комплекте.  При необходимости нанесите состав на новый датчик перед установкой. Не наносите чрезмерное количество противозадирного средства на резьбу, так как это может привести к загрязнению чувствительного элемента.
  • Затяните датчик рекомендованным моментом.
  • После установки датчика подключите электронный разъем.
  • Теперь снова подключите диагностический прибор и удалите все сопутствующие коды неисправностей.
  • Наконец, включите зажигание и убедитесь, что индикатор проверки двигателя погас, а затем проведите ходовые испытания.

Как работает датчик уровня топлива

Датчик уровня топлива — одно из средств мониторинга транспорта и контроля топлива, и, как понятно из названия, помогает определить количество оставшихся в баке горюче-смазочных материалов. Он располагается непосредственно в баке с топливом, а данные о его наполнении до владельца автомобиля «поставляются» через указатель уровня топлива, расположенный на приборной панели автомобиля.

Принцип работы датчика уровня топлива

Любой владелец автомобиля хочет быть в курсе расхода топлива, ведь это — один из факторов, делающих наличие автомобиля «недешевым удовольствием». Самым простым и знакомым является аналоговый датчик контроля топлива. Но прогресс не стоит на месте и на рынке уже давно появились намного более продвинутые частотные и цифровые датчики. И тем не менее, частотные датчики уровня топлива пока еще захватили очень скромную часть рынка, тогда как аналоговые и цифровые ведут борьбу почти что на равных — но цифровые начинают побеждать.

Основной принцип работы любого датчика довольно прост — есть измеряющее устройство, находящееся непосредственно в топливном баке и есть преобразователь полученного сигнала в «более понятный», который и выводится на указатель контроля уровня топлива на приборной панели. Более продвинутые датчики способны передавать также данные о температуре или ускорении.

Разновидности датчиков уровня топлива

По выходному сигналу датчики делятся на:

  • частотный;
  • аналоговый;
  • цифровой датчик уровня топлива.

По методу измерения:

  • поплавковый;
  • утразвуковой датчик уровня топлива;
  • емкостный датчик уровня топлива.

По виду крепления:

  • устанавливаемый внутри бензобака;
  • прикрепляемый к автотрекеру.

Утразвуковой датчик уровня топлива состоит из излучателя, выступающего в роли измерителя и блока, обрабатывающего сигнал. Сам излучатель устанавливается на дно топливного бака. Отличается высочайшей точностью и не требует серьезных физических вмешательств в конструкцию бака. Но он весьма дорогостоящий, чувствителен к грязи и осадкам на дне бака, что может очень сильно саботировать работу прибора.

Цифровые датчики уровня топлива оснащены дополнительной электронной платой, с помощью которой регистрируется расход топлива и через цифровой протокол сигнал передается на указатель уровня топлива. Отличается малым уровнем погрешности, быстротой окупаемости и удобством в виде наличия независимого источника питания. При корректном использовании у цифровых датчиков фактически нет недостатков.

Частотные датчики уровня топлива кодируют частоты импульсов. Их минусом является то, что они передают информацию с опозданием в связи с медленной ее обработкой. Его заслуженно можно величать «переходной ступенью» между аналоговым и цифровым датчиками.

Чтобы обеспечить максимальный контроль топлива на автотранспорт стоит установить высокочувствительный прибор с максимально низкой погрешностью. Но если вам достаточно и информации «на глаз», то смело можно брать самый простой аналоговый датчик и жить спокойно и счастливо.

Как работает датчик света на автомобиле (датчик освещенности)

Автоматическое включение света является одной из систем активной безопасности автомобиля. Подобная функция встречается не только в авто представительского класса, но и на бюджетных моделях. Рассмотрим, как работает датчик света фар.

Принцип работы

Работа датчика света основана на способности некоторых элементов изменять свое сопротивление при воздействии света. Светочувствительные элементы, используемые в качестве датчиков освещения, можно разделить на 2 вида:

  • фотодиоды. При попадании световых лучей на чувствительную область на выводах фотодиода изменяется сопротивление, что позволяет определять уровень освещенности;
  • фототранзистор – оптоэлектронный полупроводник, предназначение которого не отличается от обычного транзистора. Напомним, что транзистор, как и реле, используется в качестве электронного ключа со слаботочным управлением силовыми выводами. В транзисторе ток между коллектором и эмиттером протекает лишь при подаче тока на вывод базы. В фототранзисторе вывод базы доступен световому излучению. Попадание лучей на чувствительный элемент генерирует ток на выводе базы, что позволяет использовать фототранзистор в качестве исполнительного устройства для автоматического включения потребителей.

Особенности применение в автомобиле

Датчик света в автомобиле используется не только для удобства водителя, но и для повышения уровня безопасности дорожного движения. В дневное время суток водителю больше нет необходимости отвлекаться на включение фар при въезде в туннели либо затемненные участки дороги. Фоточувствительный транзистор управляет освещением в автоматическом режиме. При этом функция ручного включения и выключения сохраняется.

Если в дневное время с работой датчика все понятно, то как быть ночью при движении встречных авто и проезде фонарей дорожного освещения? Ведь датчик, среагировав на появление света, не должен выключить фары автомобиля. Именно поэтому узкого диапазона реакции на свет недостаточно. Вектор чувствительности к световым лучам расположен в двух направлениях: фронтальном и вертикальном. Это позволяет точно оценивать уровень освещения. В некоторых автомобилях чувствительный элемент направлен в салон, что также позволяет нивелировать влияние переменных факторов.

Датчик освещения в автомобиле часто совмещен с датчиком дождя и располагается вверху лобового стекла. Также может быть установлен перед ветровым стеклом по центру торпеду.

Дополнительные функции

Даже в простейшем датчике света можно настроить чувствительность с помощью подстроечного резистора. Водитель на свое усмотрение может настроить уровень чувствительности, при котором автоматически будут включаться фары на границе дневного и сумеречного времени суток.

При этом использование умного датчика света позволяет реализовать не только автоматическое включение/выключение ближнего света, но и адаптацию осветительных приборов под изменяющиеся условия. Ярким примером таких возможностей является управление дальним светом. Для предотвращения ослепления водителей, при регистрации свечения фар встречного авто датчик автоматически выключит дальний свет. В некоторых типах систем можно настроить включение габаритных огней и ближнего света фар в зависимости от степени освещенности. Габариты будут автоматически включаться даже в дневное время, но в пасмурную погоду.

Недостатки

Причислить минусы автоматизированного управления светом фар к недостаткам самой системы было бы неправильно. Все они связаны с особенностью работы человеческого сознания. После привыкания к работе датчика света водители, пересаживаясь на автомобили без электронного помощника, могут забыть вовремя включить фары. Опасность в таком случае не столько в получении штрафа, сколько в повышении риска возникновения ДТП. Подобная ситуация может случиться, если вовремя не заметить поломку датчика. Проверить работоспособность светочувствительного элемента можно даже в дневное время. Для этого достаточно перевести включатель света в положение Auto, а затем накрыть место датчика ветошью, сымитировав тем самым наступление сумерек.

Как работает датчик температуры?

Как работает датчик температуры?

Датчик температуры – довольно маленький, но очень важный. В первую очередь на его показатели водители обращаются внимание зимой. Как работают датчики температуры двигателя, где они находятся и можно ли их чинить – это нужно знать каждому автовладельцу.

Как работает датчик температуры двигателя?

Как и во многих подобных устройствах, принцип работы основан на свойствах некоторых материалов менять свое сопротивление при нагревании. Поэтому датчики температуры охлаждающей жидкости представляют собой корпус из цветного металла, легко проводящего тепло, и термистора, который плотно прижат к внешней оболочке. Сигнал передается по проводам либо на термометр на передней панели, либо напрямую в блок управления.

Датчики температуры двигателя погружаются в антифриз. Когда охлаждающая жидкость нагревается, то нагревается и датчик. При этом повышается и сопротивление термистора. Блок управления посылает на термистор сигнал, измеряет напряжение вернувшегося сигнала. Результат измерения сравнивается с эталонной таблицей в памяти устройства, и на экран выводится температура двигателя.

Виды датчиков, контролирующих температуру охлаждающей жидкости

Встречаются датчики температуры двигателя в двух исполнениях:

  1. Цифровом.
  2. Механическом.

Цифровые – современные устройства, работающие в тандеме с электронным блоком управления. У них нет отдельного табло для вывода результатов – их регистрирует и обрабатывает сам блок. Поэтому такие датчики температуры представляют собой капсулу из металла и провода.

Механические используют в старых моделях авто. Показания у них выводятся на обычный термометр.

Расположение термодатчиков

Датчики температуры двигателя размещаются как можно ближе к цилиндрам. Чаще всего они либо входят в комплект автомобильного термостата, либо устанавливаются в выпускном коллекторе.

Диагностика датчиков температуры автомобиля

Любое устройство имеет свойство ломаться. Датчики температуры охлаждающей жидкости не исключение. Периодически их нужно проверять и менять.

Возможные неисправности

Чаще всего датчики температуры могут ломаться из-за:

  • физических повреждений – сорвалась резьба, треснул корпус, сгорел термистор;
  • проблем с электрической частью – короткое замыкание, обрыв проводов;
  • нехватки антифриза.

Проблемы с датчиком можно определить по работе двигателя и неправильным показаниям. Если есть сомнения в работе – его нужно снять и протестировать. Для этого датчик погружают в антифриз, нагревают и в процессе замеряют сопротивление. Если результаты опыта отличаются от эталона – датчик неисправен.

Если датчик температуры охлаждающей жидкости неисправен. Последствия

Проблемы с устройством обязательно скажутся на двигателе. Если в старых моделях этим можно было пренебречь – ну не работает термометр, и ладно, то в новых так не получится. Блок управления, опираясь на неправильные данные датчика, будет плохо выполнять свою работу. В результате двигатель может сбоить, не запускаться, топливо будет сгорать не полностью. Итоги могут быть печальны – износ деталей, нагар в цилиндрах, ремонт.

Датчики температуры двигателя – маленькие детали одного большого устройства. Но без них пришлось бы тяжело. Недаром они используются уже очень давно. За исправностью работы этих устройств лучше следить внимательно, периодически их тестировать и вовремя менять.

что это такое и как работает, сравнение с микроволновым

На чтение 8 мин Просмотров 518 Опубликовано Обновлено

В основе охранной системы лежат разного рода фиксирующие устройства: измерители звука, регистраторы движения. Инфракрасный датчик – самый популярный прибор, предназначенный для фиксации перемещающихся тепловых объектов. Они просты в обслуживании, надежны и довольно чувствительны.

Принцип работы устройства

ИК датчики движения обычно используют в системах освещения

Любой объект, температура которого не ниже температуры воздуха, излучает тепло. Задача инфракрасного датчика – выделить его на общем тепловом фоне и при перемещении в заданной зоне подать сигнал.

Человек – тепловой объект достаточно «горячий» по сравнению со стенами квартиры или дома, землей или деревьями. Это и позволяет сенсору выделить его на общем фоне. Это же приводит к сбоям в работе сигнализации, если тепловой фон в здании сильно повышен.

Когда тепловой объект подходящего размера и температуры пересекает обслуживаемый сектор, измеритель регистрирует движение. Затем датчик подает сигнал на блок управления. В зависимости от того, для чего предназначен рабочий прибор с датчиком, управляющий модуль включает свет, активирует охранную сигнализацию и прочее.

Зона работы регистратора ограничена. Радиус обнаружения должен дотягиваться до всех углов помещения либо до конца зоны в саду. Если это не так, монтируют 2 или больше измерителей. Если устройство подает сигнал на блок включения света, радиус может быть меньше.

Устройство и конструкция инфракрасного датчика

Устройство датчика движения

Конструкция большинства устройств от разных производителей уникальна. Однако общая схема обязательно включает несколько элементов.

Оптическая система

Чаще всего это линза Френеля. Она представляет собой совокупность призматических фасеток – микролинз, закрепленных на выпуклую пластинку – цилиндр. Каждая линза фиксирует ИК-излучение на своем участке и передает данные на пирочувствительный элемент. Таким образом создается определенная конфигурация теплового объекта. Если последний не перемещается, она не изменяется. Но если объект движется, тот же ИК-поток при перемещении попадает уже на следующую микролинзу, и конфигурация изменяется. То есть, на пироприемник свет то падает, то нет. Это и есть условие срабатывания датчика: устройство реагирует на перемещение человека в поле действия.

Чем больше сегментов в линзе и чем выше их чувствительность, тем точнее работает ИК-датчик.

Если человек в зоне работы датчика перемещается медленно, устройство может не сработать, так как рассматривает колебания ИК-потока как случайные изменения фона.

Пирочувствительные элементы

Сигнал с линзы идет на пироэлемент – преобразователь на полупроводниках. Он включает 2 сенсора, каждый из них получает сигнал от своей линзы. Если поток на обоих элементах одинаков – сенсор бездействует, если сигнал разный – срабатывает.

В современных моделях используют счетверенные сенсоры, обслуживающие 4 линзы. Они точнее отфильтровывают случайные световые помехи и исключают ложные срабатывания.

Обрабатывающий модуль

Блок обработки воспринимает информацию со всех пироэлементов и анализирует. Его задача – отделить данные о перемещающемся тепловом объекте от помех: движения воздуха, солнечных лучей, конвекции, возникающей при работе кондиционера или обогревателя, вибрации. Датчик должен срабатывать только на появление человека, а не на животных, что требует дополнительной настройки.

Обрабатывающий модуль оценивает форму и длительность сигнала, его амплитуду. Обычные помехи вызывают несимметричные двухполярные импульсы, нарушитель – симметричные. Если характер сигнала совпадает с пороговым значением, датчик срабатывает и подает импульс на управляющую панель. Последний обрабатывается аналоговыми или цифровыми устройствами и активирует какую-либо программу: включить свет, увеличить интенсивность, включить сирену.

В современных моделях датчик дополнительно измеряет длительность сигнала, количество превышений порога. Это позволяет снизить число ложных срабатываний и зафиксировать объект при медленной скорости движения.

Технические характеристики и особенности

Правильно выбрать ИК-датчик помогут его технические характеристики. Данные представлены в паспорте прибора:

  • Сетевое напряжение – обычное 230 В. Любая из моделей работает от обычной сети.
  • Потребляемая мощность – в пределах 0,5 кВт. Это позволяет оснастить даже большой дом достаточным количеством датчиков.
  • Диапазон обнаружения – угол обзора прибора. Измеряется в градусах. У настенных устройств он составляет диапазон от 120 до 280 градусов, у потолочного – 360.
  • Дальность действия – измеряется в метрах. Это расстояние, на котором датчик фиксирует движение. Показатель оценивают по 3 параметрам. Перпендикулярное – самая большая зона, определяется при движении объекта по касательной к сектору. Фронтальная измеряется при перемещении прямо на датчик, дальность присутствия находят, когда человек оказывается под датчиком.
  • Степень защиты – IP. Первая цифра обозначит защиту от пыли, вторая – от воды. Минимальный показатель 20. Прибор защищен от касания пальцами, но не защищен от воды. Самый высокий показатель – 65, такой датчик монтируют во влажных помещениях.
  • Защита от подкрадывания – стандартная слепая зона датчика – пространство под ним. В современных моделях система исключает такую возможность.
  • Температура воздуха – от -25 до +50°С. При более высокой температуре возможны сбои.
  • Коммутационная способность – указывает на число подключаемых осветительных приборов – до 40 до 3000 Вт.
  • Настройки – вручную в зависимости от места монтажа настраиваются показатели чувствительности, освещенности и времени. Для разных зон рекомендуются разные значения: для проходной время отключения составляет 5 минут, для рабочей зоны – 15. Чувствительность тоже определяется в соответствии с местом установки.

Есть и другие менее значимые параметры – материал корпуса, размеры и прочее.

Сравнение с микроволновым датчиком

Принцип работы микроволнового датчика

В качестве сенсора движения используют также микроволновый датчик. Он работает по радиолокационному принципу: прибор излучает сигнал, тот отражается и улавливается чувствительным элементом датчика. Если отраженный сигнал выше порогового, включается световое или звуковое устройство.

Отличия микроволнового датчика:

  • работает в диапазоне сверхвысоких частот, что гарантирует очень высокую чувствительность;
  • обнаруживает объект через диэлектрические препятствия: стекло, тонкую стену, деревянную дверь;
  • независим от температуры среды или степени освещенности рабочего участка;
  • улавливает медленное и незначительное перемещение.

Есть и недостатки:

  • высокая цена — приборы устанавливают на важных хозяйственных объектах;
  • работа устройства влияет на самочувствие людей и животных.

Для слежения за обычным частным домом ИК-датчиков вполне достаточно.

Схема подключения

Датчики инфракрасного излучения подключается просто – нужно организовать лишь включение и выключение цепи. Подсоединение устройства к подсветке или контуру безопасности происходит по одинаковому принципу.

Схема подключения есть в инструкции к любому прибору:

  • Ток приходит на ИК-датчик от сети по нулевому и фазному проводу. Чтобы подключить устройство к электролампочке, фазный провод подсоединяют к одному из выводов осветительного прибора. Второй вывод крепят к нулевому кабелю.
  • Кабели от устройств подключают к распределительному щитку: 2 провода от светильника, 2 от сети питания и 3 от ИК-регистратора. Фазу питающего провода соединяют с фазным кабелем датчика, а нулевой провод от питания и нулевой кабель от датчика – к нулевому от светильника.
  • Фазный кабель от ИК-датчика соединяют с проводом от светильника. Все кабели окрашены в соответствующие цвета, что облегчает соединение.

Если некоторое время освещение должно поддерживаться независимо от движения человека, в схему включают также выключатель параллельно ИК-устройству.

Сфера применения инфракрасного датчика

Сфера применения

Регистраторы движения используют для организации систем освещения и охраны. Монтаж допускается как внутри постройки, так и снаружи:

  • в офисных, публичных и частных зданиях;
  • на лестничных клетках многоквартирных домов и в подъездах;
  • в помещениях любого типа;
  • на складах;
  • на любой охраняемой территории с ограниченной площадью.

Приборы, предназначенные для работы в тяжелых погодных условиях, оснащаются дополнительными защитными устройствами.

Особенности и критерии выбора

Параметры, по которым выбирают датчик, определяются его техническими характеристиками. Важно оценить, какие именно показатели нужны для устройства, работающего в доме, вне дома или на открытой территории:

  • Для обширных помещений или двора подбирают устройства с большой зоной обнаружения. В небольшую комнату или на лестничную площадку покупают простые модели с дальностью работы 10, 6 и 4 м.
  • Для жилых комнат годятся варианты с невысокой защитой от влаги. Для улицы или влажных помещений (бассейнов, лечебниц) нужны изделия с высоким IP.
  • Если устройство будут монтировать на стену, лучше купить модель с защитой от подкрадывания. Иначе, двигаясь вдоль стены, злоумышленник сможет проникнуть в дом.
  • Уровень чувствительности – определяет, насколько медленные и незначительные движения может уловить датчик. Для защиты квартиры от воров или для включения освещения в комнате, когда в нее заходят, достаточно «грубых» приборов. На склады, где хранится дорогостоящая или опасная продукция, покупают чувствительные датчики.

Оценивают стоимость приборов, особенно если для системы безопасности их требуется несколько.

Достоинства и недостатки инфракрасного датчика движения

ДД экономит электричество, так как свет включается только в присутствии людей

Популярность ИК-моделей обусловлена их преимуществами:

  • устройство работает как внутри здания, так и снаружи;
  • угол наблюдения и дальность можно довольно точно регулировать;
  • ИК-датчик, особенно пассивного типа, безопасен для здоровья, работа системы охраны не пугает домашних животных;
  • низкая стоимость;
  • обширный ассортимент: выпускаются приборы в напольном и настенном исполнении, аналоговые, цифровые, и прочее.

Главные недостатки:

  • при попадании прямых солнечных лучей чувствительность падает – при выборе места установки это надо учитывать;
  • при близком размещении кондиционера или обогревателя возникают существенные помехи;
  • стекло блокирует прохождение сигнала, так появляются слепые зоны, которыми может воспользоваться злоумышленник;
  • синдром паутинки – опутанный паутиной датчик срабатывает постоянно.

Единственный датчик движения не гарантирует безопасность помещения. Однако в качестве элемента системы защиты ИК-устройства незаменимы. Для загородного дома или квартиры такие устройства предпочтительнее.

Электричество и датчики — Science Learning Hub

Все материалы состоят из крошечных частиц, называемых атомами. Атомы состоят из еще более мелких частиц, называемых протонами, нейтронами и электронами. Протоны в атоме имеют положительный заряд, а электроны — отрицательный. Эти заряды уравновешивают друг друга, давая атому общий нейтральный заряд.

Электрические токи

Электричество может проявляться как поток электронов или зарядов. Поток электронов или зарядов известен как электрический ток.

На всем своем пути электрическая цепь будет иметь неплотно удерживаемые электроны. Когда в цепи подается электрическая энергия, создается электрическое поле, заставляющее эти электроны в цепи течь одновременно, как вода, текущая по трубе или шлангу.

Электрические схемы

Искусственные датчики основаны на электрических схемах. Электрические цепи состоят из определенных электрических компонентов, источника питания и соединительных проводов, и они могут переключать или изменять электрический ток.Поток электрических зарядов в цепи контролируется электропроводностью используемого материала, компонентов и конструкции цепи. Цепь может быть спроектирована так, чтобы позволить разному количеству электрических зарядов течь в разных частях цепи, поэтому части цепи могут иметь разные, но взаимодействующие задачи.

Электроника — это использование небольших компонентов, таких как полупроводниковые устройства, в электрических цепях для управления потоком электрических зарядов или выполнения какой-либо функции.Это делается путем увеличения или уменьшения тока или путем полной остановки потока. В большинстве электрических устройств используется электроника — от простого выключателя, который включает свет, когда становится темно, до сложной схемы, выполняющей множество функций, например, в стиральных машинах или роботах.

Проводимость

Когда электрические заряды проходят через что-то, мы называем это электрической проводимостью. Вещество, через которое протекают электрические заряды, называется проводником.

Различные материалы имеют разную электропроводность.Это показатель того, насколько легко электрический ток проходит через материал. Обратной стороной проводимости является удельное сопротивление — насколько трудно электрическому заряду проходить через материал.

Некоторые материалы, такие как металлы, имеют слабо удерживаемые электроны в своей атомной структуре, что позволяет легко перемещаться электрическим зарядам и, следовательно, очень полезно в качестве проводов, соединяющих различные компоненты в цепи. Металлическая медь является примером хорошего проводника и часто используется в качестве соединительных проводов.

Вещества, не пропускающие электрические заряды, называются изоляторами. Например, резина, пластик и воздух являются плохими проводниками и поэтому могут использоваться в качестве изоляторов, блокирующих поток электрических зарядов.

Другие материалы с проводящими свойствами, которые находятся между хорошими проводниками и изоляторами, например кремний, называются полупроводниками. Их электропроводность может изменяться в зависимости от типа атомов, используемых для легирования их примесями. Полупроводниковые компоненты, такие как диоды и транзисторы, могут изменять свою способность проводить заряды в зависимости от определенных условий, таких как напряжение.Это делает полупроводники полезными в качестве датчиков и переключателей, которые реагируют на изменения физических условий.

Например, тепловой датчик, называемый термистором, изменяет свою способность, пропуская через него электрические заряды в зависимости от температуры. Поместив термистор в электрическую цепь, можно включить или выключить ток в другой части цепи, например, выключить нагреватель, если воздух станет слишком горячим. Подобно тому, как датчики на коже человека посылают импульсы в мозг, где информация анализируется, и мы чувствуем тепло или холод, в машинах электроника используется для анализа физических условий, воспринимаемых посредством изменения электрического тока.

Как работают датчики?

Датчики реагируют на изменение физических условий изменением своих электрических свойств. Таким образом, большинство искусственных датчиков полагаются на электронные системы для сбора, анализа и передачи информации об окружающей среде. Эти электронные системы работают по тем же принципам, что и электрические цепи, поэтому очень важна способность контролировать поток электроэнергии.

Проще говоря, датчик преобразует такие стимулы, как тепло, свет, звук и движение, в электрические сигналы.Эти сигналы передаются через интерфейс, который преобразует их в двоичный код и передает его на компьютер для обработки.

Многие датчики действуют как выключатели, контролируя поток электрических зарядов через цепь. Переключатели являются важной частью электроники, поскольку они изменяют состояние цепи. Компоненты датчиков, такие как интегральные схемы (микросхемы), транзисторы и диоды, все содержат полупроводниковый материал и включены в схемы датчиков, так что они действуют как переключатели.Например, транзистор работает, используя небольшой электрический ток в одной части схемы, чтобы включить большой электрический ток в другой части схемы.

Активные и пассивные сенсоры

Большинство сенсоров используют излучение, такое как свет или лазер, инфракрасные радиоволны или другие волны, такие как ультразвуковые волны, для обнаружения объектов и изменений в их среде. Они могут сделать это, имея внутри источник энергии, который позволяет им излучать излучение в направлении их целевого объекта.Это излучение отражается обратно объектом и обнаруживается датчиком — это называется активным датчиком, например, при использовании радара.

Пассивные датчики не излучают собственное излучение или волны — они обнаруживают излучение, которое испускается их целевыми объектами, например тепло или тепловое инфракрасное излучение, или они обнаруживают излучение от какого-либо внешнего источника, такого как Солнце, которое отражается от объекты. Примером может служить термистор для электронного измерения температуры.

Ценность использования датчиков заключается в том, что они не вмешиваются и способны обнаруживать на расстоянии.Как активные, так и пассивные датчики могут быть установлены на спутниках, вращающихся вокруг Земли, для сбора информации о нашей окружающей среде. Излучение, волны или другие физические явления, обнаруживаемые датчиками, преобразуются в электрические сигналы и обрабатываются компьютерами.

MARVIN робот оснащен активными датчиками, такими как инфракрасные датчики, ультразвуковые датчики и лазерные датчики. Датчик счетчика, который определяет расстояние, которое проходит MARVIN, является пассивным датчиком.

Природа науки

Научные идеи могут быть изменены.Представления об электропроводности изменились, что привело к развитию электроники.

Что такое датчик? Различные типы датчиков, приложения

Мы живем в мире датчиков. Вы можете найти различные типы датчиков в наших домах, офисах, автомобилях и т. Д., Которые облегчают нашу жизнь, включая свет, обнаруживая наше присутствие, регулируя температуру в помещении, обнаруживая дым или огонь, готовя нам вкусный кофе, открывая двери гаража. как только наша машина оказывается у дверей и многие другие задачи.

Все эти и многие другие задачи автоматизации возможны благодаря датчикам. Прежде чем перейти к деталям того, что такое датчик, каковы различные типы датчиков и применения этих различных типов датчиков, мы сначала рассмотрим простой пример автоматизированной системы, которая возможна благодаря датчикам ( а также многие другие компоненты).

Применение датчиков в реальном времени

Пример, о котором мы говорим, — это система автопилота в самолетах.Почти все гражданские и военные самолеты имеют функцию автоматического управления полетом или иногда называются автопилотом.

Автоматическая система управления полетом состоит из нескольких датчиков для различных задач, таких как контроль скорости, мониторинг высоты, отслеживание положения, состояние дверей, обнаружение препятствий, уровень топлива, маневрирование и многое другое. Компьютер берет данные со всех этих датчиков и обрабатывает их, сравнивая с заранее заданными значениями.

Затем компьютер передает управляющие сигналы различным частям, таким как двигатели, закрылки, рули направления, двигатели и т. Д.которые помогают в плавном полете. Комбинация датчиков, компьютеров и механики позволяет управлять самолетом в режиме автопилота.

Все параметры, т. Е. Датчики (которые передают данные в компьютеры), компьютеры (мозг системы) и механика (выходные данные системы, такие как двигатели и двигатели), одинаково важны для построения успешной автоматизированной системы. .

Это чрезвычайно упрощенная версия системы управления полетом. Фактически, существуют сотни индивидуальных систем управления, которые решают уникальные задачи для безопасного и плавного путешествия.

Но в этом руководстве мы сконцентрируемся на сенсорной части системы и рассмотрим различные концепции, связанные с сенсорами (например, типы, характеристики, классификация и т. Д.).

Что такое датчик?

Существует множество определений того, что такое датчик, но я хотел бы определить датчик как устройство ввода, которое обеспечивает выход (сигнал) по отношению к определенной физической величине (входу).

Термин «устройство ввода» в определении датчика означает, что он является частью более крупной системы, которая обеспечивает ввод в основную систему управления (например, процессор или микроконтроллер).

Еще одно уникальное определение датчика заключается в следующем: это устройство, которое преобразует сигналы из одной энергетической области в электрическую. Определение датчика можно лучше понять, если мы рассмотрим пример.

Простейшим примером датчика является LDR или светозависимый резистор. Это устройство, сопротивление которого зависит от интенсивности света, которому оно подвергается. Когда свет, падающий на LDR, больше, его сопротивление становится очень меньше, а когда света меньше, ну, сопротивление LDR становится очень высоким.

Мы можем подключить этот LDR к делителю напряжения (вместе с другим резистором) и проверить падение напряжения на LDR. Это напряжение можно откалибровать по количеству света, падающего на LDR. Следовательно, датчик освещенности.

Теперь, когда мы узнали, что такое датчик, мы продолжим классификацию датчиков.

Классификация датчиков

Существует несколько классификаций датчиков, составленных разными авторами и экспертами. Некоторые из них очень простые, а некоторые очень сложные.Следующая классификация датчиков может уже использоваться специалистом в данной области, но это очень простая классификация датчиков.

В первой классификации датчиков они делятся на активные и пассивные. Активные датчики — это датчики, которым требуется внешний сигнал возбуждения или сигнал мощности.

Пассивные датчики

, с другой стороны, не требуют какого-либо внешнего сигнала питания и напрямую генерируют выходной сигнал.

Другой тип классификации основан на средствах обнаружения, используемых в датчике.Некоторые из средств обнаружения: электрические, биологические, химические, радиоактивные и т. Д.

Следующая классификация основана на явлении преобразования, то есть на входе и выходе. Некоторые из общих явлений преобразования: фотоэлектрические, термоэлектрические, электрохимические, электромагнитные, термооптические и т. Д.

Окончательная классификация датчиков — аналоговые и цифровые датчики. Аналоговые датчики производят аналоговый выход, то есть непрерывный выходной сигнал (обычно напряжение, но иногда и другие величины, такие как сопротивление и т. Д.) по отношению к измеряемой величине.

Цифровые датчики

, в отличие от аналоговых датчиков, работают с дискретными или цифровыми данными. Данные в цифровых датчиках, которые используются для преобразования и передачи, имеют цифровой характер.

Различные типы датчиков

Ниже приводится список различных типов датчиков, которые обычно используются в различных приложениях. Все эти датчики используются для измерения одного из физических свойств, таких как температура, сопротивление, емкость, проводимость, теплопередача и т. Д.

  1. Датчик температуры
  2. Датчик приближения
  3. Акселерометр
  4. ИК-датчик (инфракрасный датчик)
  5. Датчик давления
  6. Датчик освещенности
  7. Ультразвуковой датчик
  8. Датчик дыма, газа и алкоголя
  9. Датчик цвета
  10. Датчик прикосновения
  11. Датчик влажности
  12. Датчик положения
  13. Магнитный датчик (датчик Холла)
  14. Микрофон (датчик звука)
  15. Датчик наклона
  16. Датчик потока и уровня
  17. Датчик PIR
  18. Датчик касания
  19. Датчик деформации и веса

We рассмотрим вкратце о некоторых из вышеупомянутых датчиков.Дополнительная информация о датчиках будет добавлена ​​позже. Список проектов, использующих вышеуказанные датчики, приведен в конце страницы.

Датчик температуры

Одним из самых распространенных и популярных датчиков является датчик температуры. Датчик температуры, как следует из названия, определяет температуру, то есть измеряет ее изменения.

Существуют различные типы датчиков температуры, такие как микросхемы датчиков температуры (например, LM35, DS18B20), термисторы, термопары, резистивные датчики температуры (RTD) и т. Д.

Датчики температуры могут быть аналоговыми или цифровыми. В аналоговом датчике температуры изменения температуры соответствуют изменению его физических свойств, таких как сопротивление или напряжение. LM35 — классический аналоговый датчик температуры.

Цифровой датчик температуры выводит дискретное цифровое значение (обычно это некоторые числовые данные после преобразования аналогового значения в цифровое значение). DS18B20 — простой цифровой датчик температуры.

Датчики температуры

используются везде, например, в компьютерах, мобильных телефонах, автомобилях, системах кондиционирования воздуха, в промышленности и т.

В этом проекте реализован простой проект с использованием LM35 (датчик температуры по шкале Цельсия): СИСТЕМА УПРАВЛЕНИЯ ТЕМПЕРАТУРОЙ.

Датчики приближения

Датчик приближения — это датчик бесконтактного типа, который определяет присутствие объекта. Датчики приближения могут быть реализованы с использованием различных методов, таких как оптические (например, инфракрасные или лазерные), звуковые (ультразвуковые), магнитные (эффект Холла), емкостные и т. Д.

Некоторыми из применений датчиков приближения являются мобильные телефоны, автомобили (парковка Датчики), промышленность (выравнивание объектов), приближение к земле в самолетах и ​​т. Д.

Датчик приближения при парковке задним ходом реализован в этом проекте: ЦЕПЬ ДАТЧИКА ЗАДНЕЙ ПАРКОВКИ.

Инфракрасный датчик (ИК-датчик)

Инфракрасный датчик или инфракрасный датчик — это световой датчик, который используется в различных приложениях, таких как обнаружение приближения и объектов. ИК-датчики используются в качестве датчиков приближения почти во всех мобильных телефонах.

Существует два типа инфракрасных или инфракрасных датчиков: пропускающий и отражающий. В ИК-датчике пропускающего типа ИК-передатчик (обычно ИК-светодиод) и ИК-детектор (обычно фотодиод) расположены лицом друг к другу, так что, когда объект проходит между ними, датчик обнаруживает объект.

Другой тип ИК-датчика — ИК-датчик отражающего типа. При этом передатчик и детектор располагаются рядом друг с другом лицом к объекту. Когда объект приближается к датчику, инфракрасный свет от ИК-передатчика отражается от объекта и обнаруживается ИК-приемником, и, таким образом, датчик обнаруживает объект.

Различные приложения, в которых реализован ИК-датчик: мобильные телефоны, роботы, промышленная сборка, автомобили и т. Д.

Небольшой проект, в котором ИК-датчики используются для включения уличных фонарей: УЛИЧНОЕ ОСВЕЩЕНИЕ С ИСПОЛЬЗОВАНИЕМ ИК-ДАТЧИКОВ.

Ультразвуковой датчик

Ультразвуковой датчик — это устройство бесконтактного типа, которое можно использовать для измерения расстояния, а также скорости объекта. Ультразвуковой датчик работает на основе свойств звуковых волн с частотой выше, чем у человеческого слышимого диапазона.

Используя время пролета звуковой волны, ультразвуковой датчик может измерить расстояние до объекта (аналогично SONAR). Свойство звуковой волны Доплеровский сдвиг используется для измерения скорости объекта.

Дальномер на базе Arduino — это простой проект с использованием ультразвукового датчика: ПОРТАТИВНЫЙ УЛЬТРАЗВУКОВОЙ ДИАМЕТР.

Датчик освещенности

Датчики освещенности, также известные как фотодатчики, являются одними из важных датчиков. Простой датчик освещенности, доступный сегодня, — это светозависимый резистор или LDR. Свойство LDR заключается в том, что его сопротивление обратно пропорционально интенсивности окружающего света, то есть, когда интенсивность света увеличивается, его сопротивление уменьшается, и наоборот.

Используя схему LDR, мы можем откалибровать изменения ее сопротивления для измерения интенсивности света. Есть еще два световых датчика (или фотодатчика), которые часто используются в сложных электронных системах. Это фотодиоды и фототранзисторы. Все это аналоговые датчики.

Существуют также цифровые датчики освещенности, такие как Bh2750, TSL2561 и т. Д., Которые могут рассчитывать интенсивность света и предоставлять значение цифрового эквивалента.

Ознакомьтесь с этим простым проектом светодетектора, использующего LDR.

Датчики дыма и газа

Одним из очень полезных датчиков в приложениях, связанных с безопасностью, являются датчики дыма и газа. Практически все офисы и производственные предприятия оборудованы несколькими детекторами дыма, которые обнаруживают любой дым (возникший в результате пожара) и подают сигнал тревоги.

Датчики газа чаще используются в лабораториях, на больших кухнях и в промышленности. Они могут обнаруживать различные газы, такие как LPG, пропан, бутан, метан (Ch5) и т. Д.

В настоящее время датчики дыма (которые часто могут обнаруживать дым, а также газ) также устанавливаются в большинстве домов в качестве меры безопасности. мера.

Датчики серии «MQ» представляют собой набор дешевых датчиков для обнаружения CO, CO2, Ch5, алкоголя, пропана, бутана, сжиженного нефтяного газа и т. Д. Вы можете использовать эти датчики для создания собственного приложения для датчиков дыма.

Проверьте эту ЦЕПЬ СИГНАЛИЗАЦИИ ДЫМОВОГО ДЕТЕКТОРА без использования Arduino.

Датчик алкоголя

Как следует из названия, датчик алкоголя обнаруживает алкоголь. Обычно в алкотестерах используются датчики алкоголя, которые определяют, пьян человек или нет. Сотрудники правоохранительных органов используют алкотестеры, чтобы ловить пьяных за рулем.

Простое руководство о том, КАК СДЕЛАТЬ КОНТУР АЛКОГОЛЬНОГО ДЫХАТЕЛЬНОГО АППАРАТА?

Датчик прикосновения

Мы не придаем большого значения датчикам прикосновения, но они стали неотъемлемой частью нашей жизни. Знаете вы или нет, но все устройства с сенсорным экраном (мобильные телефоны, планшеты, ноутбуки и т. Д.) Имеют сенсорные датчики. Еще одно распространенное применение сенсорного датчика — трекпады в наших ноутбуках.

Датчики касания, как следует из названия, обнаруживают прикосновение пальца или стилуса.Часто сенсорные датчики делятся на резистивные и емкостные. Почти все современные сенсорные датчики относятся к емкостным типам, поскольку они более точны и имеют лучшее соотношение сигнал / шум.

Если вы хотите создать приложение с сенсорным датчиком, тогда доступны недорогие модули, и, используя эти сенсорные датчики, вы можете создать ЦЕПЬ СЕНСОРНОГО ПЕРЕКЛЮЧАТЕЛЯ ДИММЕРА, ИСПОЛЬЗУЯ ARDUINO.

Датчик цвета

Датчик цвета — это полезное устройство для создания приложений определения цвета в области обработки изображений, идентификации цвета, отслеживания промышленных объектов и т. Д.TCS3200 — это простой датчик цвета, который может определять любой цвет и выводить прямоугольную волну, пропорциональную длине волны обнаруженного цвета.

Если вы заинтересованы в создании приложения датчика цвета, ознакомьтесь с этим проектом ДЕТЕКТОРА ЦВЕТА НА ОСНОВЕ ARDUINO.

Датчик влажности

Если вы видите «Системы мониторинга погоды», они часто предоставляют данные о температуре и влажности. Таким образом, измерение влажности является важной задачей во многих приложениях, и датчики влажности помогают нам в этом.

Часто все датчики влажности измеряют относительную влажность (отношение содержания воды в воздухе к максимальной способности воздуха удерживать воду). Поскольку относительная влажность зависит от температуры воздуха, почти все датчики влажности также могут измерять температуру.

Датчики влажности подразделяются на емкостные, резистивные и теплопроводные. DHT11 и DHT22 — два наиболее часто используемых датчика влажности в сообществе DIY (первый является резистивным типом, а второй — емкостным).

Ознакомьтесь с этим руководством с ДАТЧИКОМ ВЛАЖНОСТИ DHT11 НА ARDUINO.

Датчик наклона

Датчики наклона, которые часто используются для определения наклона или ориентации, являются одними из самых простых и недорогих датчиков. Ранее датчики наклона состояли из ртути (и поэтому их иногда называют ртутными переключателями), но большинство современных датчиков наклона содержат роликовый шарик.

Здесь реализован простой переключатель заголовка на базе Arduino с использованием датчика наклона. КАК СДЕЛАТЬ ДАТЧИК НАКЛОНА С ARDUINO?

В этой статье мы узнали о том, что такое датчик, какова классификация датчиков и различные типы датчиков, а также их практическое применение.В будущем я дополню эту статью дополнительными датчиками и их приложениями.

Как работает датчик давления?

Omega — надежный источник датчиков давления и тензодатчиков, обеспечивающих получение высококачественных данных по множеству процессов. Чтобы датчики давления и тензодатчики предоставляли информацию, которую ищут наши клиенты, давление или сила этого процесса должны достигать чувствительного элемента. Чувствительный элемент реагирует на силу или давление процесса, создавая выходной сигнал, который может интерпретироваться устройством считывания или устройством сбора данных.Таким образом, чувствительный элемент является сердцем преобразователя или тензодатчика.

Теория системы измерения давления

Система измерения давления состоит из чувствительного элемента с прикрепленными к нему четырьмя тензодатчиками. Тензодатчики сконфигурированы в виде моста Уитстона, где все 4 резистора (обозначенные R1 — R4 на рисунке 2) равны и изменяются на равную величину пропорционально при приложении напряжения. Чем больше сила или напряжение (вход), тем больше выход.Устройство моста Уитстона требует 4 провода для подключения, положительного и отрицательного возбуждения, а также положительного и отрицательного выхода датчика.

Типичный датчик давления работает, создавая выходной сигнал тензометрического датчика, когда возникает отклонение диафрагмы. В зависимости от технологии тензодатчика выходная мощность может варьироваться от 1 до 3 милливольт на вольт (мВ / В) до 10–30 мВ / В. Чтобы рассчитать выходную мощность в полном масштабе, вы должны умножить выходную мощность датчика на напряжение, используемое для питания устройства.Например, для датчика 3 мВ / В, если мы использовали 10 В постоянного тока в качестве напряжения возбуждения, мы ожидали бы получить 3 мВ / В x 10 В = 30 мВ на полной шкале.

Рисунок 1.
Рисунок 2.
Рисунок 3.
Типичная реакция диафрагмы при приложении давления.

Примеры

Хорошим примером того, как работает датчик давления, является датчик давления PX4600. Давление технологического процесса, которое пытается измерить заказчик, будет подводиться к элементу диафрагмы через порт доступа.Давление вызовет отклонение диафрагмы, нагружая мост Уитстона на другой стороне диафрагмы и создавая выходной сигнал мВ / В. Затем этот милливольтный сигнал считывается устройством, способным принимать милливольтный сигнал, или передается в усилитель или формирователь сигнала для дальнейшей обработки сигнала.

PX409-USBH имеет разъем USB на конце кабеля для прямого ввода в портативный компьютер. Бортовая электроника преобразует сигнал в удобный, простой в использовании протокол связи.Воспользуйтесь нашим бесплатным программным обеспечением, которое доступно на нашем веб-сайте. Устройство можно подключить к ноутбуку, который будет отображать и собирать данные, одновременно обеспечивая питание самого датчика.

Рисунок 6.
DPG409 Цифровой манометр DPGM409 использует цифровой выход в версиях с беспроводным передатчиком. Это позволяет получать показания с удаленной прямой видимости без необходимости прокладывать сигнальный провод. Беспроводной приемник будет принимать этот сигнал и отображать или записывать данные.

Категории датчиков

Рис. 7. без усиления
Большинство тензодатчиков имеют выходной сигнал без усиления. Неусиленные выходы распространены среди устройств, которые слишком малы для оснащения электроникой формирования сигнала, или где окружающая среда слишком экстремальна для электроники.

Это относится к продуктам PX1004, PX1005 и PX1009, которые не имеют усиления из-за очень высоких и очень низких рабочих температур, в которых они предназначены для работы.Датчики без усиления имеют довольно короткую дальность передачи, обычно не более 6,1–9,1 м (20–30 футов). Это потому, что сила сигнала очень мала. Это также делает их восприимчивыми к электромагнитному шуму из окружающей среды.

Если вы хотите узнать больше об измерении давления высокотемпературных сред, прочтите эту статью.

Рис. 8. Датчики с усилением Датчики с усилением
используют внутреннюю электронику преобразования сигнала для создания более сильного сигнала.Это делает их менее восприимчивыми к окружающему шуму и позволяет преодолевать большие расстояния до своих приемных устройств. Датчики с внутренними усилителями имеют меньший диапазон рабочих температур из-за температурных ограничений электроники формирования сигнала внутри датчика.

Датчики с токовым выходом могут посылать усиленный сигнал на расстояние до 304,8 м (1000 футов) и при этом обеспечивать высокую точность. Как правило, датчики на выходе напряжения могут поддерживать точность менее 30,5 м (100 футов).

Цифровой
Третий тип датчика, классифицируемый по выходу, — это датчик цифрового выхода.Этот тип выхода может обеспечить самый низкий уровень шума и самые большие доступные расстояния передачи. Доступно несколько стилей связи, например DPGM409 и PX409-USBH или устройства RS485.

Соображения по точности

Рисунок 9. Типовая калибровка по 5 точкам
.

Общий диапазон ошибок
Это максимальное отклонение диапазона для любого выхода с учетом всех определенных источников ошибок, таких как вибрация, температура или влажность.Выражается в процентах от номинальной мощности.

Рисунок 10. Статическая точность

Комбинированное влияние линейности, гистерезиса и повторяемости. Статическая точность выражается как ±% от диапазона и относится к BSL. Диапазон статической погрешности является хорошим показателем точности, которую можно ожидать от датчика давления или тензодатчика при постоянной температуре.

BSL (Лучшая прямая линия)
BSL — максимальное отклонение ошибки от базовой линии, разделенное пополам.Чтобы определить эту линию, выходы от нуля и полной шкалы используются для создания линии. Остальные точки данных измеряются на основе расстояния от этой линии. Лучшая прямая линия — это линия, которая имеет тот же уклон, что и базовая линия терминала, но смещена так, чтобы ошибки равномерно разделялись по обе стороны от BSL. Лучшая прямая линия используется для описания характеристик линейности.

Нелинейность
Это максимальное отклонение калибровочной кривой от прямой линии, проведенной между выходами без нагрузки и номинальными выходами.Он выражается в процентах от номинальной мощности и измеряется только при увеличении нагрузки давления.

Гистерезис
Гистерезис — это максимальная разница между выходными показаниями для одного и того же приложенного давления при приближении с противоположных направлений. Он определяется путем сравнения выходных данных для значения давления, сначала полученного при приближении с более низким давлением, а затем при приближении к более высокому давлению. Чем ближе два показания, тем меньше гистерезис. Эту ошибку сложно исправить.

Повторяемость
Максимальная разница между выходными показаниями для повторяющихся нагрузок давлением при одинаковой нагрузке и условиях окружающей среды называется повторяемостью. Чем ближе эти показания, тем выше воспроизводимость. Эту ошибку исправить нельзя.

Работа и оптимизация емкостного датчика

Техническое примечание емкостного датчика LT03-0020

Авторские права © 2012 Lion Precision. www.lionprecision.com

Сводка

В этой технической заметке рассматриваются концепции и теория емкостного измерения, помогающие оптимизировать характеристики емкостного датчика. Он также определяет термины емкостного считывания, используемые в литературе и руководствах Lion Precision.

Емкость и расстояние

Бесконтактные емкостные датчики работают путем измерения изменений электрического свойства, называемого емкостью. Емкость описывает, как два проводящих объекта с промежутком между ними реагируют на приложенную к ним разность напряжений.Когда к проводникам прикладывается напряжение, между ними создается электрическое поле, в результате чего на каждом объекте накапливаются положительные и отрицательные заряды (рис. 1). Если полярность напряжения поменять местами, заряды также поменяются местами.

Емкостные датчики используют переменное напряжение, которое заставляет заряды постоянно менять свое положение. Движение зарядов создает переменный электрический ток, который регистрируется датчиком (рис. 2). Сумма

протекание тока определяется емкостью, а емкость определяется площадью и близостью проводящих объектов.Более крупные и близкие объекты вызывают больший ток, чем более мелкие и удаленные объекты. На емкость также влияет тип непроводящего материала в зазоре между объектами.

С технической точки зрения, емкость прямо пропорциональна площади поверхности объектов и диэлектрической проницаемости материала между ними и обратно пропорциональна расстоянию между ними (рис. 3).

Рис. 1
Приложение напряжения к проводящим объектам вызывает накопление положительных и отрицательных зарядов
на каждом объекте.Это создает электрическое поле в пространстве между объектами

Рис. 2
Приложение переменного напряжения заставляет заряды перемещаться вперед и назад между объектами, создавая переменный ток, который обнаруживается датчиком.

Рис. 3
Емкость определяется площадью, расстоянием и диэлектрической проницаемостью (материалом между проводниками). Емкость
увеличивается при увеличении площади или диэлектрической проницаемости, а емкость уменьшается на
при увеличении расстояния.

В типичных емкостных измерениях зонд или датчик является одним из проводящих объектов; целевой объект — другой. (Использование емкостных датчиков для обнаружения пластмасс и других изоляторов обсуждается в разделе, посвященном непроводящим мишеням.) Размеры сенсора и мишени считаются постоянными, как и материал между ними. Следовательно, любое изменение емкости является результатом изменения расстояния между зондом и целью. Электроника откалибрована для создания определенных изменений напряжения для соответствующих изменений емкости.Эти напряжения масштабируются для представления конкретных изменений расстояния. Величина изменения напряжения при заданном изменении расстояния называется чувствительностью. Обычная настройка чувствительности составляет 1,0 В / 100 мкм. Это означает, что на каждые 100 мкм изменения расстояния выходное напряжение изменяется точно на 1,0 В. При этой калибровке изменение выходного сигнала на +2 В означает, что цель переместилась на 200 мкм ближе к датчику.

Фокусировка электрического поля

Когда к проводнику прикладывается напряжение, электрическое поле исходит от каждой поверхности.В емкостном датчике чувствительное напряжение прикладывается к чувствительной области зонда (рис. 4, 5).

Для точных измерений электрическое поле из зоны зондирования должно удерживаться в пространстве между зондом и целью. Если электрическому полю разрешено распространяться на другие предметы или другие области на цели, то изменение положения другого предмета будет измеряться как изменение положения цели.

Для предотвращения этого используется техника, называемая «охрана».Чтобы создать защиту, задняя и боковые стороны чувствительной области окружены другим проводником, который поддерживает то же напряжение, что и сама чувствительная область (рис. 4, 6).

Когда напряжение подается на чувствительную область, отдельная цепь прикладывает точно такое же напряжение к ограждению. Поскольку нет разницы в напряжении между чувствительной областью и защитой, между ними нет электрического поля. Любые другие проводники рядом с датчиком или за ним образуют электрическое поле с защитой вместо зоны обнаружения.Только неохраняемая передняя часть зоны обнаружения может образовывать электрическое поле с целью.

Рисунок 4 Компоненты емкостного сенсорного зонда

Рис. 5
Вид в разрезе, показывающий электрическое поле неохраняемой зоны зондирования

Рисунок 6
Вырез, показывающий защитное поле, формирующее электрическое поле чувствительной области


Влияние размера объекта

Целевой размер является основным фактором при выборе датчика для конкретного приложения.Когда чувствительное электрическое поле фокусируется защитой, оно создает слегка коническое поле, которое является проекцией чувствительной области. Минимальный диаметр мишени для стандартной калибровки составляет 130% диаметра чувствительной области. Чем дальше зонд находится от цели, тем больше минимальный размер цели.

Диапазон измерения

Диапазон, в котором полезен зонд, зависит от размера чувствительной области. Чем больше площадь, тем больше диапазон.Электроника драйвера рассчитана на определенную емкость зонда. Следовательно, зонд меньшего размера должен быть значительно ближе к цели, чтобы достичь желаемой емкости. Электроника регулируется во время калибровки, но диапазон регулировки ограничен.
Как правило, максимальный зазор, при котором может использоваться зонд, составляет примерно 40% диаметра чувствительной области. При стандартной калибровке зазор обычно значительно меньше.

Многоканальное зондирование

Часто цель измеряется одновременно несколькими датчиками.Поскольку система измеряет изменяющееся электрическое поле, напряжение возбуждения для каждого зонда должно быть синхронизировано, иначе зонды будут мешать друг другу. Если бы они не были синхронизированы, один зонд пытался бы увеличить электрическое поле, а другой пытался бы его уменьшить, давая ложные показания.

Электроника драйвера может быть сконфигурирована как ведущая или ведомая. Мастер устанавливает синхронизацию для подчиненных в многоканальных системах.

Влияние материала мишени

Чувствительное электрическое поле ищет проводящую поверхность.При условии, что цель является проводником, на емкостные датчики не влияет конкретный целевой материал. Поскольку электрическое поле измерения останавливается на поверхности проводника, толщина цели не влияет на измерение. .

Измерение непроводниковых проводов

Рис. 7
Непроводники можно измерить, пропустив через них электрическое поле к неподвижной проводящей цели позади.

Емкостные датчики чаще всего используются для измерения изменения положения проводящей цели.Но емкостные датчики также могут быть эффективными при измерении присутствия, плотности, толщины и местоположения непроводников. Непроводящие материалы, такие как пластик, имеют диэлектрическую проницаемость, отличную от диэлектрической проницаемости воздуха. Диэлектрическая постоянная определяет, как непроводящий материал влияет на емкость между двумя проводниками. Когда между зондом и неподвижной эталонной целью вставляется непроводящий провод, чувствительное поле проходит через материал к заземленной цели (рис. 7). Присутствие непроводящего материала изменяет диэлектрик и, следовательно, изменяет емкость.Емкость будет меняться в зависимости от толщины или плотности материала.

Максимальная точность

Теперь, когда мы обсудили основы того, как работает емкостное зондирование, мы можем разработать стратегии для максимизации эффективности и минимизации ошибок при использовании емкостных датчиков. Точность требует, чтобы измерения проводились в тех же условиях, в которых был откалиброван датчик. Независимо от того, откалиброван ли это датчик на заводе или датчик, откалиброванный во время использования, воспроизводимые результаты получаются из повторяемых условий.Если мы хотим, чтобы на измерение влияло только расстояние, тогда все другие переменные должны быть постоянными. В следующих разделах обсуждаются распространенные источники ошибок и способы их минимизации.

Максимальная точность: размер цели

Рис. 9
Из-за слишком маленького размера поле считывания расширяется по сторонам от цели, что приводит к ошибке

Если не указано иное, заводские калибровки выполняются с плоской проводящей мишенью, размер которой значительно превышает площадь чувствительности.Откалиброванный таким образом датчик даст точные результаты при измерении плоской цели, размер которой более чем на 30% превышает площадь чувствительности. Если целевая область слишком мала, электрическое поле начнет охватывать стороны цели, что означает, что электрическое поле распространяется дальше, чем это было при калибровке, и будет измерять цель как можно дальше (рис. 9). В этом случае датчик должен быть ближе к цели для той же нулевой точки. Поскольку это расстояние отличается от исходной калибровки, будет внесена ошибка.Ошибка возникает также из-за того, что зонд больше не измеряет плоскую поверхность.

Если расстояние между зондом и целью считается осью Z, то дополнительная проблема малоразмерной цели заключается в том, что датчик становится чувствительным к местоположению зонда по осям X и Y. Без изменения зазора выходной сигнал значительно изменится, если зонд перемещается либо по оси X, либо по оси Y, потому что меньше электрического поля идет к центру цели, а больше — по сторонам.

Повышение точности: форма цели

Рис. 10 Изогнутая цель требует, чтобы зонд был ближе, и это повлияет на чувствительность

Форма также важна. Поскольку датчики откалиброваны для плоской цели, измерение цели с изогнутой поверхностью вызовет ошибки (рис. 10). Поскольку зонд будет измерять среднее расстояние до цели, зазор при нулевом напряжении будет отличаться от того, когда система была откалибрована. Также будут внесены ошибки из-за различного поведения электрического поля с искривленной поверхностью.В случаях, когда необходимо измерить неплоскую цель, система может быть откалибрована на заводе по окончательной форме цели. В качестве альтернативы, когда используются плоские калибровки с изогнутыми поверхностями, могут быть предусмотрены множители для корректировки измеренного значения.

Максимальная точность: чистота поверхности

Если целевая поверхность не идеально гладкая, система будет усреднять по площади, покрытой размером пятна датчика. Значение измерения может изменяться при перемещении зонда по поверхности из-за изменения среднего положения поверхности.Величина этой ошибки зависит от характера и симметрии неровностей поверхности.

Максимальная точность: параллельность

Во время калибровки поверхность датчика параллельна целевой поверхности. Если зонд или цель наклоняются на значительную величину, форма пятна, в котором поле попадает в цель, удлиняется и изменяет взаимодействие поля с целью. Из-за различного поведения электрического поля будут внесены ошибки измерения.При высоких разрешениях даже несколько градусов могут привести к ошибке. При проектировании приспособления для измерения необходимо учитывать параллельность.

Максимальная точность: окружающая среда

Системы емкостных датчиков

Lion Precision имеют компенсацию для минимизации дрейфа из-за температуры от 22 ° C до 35 ° C (72 ° F — 95 ° F). В этом диапазоне температур погрешность составляет менее 0,5% от полной шкалы.

Более неприятная проблема заключается в том, что практически все материалы, используемые в мишенях и приспособлениях, демонстрируют значительное расширение и сжатие в этом диапазоне температур.Когда это происходит, изменения измерения, связанные с температурой, не являются ошибкой датчика. Это реальные изменения зазора между целью и зондом. Тщательная конструкция приспособлений имеет большое значение для минимизации этой ошибки и повышения точности.

На диэлектрическую проницаемость воздуха влияет влажность. С увеличением влажности увеличивается диэлектрическая проницаемость. Влажность также может взаимодействовать с материалами конструкции зонда. Экспериментальные данные показывают, что изменение от 50% до 80% может привести к ошибкам до 0.5% от полной шкалы.

В то время как материалы датчиков Lion Precision выбраны для минимизации этих ошибок, в приложениях, требующих максимальной точности, контроль температуры и влажности является стандартной практикой. Международные стандарты указывают, что измерения должны проводиться при 20 ° C или с поправкой на «истинную длину» при 20 ° C.

Заводская калибровка

Система калибровки емкостного датчика

Lion Precision была разработана в сотрудничестве с Professional Instruments, мировым лидером в разработке шпинделей и ползунов с воздушными подшипниками.Его современный дизайн обеспечивается прецизионной электроникой управления движением с погрешностью менее 0,012 мкм.
Калибровочная система регулярно сертифицируется с помощью прослеживаемого лазерного интерферометра NIST. Измерительное оборудование, используемое во время калибровки (цифровые измерители и генераторы сигналов), также калибруется по прослеживаемым стандартам NIST. Информация о калибровке для каждого из этих единиц оборудования хранится в файле для проверки прослеживаемости.

Технические специалисты используют систему калибровки для точного позиционирования объекта калибровки на известном расстоянии от емкостного датчика.Измерения в этих точках собираются, а чувствительность и линейность анализируются системой калибровки. Анализ данных используется для настройки калибруемой системы в соответствии со спецификациями заказа.

После калибровки чувствительности и линейности системы емкостных датчиков помещают в камеру окружающей среды, где калибруется схема температурной компенсации для минимизации дрейфа в диапазоне температур от 22 ° C до 35 ° C. Также проводятся измерения полосы пропускания и выходного шума, которые влияют на разрешение.

По завершении калибровки создается сертификат калибровки. Этот сертификат поставляется с заказанной системой и заархивирован. Сертификаты калибровки соответствуют разделу 4.8 ISO 10012-1.

Чувствительность

Чувствительность — наклон линии — это чувствительность; в данном случае 1 В / 0,05 мм.

Чувствительность показывает, насколько изменяется выходное напряжение в результате изменения зазора между целью и емкостным датчиком.Обычная чувствительность составляет 1 В / 0,1 мм. Это означает, что на каждые 0,1 мм изменения зазора выходное напряжение будет изменяться на 1 В. Когда выходное напряжение отображается в зависимости от размера зазора, наклон линии представляет собой чувствительность.

Ошибка чувствительности

Ошибка чувствительности — крутизна фактических измерений отклоняется от идеальной.

Чувствительность датчика устанавливается при калибровке. Когда чувствительность отклоняется от идеального значения, это называется ошибкой чувствительности, ошибкой усиления или ошибкой масштабирования.Поскольку чувствительность — это наклон линии, ошибка чувствительности обычно выражается в процентах от наклона; сравнение идеального уклона с фактическим уклоном.

Ошибка смещения

Ошибка смещения возникает, когда постоянное значение добавляется к

.

Ошибка смещения — ко всем измерениям добавляется постоянное значение.

выходное напряжение системы. Системы емкостных датчиков обычно обнуляются во время настройки, что устраняет любые отклонения смещения от исходной калибровки.Однако, если ошибка смещения изменится после обнуления системы, в измерение будет внесена ошибка. Изменение температуры является основным фактором ошибки смещения. В системах Lion Precision предусмотрена компенсация погрешностей смещения, связанных с температурой, чтобы они не превышали 0,04% F.S. / ° C.

Ошибка линейности

Ошибка линейности — данные измерения не на прямой линии.

Чувствительность может незначительно отличаться между любыми двумя точками данных. Это изменение называется ошибкой линейности.Спецификация линейности — это измерение того, насколько выходной сигнал отличается от прямой линии.

Для расчета погрешности линейности данные калибровки сравниваются с прямой линией, которая наилучшим образом соответствует точкам. Эта прямая опорная линия рассчитывается на основе данных калибровки с использованием метода, называемого подгонкой по методу наименьших квадратов. Величина ошибки в точке калибровочной кривой, наиболее удаленной от этой идеальной линии, является ошибкой линейности. Ошибка линейности обычно выражается в процентах от полной шкалы.Если ошибка в наихудшей точке составляла 0,001 мм, а полный диапазон калибровки составлял 1 мм, ошибка линейности составила бы 0,1%.
Обратите внимание, что ошибка линейности не учитывает ошибки чувствительности. Это только мера прямолинейности линии, а не ее наклон. Система с грубыми ошибками чувствительности может быть очень линейной.

Диапазон ошибок

Диапазон ошибок учитывает комбинацию ошибок линейности и чувствительности. Это измерение абсолютной погрешности наихудшего случая в калиброванном диапазоне.Полоса ошибок рассчитывается путем сравнения выходных напряжений в определенных промежутках с их ожидаемым значением. Наихудшая ошибка из этого сравнения указывается как диапазон ошибок системы.

Зазор
(мм)

Ожидаемое
Значение
(В постоянного тока)

Фактическое значение
Значение
(В постоянного тока)

Ошибка
(мм)

0.50 -10,000 -9,800 -0,010
0,75 -5,000 -4,900 -0,005
1,00 0,000 0,000 0,000
1,25 5.000 5.000 0,000
1,50 10.000 10,100 0,005

Диапазон ошибок — наихудшее отклонение измеренных значений от ожидаемых значений в калибровочной таблице.В этом случае полоса погрешности составляет -0,010 мм.

Пропускная способность

Полоса пропускания определяется как частота, при которой выходной сигнал падает до -3 дБ. Эта частота также называется частотой среза. Падение уровня сигнала на -3 дБ соответствует примерно 70% падению фактического выходного напряжения. При полосе пропускания 15 кГц изменение ± 1 В на низкой частоте приведет только к изменению ± 0,7 В при 15 кГц. В дополнение к обнаружению высокочастотного движения быстродействующие выходы максимизируют запас по фазе при использовании в системах обратной связи сервоуправления.Некоторые драйверы предоставляют возможность выбора полосы пропускания для максимального увеличения разрешения или времени отклика.

Разрешение

Рисунок 14
Шум от датчика 15 кГц

Разрешение определяется как наименьшее надежное измерение, которое может выполнить система. Разрешение измерительной системы должно быть лучше, чем конечная точность, требуемая для измерения. Если вам нужно знать размер в пределах 0,02 мкм, то разрешение измерительной системы должно быть лучше 0.02 мкм.
Основным определяющим фактором разрешения является электрический шум. Электрический шум появляется в выходном напряжении, вызывая небольшие мгновенные ошибки на выходе. Даже когда зазор между зондом и мишенью совершенно постоянен, выходное напряжение драйвера имеет небольшой, но измеримый шум, который, казалось бы, указывает на то, что зазор изменяется. Этот шум присущ электронным компонентам, и его можно только минимизировать, но никогда не устранить.
Если драйвер имеет выходной шум 0.002V с чувствительностью 10 В / 1 мм, тогда он имеет выходной шум 0,000,2 мм (0,2 мкм). Это означает, что в любой момент на выходе может быть ошибка 0,2 мкм.

Рисунок 15
Шум от датчика 100 Гц

Количество шума на выходе напрямую связано с полосой пропускания. Вообще говоря, шум распределяется равномерно в широком диапазоне частот. Если более высокие частоты фильтруются перед выходом, результатом будет меньше шума и лучшее разрешение (рис.14, 15). При изучении спецификаций разрешения очень важно знать, к какой полосе пропускания применяются спецификации. Ознакомьтесь с нашей полной статьей о взаимосвязи между разрешением и пропускной способностью и о том, как быть уверенным, что вы получаете точную информацию из таблиц.

Типы, принцип работы и приложения

Все мы используем датчики температуры в повседневной жизни, будь то термометры, бытовые водонагреватели, микроволновые печи или холодильники. Обычно датчики температуры имеют широкий спектр применения, в том числе в области геотехнического мониторинга.

Датчики температуры — это простой прибор, который измеряет степень тепла или холода и преобразует ее в считываемые единицы. Но задумывались ли вы, как измеряется температура почвы, скважин, огромных бетонных дамб или зданий? Что ж, это достигается с помощью некоторых специализированных датчиков температуры.

Датчики температуры предназначены для регулярного контроля бетонных конструкций, мостов, железнодорожных путей, грунта и т. Д.

Здесь мы расскажем вам, что такое датчик температуры, как он работает, где он используется и какие бывают его типы.

Что такое датчики температуры?

Датчик температуры — это устройство, обычно термопара или резистивный датчик температуры, которое обеспечивает измерение температуры в читаемой форме с помощью электрического сигнала.

Термометр — это самая простая форма измерителя температуры, которая используется для измерения степени жара и прохлады.

Измерители температуры используются в геотехнической области для контроля бетона, конструкций, почвы, воды, мостов и т. Д.на структурные изменения в них из-за сезонных колебаний.

Термопара (Т / С) изготовлена ​​из двух разнородных металлов, которые генерируют электрическое напряжение прямо пропорционально изменению температуры. RTD (резистивный датчик температуры) — это переменный резистор, который изменяет свое электрическое сопротивление прямо пропорционально изменению температуры точным, воспроизводимым и почти линейным образом.

Для чего нужны датчики температуры?

Датчик температуры — это устройство, предназначенное для измерения степени жары или прохлады объекта.Работа измерителя температуры зависит от напряжения на диоде. Изменение температуры прямо пропорционально сопротивлению диода. Чем ниже температура, тем меньше сопротивление, и наоборот.

Сопротивление на диоде измеряется и преобразуется в считываемые единицы измерения температуры (Фаренгейта, Цельсия, Цельсия и т. Д.) И отображается в числовой форме над единицами считывания. В области геотехнического мониторинга эти датчики температуры используются для измерения внутренней температуры таких конструкций, как мосты, плотины, здания, электростанции и т. Д.

Для чего используется датчик температуры? | Каковы функции датчика температуры?

Есть много типов датчиков температуры, но наиболее распространенный способ их классификации основан на режиме подключения, который включает в себя контактные и бесконтактные датчики температуры.

Контактные датчики включают в себя термопары и термисторы, потому что они находятся в прямом контакте с объектом, который они должны измерять. А бесконтактные датчики температуры измеряют тепловое излучение, выделяемое источником тепла.Такие измерители температуры часто используются в опасных средах, таких как атомные электростанции или тепловые электростанции.

В геотехническом мониторинге датчики температуры измеряют теплоту гидратации в массивных бетонных конструкциях. Их также можно использовать для мониторинга миграции грунтовых вод или просачивания. Одна из наиболее распространенных областей, где они используются, — это время отверждения бетона, потому что он должен быть относительно теплым, чтобы схватиться и затвердеть должным образом. Сезонные колебания вызывают расширение или сжатие конструкции, тем самым изменяя ее общий объем.

Как работает датчик температуры?

Основным принципом работы датчиков температуры является напряжение на выводах диода. Если напряжение увеличивается, температура также повышается, за чем следует падение напряжения между выводами транзистора базы и эмиттера в диоде.

Помимо этого, Encardio-Rite имеет датчик температуры с вибрирующей проволокой, который работает по принципу изменения напряжения при изменении температуры.

Измеритель температуры с вибрирующей проволокой разработан по принципу, согласно которому разнородные металлы имеют разный линейный коэффициент расширения при изменении температуры.

В основном он состоит из магнитной, натянутой на разрыв проволоки с высокой прочностью на разрыв, два конца которой прикреплены к любому разнородному металлу таким образом, что любое изменение температуры напрямую влияет на натяжение проволоки и, следовательно, на ее собственную частоту колебаний.

В случае измерителя температуры Encardio-Rite разнородным металлом является алюминий (алюминий имеет больший коэффициент теплового расширения, чем сталь). Поскольку температурный сигнал преобразуется в частоту, тот же блок считывания, который используется для другие датчики с вибрирующей проволокой также могут использоваться для контроля температуры.

Изменение температуры регистрируется специально созданным датчиком с вибрирующей проволокой Encardio-rite и преобразуется в электрический сигнал, который передается в виде частоты на считывающее устройство.

Частота, которая пропорциональна температуре и, в свою очередь, напряжению «σ» в проволоке, может быть определена следующим образом:

f = 1/2 [σg / ρ] / 2l Гц

Где:

σ = натяжение проволоки

g = ускорение свободного падения

ρ = плотность проволоки

l = длина провода

Какие бывают типы датчиков температуры?

Доступны датчики температуры различных типов, форм и размеров.Два основных типа датчиков температуры:

Датчики температуры контактного типа : Есть несколько измерителей температуры, которые измеряют степень тепла или холода в объекте, находясь в непосредственном контакте с ним. Такие датчики температуры относятся к категории контактных. Их можно использовать для обнаружения твердых тел, жидкостей или газов в широком диапазоне температур.

Бесконтактные датчики температуры : Эти типы измерителей температуры не находятся в прямом контакте с объектом, а измеряют степень нагрева или холода посредством излучения, испускаемого источником тепла.

Контактные и бесконтактные датчики температуры делятся на:

Термостаты

Термостат — это датчик температуры контактного типа, состоящий из биметаллической полосы, состоящей из двух разнородных металлов, таких как алюминий, медь, никель или вольфрам.

Разница в коэффициентах линейного расширения обоих металлов заставляет их производить механическое изгибающее движение, когда они подвергаются нагреву.

Термисторы

Термисторы или термочувствительные резисторы — это те, которые меняют свой внешний вид при изменении температуры.Термисторы изготовлены из керамического материала, такого как оксиды никеля, марганца или кобальта, покрытого стеклом, что позволяет им легко деформироваться.

Большинство термисторов имеют отрицательный температурный коэффициент (NTC), что означает, что их сопротивление уменьшается с повышением температуры. Но есть несколько термисторов с положительным температурным коэффициентом (PTC), и их сопротивление увеличивается с повышением температуры.

Резистивные датчики температуры (RTD)

ТС

— это точные датчики температуры, которые состоят из проводящих металлов высокой чистоты, таких как платина, медь или никель, намотанных в катушку.Электрическое сопротивление RTD изменяется аналогично сопротивлению термистора.

Термопары

Один из наиболее распространенных датчиков температуры включает термопары из-за их широкого рабочего диапазона температур, надежности, точности, простоты и чувствительности.

Термопара обычно состоит из двух соединений разнородных металлов, таких как медь и константан, которые сварены или обжаты вместе. Один из этих переходов, известный как холодный спай, поддерживается при определенной температуре, в то время как другой является измерительным переходом, известным как горячий спай.

Под воздействием температуры на переходе возникает падение напряжения.

Термистор с отрицательным температурным коэффициентом (NTC)

Термистор — это в основном чувствительный датчик температуры, который точно реагирует даже на мельчайшие изменения температуры. Он обеспечивает огромную стойкость при очень низких температурах. Это означает, что как только температура начинает повышаться, сопротивление начинает быстро падать.

Из-за большого изменения сопротивления на градус Цельсия даже небольшое изменение температуры точно отображается термистором с отрицательным температурным коэффициентом (NTC).Из-за этого экспоненциального принципа работы требуется линеаризация. Обычно они работают в диапазоне от -50 до 250 ° C.

Датчики на основе полупроводников

Датчик температуры на основе полупроводника работает с двойными интегральными схемами (ИС). Они содержат два одинаковых диода с температурно-чувствительными характеристиками напряжения и тока для эффективного измерения изменений температуры.

Однако они дают линейный выходной сигнал, но менее точны при температуре от 1 ° C до 5 ° C. Они также демонстрируют самую медленную реакцию (от 5 до 60 с) в самом узком температурном диапазоне (от -70 ° C до 150 ° C).

Датчик температуры вибрирующей проволоки модели ETT-10V

Измеритель температуры с вибрирующей проволокой Encardio-rite Model ETT-10V используется для измерения внутренней температуры в бетонных конструкциях или в воде. Он имеет разрешение лучше 0,1 ° C и работает аналогично термопарным датчикам температуры. Он также имеет диапазон высоких температур от -20 o до 80 o C.

Технические характеристики измерителя температуры вибрирующей проволоки ЭТТ-10В
Тип датчика Pt 100
Диапазон-20 o до 80 o C
Точность ± 0.Стандарт 5% полной шкалы; ± 0,1% полной шкалы опционально
Размер (Φ x L) 34 x 168 мм
Зонд
термистора сопротивления модели ЭТТ-10ТХ

Температурный датчик сопротивления Encardio-rite модели ETT-10TH представляет собой водостойкий датчик температуры малой массы для измерения температуры от –20 до 80 ° C. Благодаря низкой тепловой массе он имеет быстрое время отклика.

Датчик температуры сопротивления модели

ETT-10TH специально разработан для измерения температуры поверхности стали и измерения температуры поверхности бетонных конструкций.ETT-10TH может быть встроен в бетон для измерения объемной температуры внутри бетона и даже может работать под водой.

Термопреобразователи сопротивления ETT-10TH полностью взаимозаменяемы. Показания температуры не будут отличаться более чем на 1 ° C в указанном диапазоне рабочих температур. Это позволяет использовать один индикатор с любым датчиком ETT-10TH без повторной калибровки.

Индикатор с вибрирующей проволокой EDI-51V модели

Encardio-rite при использовании с ETT-10TH напрямую показывает температуру зонда в градусах Цельсия.

Как работает зонд термистора сопротивления модели ETT-10TH?
Датчик температуры

ETT-10TH состоит из термисторной эпоксидной смолы с согласованной температурной кривой, заключенной в медные трубки для более быстрого теплового отклика и защиты окружающей среды. Трубка сплющена на конце, чтобы ее можно было прикрепить к любой достаточно плоской металлической или бетонной поверхности для измерения температуры поверхности.

Плоский наконечник зонда можно прикрепить к большинству поверхностей с помощью легко доступных двухкомпонентных эпоксидных клеев.При желании зонд также можно прикрепить болтами к поверхности конструкции.

Датчик температуры снабжен четырехжильным кабелем, который используется в качестве стандартного во всех тензодатчиках Encardio-rite с вибрирующей проволокой. Провода белого и зеленого цвета используются для термистора, как и другие датчики с вибрирующим проводом Encardio-rite.

Пара красных и черных проводов не используется. Единая цветовая схема для разных датчиков упрощает безошибочное соединение с терминалом регистратора данных.

Технические характеристики модели ETT-10TH
Тип датчика Кривая R-T согласована с термистором NTC, эквивалентным YSI 44005
Диапазон-20 o до 80 o C
Точность 1 o С
Материал корпуса Луженая медь
Кабель 4-х жильный в ПВХ оболочке
Датчик температуры RTD, модель ETT-10PT

Датчик температуры RTD (резистивный датчик температуры) ETT-10PT состоит из керамического резистивного элемента (Pt.100) с европейским стандартом калибровки кривой DIN IEC 751 (бывший DIN 43760). Элемент сопротивления заключен в прочную трубку из нержавеющей стали с закрытым концом, которая защищает элемент от влаги.

Как работает датчик температуры RTD модели ETT-10PT?

Температурный датчик сопротивления работает по принципу, согласно которому сопротивление датчика является функцией измеренной температуры. Платиновый термометр сопротивления имеет очень хорошую точность, линейность, стабильность и воспроизводимость.

Датчик температуры сопротивления модели ETT-10PT снабжен трехжильным экранированным кабелем.Красный провод обеспечивает одно соединение, а два черных провода вместе — другое. Таким образом достигается компенсация сопротивления проводов и температурных изменений сопротивления проводов. Показания резистивного датчика температуры легко считываются с помощью цифрового индикатора температуры RTD.

Нажмите кнопку редактирования, чтобы изменить этот текст. Lorem ipsum dolor sit amet, conctetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Технические характеристики датчика RTD модели ETT-10PT
Тип датчика Pt 100
Диапазон-20 o до 80 o C
Точность ± (0.3 + 0,005 * t) o C
Калибровка DIN IEC 751
Кривая (европейская) 0,00385 Ом / Ом / o C
Размер (Φ x L) 8 x 135 мм
Кабель 3-жильный экранированный
Термопара Encardio-Rite

Encardio-rite предлагает термопару Т-типа (медь-константан) для измерения внутренней температуры в бетонных конструкциях.Он состоит из двух разнородных металлов, соединенных одним концом. Когда соединение двух металлов нагревается или охлаждается, создается напряжение, которое может быть обратно соотнесено с температурой.

Измерение термопары состоит из провода термопары с двумя разнородными проводниками (медь-константан), соединенными на одном конце для образования горячего спая. Этот конец защищен от коррозии и помещен в требуемые места для измерения температуры.

Другой конец провода термопары подсоединяется к подходящему разъему термопары для образования холодного спая.Показания термопары отображают прямое считывание температуры в месте установки и автоматически компенсируют температуру на холодном спайе.

Технические характеристики термопары Encardio-Rite
Тип провода Т-медь-константан
Изоляция проводов PFA тефлон C
Температура горячего спая до 260 o C (макс.)
Тип разъема Миниатюрный Стеклонаполненный нейлон
Рабочая температура-20 o до 100 o C
Температура холодного спая Окружающий

Где используется датчик температуры?

Область применения датчика температуры:

  1. Датчики температуры используются для проверки проектных предположений, что способствует более безопасному и экономичному проектированию и строительству.
  2. Они используются для измерения повышения температуры в процессе твердения бетона.
  3. Они могут измерять температуру горных пород возле резервуаров для хранения сжиженного газа и при проведении операций по замораживанию грунта.
  4. Датчики температуры также могут измерять температуру воды в резервуарах и скважинах.
  5. Его можно использовать для интерпретации температурных напряжений и изменений объема в плотинах.
  6. Их также можно использовать для изучения влияния температуры на другие установленные приборы.

Преимущества датчиков температуры Encardio-Rite

  1. Датчик температуры Encardio-Rite является точным, недорогим и чрезвычайно надежным.
  2. Они подходят как для поверхностного монтажа, так и для встраиваемых систем.
  3. Низкая тепловая масса приводит к более быстрому времени отклика.
  4. Датчик температуры вибрирующей проволоки полностью взаимозаменяемый; один индикатор может считывать данные со всех датчиков.
  5. Имеет водонепроницаемый корпус со степенью защиты IP-68.
  6. Они поставляются с индикаторами, которые легко доступны для прямого отображения температуры.
  7. Датчики температуры обладают отличной линейностью и гистерезисом.
  8. Технология вибрирующей проволоки обеспечивает долгосрочную стабильность, быстрое и легкое считывание.
  9. Датчики герметично закрыты электронно-лучевой сваркой с вакуумом около 1/1000 Торр.
  10. Они подходят для удаленного чтения, сканирования, а также для регистрации данных.

Часто задаваемые вопросы

В чем разница между датчиком температуры и преобразователем температуры?

Датчик температуры — это прибор, используемый для измерения степени нагрева или прохлады объекта, тогда как датчик температуры — это устройство, которое сопрягается с датчиком температуры для передачи сигналов в удаленное место для мониторинга и управления.

Это означает, что термопара, RTD или термистор подключены к регистратору данных для получения данных в любом удаленном месте.

Как измеряется температура в бетонной плотине?

За исключением процедуры, принятой во время строительства, наибольший фактор, вызывающий напряжение в массивном бетоне, связан с изменением температуры. Следовательно, для анализа развития термического напряжения и управления искусственным охлаждением необходимо отслеживать изменение температуры бетона во время строительства.

Для этого необходимо точно измерить температуру во многих точках конструкции, в воде и в воздухе. Должно быть встроено достаточное количество датчиков, чтобы получить правильную картину распределения температуры в различных точках конструкции.

В большой бетонной плотине типичная схема заключается в размещении датчика температуры через каждые 15-20 м по поперечному сечению и через каждые 10 м по высоте. Для небольших плотин интервал может быть уменьшен. Температурный зонд, установленный в верхней части плотины, оценивает температуру резервуара, поскольку она меняется в течение года.

Это намного проще, чем то и дело ронять термометр в резервуар, чтобы проводить наблюдения. Во время эксплуатации бетонной плотины суточные и сезонные изменения окружающей среды наносят ущерб развитию термических напряжений в конструкции. Эффект более выражен на стороне нисходящего потока. Несколько датчиков температуры должны быть размещены рядом и в нижней части бетонной плотины для оценки быстрых суточных и еженедельных колебаний температуры.

Какой датчик температуры самый точный?

RTD — самый точный датчик температуры. Платиновый RTD имеет очень хорошую точность, линейность, стабильность и воспроизводимость по сравнению с термопарами или термисторами.

Что такое термопара?

Термопара — это тип датчика температуры, который используется для измерения внутренней температуры объекта.

Существует три закона для термопар, как указано ниже:

Закон однородного материала

Если все провода и термопара сделаны из одного материала, изменения температуры в проводке не влияют на выходное напряжение.Следовательно, необходимы провода, изготовленные из различных материалов.

Закон промежуточных материалов

Сумма всех термоэлектрических сил в цепи с несколькими разнородными материалами при постоянной температуре равна нулю. Это означает, что если третий материал добавляется при той же температуре, новый материал не генерирует никакого сетевого напряжения.

Закон последовательных или промежуточных температур

Если два разных однородных материала создают термоэдс 1, когда переходы находятся в точках T1 и T2, и создают термоэдс 2, когда переходы находятся в точках T2 и T3, то ЭДС, генерируемая, когда переходы находятся в точках T1 и T3, будет равна ЭДС1 + ЭДС2

Как проверить датчик температуры?

В Encardio-Rite есть специализированные камеры для испытания температуры (с уже известными системами контроля температуры и температуры) для проверки точности и качества наших датчиков температуры.

Это все о датчиках температуры, их различных типах, областях применения, использовании, а также о принципе работы. Сообщите нам свои вопросы в разделе комментариев ниже.

Как работают датчики движения и охранная сигнализация?

Есть много разных способов создать датчик движения. Например:

  • Обычно в магазинах световой луч пересекает комнату рядом с дверью, а фотодатчик находится на другой стороне комнаты. Когда покупатель прерывает луч, фотосенсор определяет изменение количества света и звонит в колокольчик.
  • Во многих продуктовых магазинах есть автоматические открыватели дверей, которые используют очень простой вид радара, чтобы обнаружить, когда кто-то проходит возле двери. Коробка над дверью излучает импульс микроволнового излучения и ждет, пока отраженная энергия не вернется в норму. Когда человек попадает в поле микроволновой энергии, он меняет количество отраженной энергии или время, необходимое для появления отражения, и коробка открывает дверь. Поскольку в этих устройствах используется радар, они часто активируют детекторы радаров.
  • То же самое можно сделать с ультразвуковыми звуковыми волнами, отражая их от цели и ожидая эха.

Все это активных датчика . Они вводят энергию (свет, микроволны или звук) в окружающую среду, чтобы обнаружить какое-либо изменение.

Функция «обнаружения движения» на большинстве источников света (и систем безопасности) — это пассивная система , которая обнаруживает инфракрасную энергию . Поэтому эти датчики известны как детекторы PIR (пассивные инфракрасные) или пироэлектрические датчики .Чтобы создать датчик, способный обнаруживать человека, необходимо сделать датчик чувствительным к температуре человеческого тела. Люди с температурой кожи около 93 градусов по Фаренгейту излучают инфракрасную энергию с длиной волны от 9 до 10 микрометров. Поэтому сенсоры обычно чувствительны в диапазоне от 8 до 12 микрометров.

Сами устройства представляют собой простые электронные компоненты, похожие на фотодатчик. Инфракрасный свет отталкивает электроны от подложки, и эти электроны могут быть обнаружены и усилены в сигнал.

Вы, наверное, заметили, что ваш свет чувствителен к движению, но не к человеку, который стоит на месте. Это потому, что блок электроники, прикрепленный к датчику, ищет довольно быстрое изменение количества инфракрасной энергии, которую он видит. Когда человек проходит мимо, количество инфракрасной энергии в поле зрения быстро меняется и легко обнаруживается. Вы не хотите, чтобы датчик обнаруживал более медленные изменения, например, охлаждение тротуара ночью.

Ваш датчик движения имеет широкое поле зрения благодаря линзе , закрывающей датчик.Инфракрасная энергия — это форма света, поэтому вы можете фокусировать и отклонять ее с помощью пластиковых линз. Но это не похоже на то, что там есть двумерный массив датчиков. Внутри находится один (а иногда и два) датчика, отслеживающих изменения инфракрасной энергии.

Если у вас есть охранная сигнализация с датчиками движения, вы могли заметить, что датчики движения не могут «видеть» вас, когда вы находитесь на улице и смотрите через окно. Это потому, что стекло не очень прозрачно для инфракрасной энергии. Это, кстати, основа теплицы.Свет проходит через стекло в теплицу и нагревает ее внутри. Стекло становится непрозрачным для инфракрасной энергии, которую излучают эти нагретые предметы, поэтому тепло удерживается внутри теплицы. Логично, что датчик движения, чувствительный к инфракрасной энергии, не может видеть сквозь стеклянные окна.

Дополнительную информацию см. На следующей странице.

Преимущества инфракрасного датчика температуры

— Sure Controls

Инфракрасные датчики температуры воспринимают электромагнитные волны в диапазоне от 700 до 14 000 нм.В то время как инфракрасный спектр простирается до 1000000 нм, инфракрасные датчики температуры не измеряют более 14000 нм. Эти датчики работают, фокусируя инфракрасную энергию, излучаемую объектом, на один или несколько фотодетекторов.
Эти фотодетекторы преобразуют эту энергию в электрический сигнал, который пропорционален инфракрасной энергии, излучаемой объектом. Поскольку излучаемая инфракрасная энергия любого объекта пропорциональна его температуре, электрический сигнал обеспечивает точное считывание температуры объекта, на который он направлен.Инфракрасные сигналы проходят в датчик через окно из специального пластика. Хотя пластик обычно не пропускает инфракрасные частоты, датчики имеют форму, прозрачную для определенных частот. Этот пластик отфильтровывает нежелательные частоты и защищает электронику внутри датчика от пыли, грязи и других посторонних предметов.

Преимущества инфракрасных датчиков температуры

  • ИК-датчики считывают движущиеся объекты. Контактные датчики температуры плохо работают на движущихся объектах.Инфракрасные датчики температуры идеально подходят для измерения температуры шин, тормозов и подобных устройств.
  • ИК-датчики не изнашиваются. Отсутствие контакта означает отсутствие трения. Инфракрасные датчики не изнашиваются и, следовательно, имеют более длительный срок службы.
  • Инфракрасные датчики
  • могут предоставить более подробную информацию. Инфракрасный датчик может обеспечить более подробную информацию во время измерения, чем контактные устройства, просто направив его в разные точки на считываемом объекте.
  • Инфракрасные датчики
  • могут использоваться для обнаружения движения путем измерения колебаний температуры в поле зрения.

Заказ датчика

Каждое вещество на одной частоте излучает больше инфракрасного излучения, чем на других. Например, полиэтилен излучает большую часть инфракрасного излучения на длине волны 3 430 нм, а металлы — на длине волны 1 000 нм. Для оптимальной работы ИК-датчик температуры должен иметь спектральный диапазон, сосредоточенный вокруг этих пиковых температур. Поэтому важно либо помнить о том, для какого конкретного применения ИК-датчик необходим при его заказе, либо заказывать датчик с регулируемым спектральным диапазоном.

Фоновые источники тепла

Инфракрасные датчики температуры

могут быть спутаны с фоновыми источниками инфракрасного излучения при использовании в качестве датчиков движения. Вы можете обойти эту проблему, используя технику дифференциального обнаружения. Для этого подключите два датчика к дифференциальному усилителю в качестве противоположных входов. При таком подключении датчики компенсируют среднюю температуру общего поля зрения. Любые колебания фоновой температуры не могут вызвать считывание движения.Такая компоновка также снижает синфазные помехи. Обратите внимание, что этот метод работает только для обнаружения движения, а не для измерения температуры.
Чтобы справиться с проблемой фонового тепла при измерении температуры, в отличие от обнаружения движения, сузьте поле обзора датчика, чтобы оно было полностью ограничено измеряемым объектом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *