Posted on

Содержание

назначение и принцип работы, способы подбора трансформатора по мощности

Виды трансформаторовКаждый радиолюбитель сталкивается с выбором трансформатора для питания различных схем и устройств, а также для создания блоков питания. С этой целью можно использовать уже готовые варианты или же рассчитать и сделать трансформатор своими руками. Необходимо понимать основное предназначение, принцип работы, а также ориентироваться и рассчитывать нужные параметры. Для выбора трансформатора используются несколько методов.

Основные понятия о трансформаторах

Основным предназначением трансформатора (Т) является преобразование переменного напряжения (U) в необходимые номиналы. Т получил широкое применение как простейший преобразователь переменного U, хотя преобразовывать можно и постоянный ток, но этот способ является экономически невыгодным. Т работает только от переменного U, и это связано с принципом его действия.

Устройство трансформатора

Трансформатор (Т) — преобразователь переменного входного U в необходимый номинал или номиналы для питания потребителей. Большинство потребителей питаются от постоянного тока, который получается при преобразовании переменного U в постоянное при помощи диодного моста или какого-либо другого выпрямителя. Этот преобразователь переменного U является примитивным по своему устройству, однако есть некоторые особенности конструктивного плана.

Т состоит из магнитопровода и катушек, на которые намотан медный изолированный провод. Магнитопровод изготавливается из спецстали, которая обладает ферромагнитными свойствами и называется ферромагнетиком. Основное отличие ферромагнетиков от обыкновенной стали заключается в наличии атомов, обладающих постоянными спиновыми и орбитальными моментами (СиОМ). СиОМ зависят от температуры и магнитного поля, и благодаря этому обмотки Т при работе не перегреваются из-за отсутствия токов Фуко. Специальная трансформаторная сталь с ферромагнитными свойствами сводит образование токов Фуко к минимуму, которого недостаточно для перегрева обмоток.

Самыми распространенными материалами для изготовления магнитопровода являются электротехническая трансформаторная сталь (ЭТС) и пермаллой. ЭТС отличается от обыкновенной стали и физико-химическими свойствами, так как содержит значительную массовую долю кремния (Si), который при помощи специальных технологий, предусмотренных на заводе изготовителе, соединяется с углеродом под действием высокой температуры и давления.

Эта технология изготовления ЭТС получила широкое распространение, так как используется практически во всех Т. Еще одним видом ферромагнетика для изготовления магнитопровода является пермаллой, который представляет собой соединение сплава никеля и железа, использующийся для изготовления Т небольшой мощности. Площадь магнитопровода влияет мощность (P) Т.

Обмотки являются катушками с намотанным изолированным проводом со специальным лаковым покрытием. Диаметр провода и количество витков зависит от U и тока (I), а также это влияет и на P трансформатора. Количество катушек должно быть не менее 2, однако допускается одна катушка при условии, что на нее намотаны 2 обмотки (одна из которых первичная).

Принцип работы

Принцип работы трансформаторовПринцип работы Т достаточно прост и основан на нахождении проводника с количеством витков n в переменном магнитном поле. Переменное магнитное поле (ПМП) — поле, значение и направление линий магнитного потока (Ф) которого изменяется по закону изменения значений переменного I, генерирующего его с течением времени. При прохождении тока по виткам катушки первичной обмотки (КПО) образуется Ф, пронизывающий и катушку вторичной обмотки (КВО).

Благодаря замкнутой структуре магнитопровода линии Ф являются замкнутыми. Для уменьшения потерь электрической энергии катушек обмотки располагают максимально близко друг другу. Оптимальным является использование одной катушки с 2 или более обмотками. Однако этот вариант недопустим в старых сварочных аппаратах. В этом случае катушки должны быть отдельно для повышения теплоотдачи при проведении сварочных работ. Кроме того, на силовых подстанциях используются Т с масляным охлаждением, но и у них обмотки конструктивно находятся на разных катушках.

В Т применяется закон электромагнитной индукции, при котором происходит изменение Ф и индуцирование электродвижущей силы (ЭДС) самоиндукции в КПО, а ЭДС, возникающая в КВО, называется ЭДС взаимоиндукции.

У Т существует 2 режима работы: холостой ход и активный (нагрузка). При холостом ходе происходит потребление I от 3 до 10% от номинального значения (Iн). При активном режиме происходит возникновение I в КВО, а следовательно, появляется магнитодвижущая сила (МДС). В этом случае возможно рассчитать основной параметр Т, который называется коэффициентом трансформации k: I1/I2 = w2/w1 = 1/k, где I1, I2 — I КПО и КВО соответственно, а w2 и w1 — количество витков КВО и КПО.

Из определения k следует еще одно соотношение взаимосвязи ЭДС обмоток (e1 и e2) и токов: e1 * I1 = e2 * I2 = 1. Исходя из этого соотношения можно сделать вывод о том, что мощность (P = e * I), которую потребляет КПО, равна мощности потребления КВО при нагрузке. Мощность Т измеряется в вольт-амперах и обозначается сокращенно «ВА».

Связь между ЭДС в обмотках прямо пропорционально зависит от количества витков. Исходя из закона Ленца, обмотки Т пронизываются одним и тем же Ф, а этот факт позволяет вычислить k еще одним способом. Основываясь на законе индукции для мгновенных значений ЭДС, получаются следующие равенства для КПО и КВО:

  1. e1 = — w1 * dФ/dt * E-8.
  2. e2 = — w2 * dФ/dt * E-8.

Соотношение dФ/dt — величина изменения Ф за единицу времени (по закону, описывающему переменное U). На основании выражений для мгновенных значений ЭДС выводится зависимость ЭДС для каждой обмотки от количества витков: e1/e2 = w1/w2. Это утверждение справедливо также и не для мгновенных показателей, отсюда следует, что e1 = U1, e2 = U2. Произведя замену величин, получаются следующие соотношения: e1/e2 = U1/U2 = w1/w2 = k.

По коэффициенту трансформации Т делятся на понижающие и повышающие. Для поиска k необходимо воспользоваться несколькими способами:

  1. По паспорту.
  2. Практическим путем.
  3. Применение моста Шеринга.
  4. Использование УИКТ.

Очень часто радиолюбители пользуются практическим определением этого параметра. Хотя он и не совсем точный. Для расчета блока питания этого способа вполне достаточно.

Паспорт к Т не всегда получается найти. Для определения k используются 2 вольтметра (1 для КПО, 2 — для КВО), затем измеряется несколько раз U на обмотках. После этого рассчитывается k при нескольких значения и берется среднее его значение.

Расчет мощности

Расчёт мощности трансформаторовДля выбора Т в качестве источника питания следует рассчитать допустимую мощность потребителя или группы потребителей. Существует 2 варианта побора Т: выбор по таблице и осуществление расчета. Узнать мощность трансформатора достаточно просто, необходимо воспользоваться формулой определения мощности: P = U * I. Наиболее точный вариант — выполнение расчета Т в качестве источника питания.

В наличии есть Т, полная мощность которого равна 180 ВА. Необходимо выяснить возможность его применения в качестве источника питания мощностью 160 ВА. Этот метод позволяет осуществить выбор трансформатора по мощности по таблице.

Коэффициент загрузки Т: kз = Sр/Sтр. Sр — полная расчетная мощность: Sp = P/cosф = 180/0,8 = 225 ВА. Коэффициент cosф принимается равным 0,8. Мощность силового Т Sтр = 160 ВА. Исходя из этого, kз = 225/160 = 1,4 (>1). Если взять Т мощностью 250 ВА, то kз = 225/250 = 0,9 (<1).

Максимально допустимые нагрузки при температуре 30 градусов следует выбрать из таблицы 1.

Таблица 1 — Допустимые максимальные нагрузки Т в летний период при температуре 30 градусов:

Таблица для расчёта мощности трансформаторов

В основном Т долго работать не будет при нагрузке, а в режиме холостого хода он потребляет около 65% от номинальной мощности: S = 225 * 0,65 = 146,25 ВА.

Коэффициент К1 рассчитывается следующим образом: К1 = 146,25/160 = 0,91 (начальная нагрузка Т). По таблице при К1 = 0,9 при Sтр = 160 ВА Т проработает 0,5 часов. Этот вариант недопустим. Следовательно, необходимо выбрать Т с запасом мощности — 250 ВА.

Самостоятельный расчет

Для изготовления Т необходимой мощности следует выполнить расчет самостоятельно. Если известно U и максимальный I, который должна генерировать КВО, то P вторичной цепи рассчитывается по следующей формуле: P2 = U2 * I2. При коэффициенте полезного действия (КПД=0,8) Т мощность КПО вычисляется следующим способом: P1 = P2/0,8 = 1,25 * P2.

Самостоятельный расчёт мощности трансформаторов

Передача мощности с одной обмотки на другую осуществляется при помощи Ф в магнитопроводе, следовательно, от P1 зависит площадь поперечного сечения сердечника S, который равен квадратному корню из P1 (в ваттах): S = sqrt (P1) (сантиметры квадратные). Исходя из значения S, определяется количество витков w на 1 В: w = 50/S. Число витков обмоток вычисляется по формулам: w1 = w * U1 и w2 = w * U2 + (w * U2 * 0,1).

Ток первичной обмотки рассчитывается по формуле: I1 = P1/U1. Диаметры (d) провода обмоток определяются по значениям токов, а допустимая плотность тока для Т равна 2 А/кв.мм: d = 0,8 * sqrt (I). Площадь поперечного сечения рассчитывается по формуле: S = 3,1416 * d * d/4.

Пример вычисления основных параметров

Необходимо изготовить и рассчитать Т для блока питания.

Калькулятор расчёта трансформатора

Т должен иметь следующие параметры:

  1. Первичная обмотка 220 В.
  2. Вторичные обмотки: 660 В — 100 мА и 6 В — 5 А.
  3. Общая мощность КВО: P2 = 660 * 0,1 + 6 * 5 = 96 Вт.
  4. Мощность первичной цепи: P1 = 1,25 * 96 = 120 Вт.
  5. Площадь сечения сердечника: S = sqrt (120) = 10,95 = 11 кв. см.
  6. Число витков на 1 В: w = 50/11 = 4,54 = 5.
  7. Ток первичной обмотки: I1 = 96/220 = 0,436 А.

Число витков и d:

  • КПО: w1 = 5 * 220 = 1100 и d = 0,8 * sqrt(0,436) = 0,53 кв. мм.
  • КВО — 660 В: w2 = 5 * 660 + (5 * 660 * 0,1) = 3300 + 330 = 3630 и d = 0,8 * sqrt (I) = 0,25 кв. мм.
  • КВО — 6 В: w2 = 5 * 6 + (5 * 6 * 0,1) = 30 + 3 = 33 и d = 1,79 кв. мм.

Площадь поперечного сечения сердечника (выбор уже готового) составляет Sм = 5 * 4 = 20 кв. см = 2000 кв. мм. Проверка размещения обмоток, исходя из параметров магнитопровода:

  1. Для КПО диаметр с учетом изоляции: d1из = 0,63 мм.
  2. Для КВО: d2из = 0,35 мм и d2из = 1,89 мм.

Для КПО: S = 0,8 * 0,63 * 1100 = 554,4 кв. мм. Для КВО: S = 0,8 * (0,35 * 3630 + 33 * 1,89) = 1332,87 кв. мм. Общая площадь S = 554,4 + 1332,87 = 1887,27 кв. мм. Проверка выполнения неравенства: Sм > S: 2000 > 1887,27 (выполняется, следовательно, магнитопровод подходит для Т).

Таким образом, выбор трансформатора по мощности для решения конкретной задачи можно сделать при помощи таблицы или рассчитать и изготовить его самостоятельно. Последний вариант позволяет более гибко и качественно подойти к выбору Т для какого-либо потребителя. Однако подход выбора уже готового Т значительно экономит время.

с чего начать? / Статьи и обзоры / Элек.ру

При выборе силового трансформатора не стоит ограничивать себя таблицей основных показателей устройства. Все «за» и «против» должны в этом вопросе иметь максимальное количество точек соприкосновения, т.е. тех факторов, с которыми придется столкнуться в ходе работы рабочему персоналу, обслуживающего трансформатор. Компания ДКС предлагает ознакомиться с некоторыми из них и понять, какие именно станут решающими аргументами в пользу выбора того или иного силового трансформатора.

На что следует обращать внимание при выборе трансформатора

При выборе силового трансформатора необходимо обратить внимание на его нагрузку и область применения. Но чтобы решить задачу, следует правильно поставить вопрос. В данном случае их основных будет три:

  1. Мощность выбранного трансформатора является достаточной для того, чтобы справляться с предполагаемой нагрузкой, так же, как и с определенной величиной перегрузки?
  2. Возможно ли увеличение номинальной мощности трансформатора при возможном увеличении нагрузки?
  3. Срок службы трансформатора? Стоимость трансформатора, стоимость монтажа, пусконаладки и обслуживания?

Если эти вопросы все еще остались открытыми, то предлагаем воспользоваться конфигуратором ДКС, специально разработанный специалистами компании для решения подобных задач.

Рассмотрим факторы подробнее

Стоимость силового трансформатора и его номинальная мощность связаны с перечнем оценочных факторов:

При выборе силового трансформатора необходимо определить:

  • первичное напряжение
  • вторичное напряжение (необходимое для питаемого оборудования)
  • частота (в Гц) и фазы (одно- или трехфазные?)
  • нагрузка в кВА; с учетом возможного дальнейшего роста
  • где именно будет установлен силовой трансформатор?
  • необходим ли нестандартный трансформатор?

1. Область применения трансформатора

От сферы применения зависит вид нагрузки (амплитуда, продолжительность и распространение нагрузок с линейными и нелинейными характеристиками). Если стандартные параметры не соответствуют требованиям специального применения, тогда следует обратиться к производителю, чтобы он изготовил трансформатор с желаемыми эксплуатационными характеристиками, размерами и другими показателями. К слову, сделать это могут не все на нашем рынке, либо ценник будет изрядно кусаться.

2. Тип изоляции (с жидким диэлектриком или сухая)

При выборе типа изоляции необходимо обратить внимание на следующие преимущества и недостатки:

Безопасность

Применение в силовом трансформаторе литой изоляции позволяет обеспечить высокий уровень пожаробезопасности. Токсичность выделяемых газов при горении (F1).

Легкость обслуживания

Так как в сухих трансформаторах в качестве охлаждающего элемента выступает воздушный поток, который возобновляется непрерывно, то необходимость чистки и замены масла (как в масляном трансформаторе) исключается. Следовательно, сервисного обслуживания во время срока службы не требуется, как и устранения загрязнения вследствие утечек трансформаторного масла.

Малые весогабаритные характеристики

Применение литой обмотки в сухих трансформаторах дает возможность в тех же габаритах получить трансформаторы для использования в сетях с более высоким уровнем напряжения.

Простота эксплуатации

Обмотки трансформатора изолированы при помощи специального диэлектрического лака, который обеспечивает стабильную работу устройства с высоким коэффициентом магнитной индукции. Это дает возможность установки трансформатора рядом с низковольтным оборудованием внутри помещений. Уменьшение магнитной нагрузки, а также применение системы шихтовки Step-lap с двойным лазерным срезом для стали сердечника послужили снижению уровня шума и потери холостого хода.

Стойкость к атмосферным воздействиям

Учитывая расположение РФ сразу в нескольких климатических зонах, трансформаторы ДКС разработаны под УХЛ с нижним значением температуры при транспортировании, хранении и эксплуатации до −65 ºС. Для усиления механической прочности каждый слой обмотки армируется ВН сеткой из стекловолокна с двух сторон. А благодаря стальному кожуху степень пылевлагозащиты трансформатора достигается IP23-IP31, обеспечивая тем самым стабильную работу оборудования в местах с высокой влажностью (E2).

Сухой трансформатор

Выбор трансформатора

В первую очередь сухие трансформаторы с литой изоляцией применяются в местах, где особое значение имеет высокий уровень безопасности людей, оборудования и окружающей среды. Благодаря отсутствию в конструкции поддерживающих горение материалов, трансформаторы ДКС могут быть установлены непосредственно в помещении и не требуют строительства отдельно стоящих трансформаторных подстанций. Это позволяет размещать трансформаторы вблизи центра нагрузки, что в результате значительно уменьшает потери электроэнергии посредством оптимизации цепей низкого напряжения в схеме электроснабжения.

Трансформаторы с жидким диэлектриком. Температурные факторы

Масло в трансформаторах с жидким диэлектриком используется как изолирующая, так и охлаждающая среда. Конструкция обмоток предопределяет собой цилиндрическую форму. Между слоями обмотки устанавливаются распорки, что позволяет жидкости циркулировать между обмотками и сердечником и тем самым охлаждать трансформатор.

Трансформаторы с изоляцией сухого типа. Температурные факторы

В трансформаторах сухого типа изоляция обеспечивает электрическую прочность диэлектрика и его возможность противостоять более высоким температурам в сравнении с масляными трансформаторами, в зависимости от класса используемого изоляционного материала. В трансформаторах ДКС применяется изоляция класса F.

Классификация изоляционного материала

3. Выбор материала для обмоток

Для изготовления обмоток силовых трансформаторов используется медь или алюминий. Силовые трансформаторы с алюминиевыми обмотками имеют низкую себестоимость и по своим характеристикам мало чем отличаются от обмоток с медным проводником. Тем не менее, трансформаторы с медными обмотками немного компактнее, медь лучше проводит ток. Важно понимать какой именно материал обмоток подойдет для ваших конкретных требований. Компания ДКС может предложить трансформаторы как с алюминиевыми, так и с медными обмотками.

4. Внешние факторы (условия окружающей среды)

Необходимо обратить особое внимание на защиту трансформатора (сердечник, обмотки, вводы /выводы и вспомогательное оборудование) при эксплуатации в суровых условиях окружающей среды. В трансформаторы с жидким диэлектриком должны иметь герметичную конструкцию, для защиты внутренних компонентов. Основная проблема трансформаторов с жидким диэлектриком коррозии, избежать ее можно только при использовании баков из нержавеющей стали. Сухие трансформаторы с литой изоляцией имеют степень защиты от влаги и пыли IP00. Для агрессивных условий окружающей среды компания ДКС разработала трансформаторы под УХЛ с нижним значением температуры при транспортировании, хранении и эксплуатации до −65 °С. Благодаря защитному кожуху степень пыле-влагозащиты трансформатора достигается IP23-IP31, обеспечивая тем самым стабильную работу оборудования в местах с высокой влажностью (E2).

5. Переключатели входного напряжения

Выходное напряжение трансформатора может измениться, если будет изменяться входное напряжение. Трансформаторы, подключенные к электрической сети, зависимы от ее напряжения. При изменении в работе электрической сети либо при подключении к ней новых нагрузок, входное напряжение к вашему оборудованию может понизиться или возрасти. Для компенсации напряжения, трансформаторы оборудуют переключателями напряжения без нагрузки (ПБВ), иногда РПН (под нагрузкой). Эти устройства состоят из ответвлений или выводов, соединенных в разных местах и с первичными обмотками. В трансформаторах с жидким диэлектриком переключатель ПБВ находиться непосредственно в баке трансформатора и для переключения напряжения необходимо соответственно снять крышку с бака трансформатора тем самым нарушив герметичность. В отличие от трансформаторов с масляным диэлектриком ПБВ располагается на обмотках высокого напряжения и разбора трансформатора не требует.

6. Перегрузка

Работа трансформатора может повлечь за собой его перегрузку. Что может последовать за перегрузкой и может ли трансформатор выдержать перегрузку без развития проблем и возникновения замыканий? Решением данного вопроса может послужить достаточная теплоотдача. При перегрузке трансформатора на 20% сверх допустимой номинальной мощности на протяжении определенного времени, тепло выделенное обмотками может быть выведено из трансформатора в зависимости от продолжительности перегрузки. При циркуляции теплообмена вероятность короткого замыкания не велика. Но, определенно, может пройти такой период времени, после которого трансформатор не может оставаться в состоянии перегрузки. Трансформатор неизбежно начнет перегреваться и может вызвать серьезные проблемы, постепенно создавая условия для возникновения короткого замыкания и отключения подачи энергии. В трансформаторах с жидким диэлектриком охлаждение происходит за счет масла. В сухих трансформаторах с литой изоляцией охлаждение происходит за счет циркуляции воздуха (в данном случае увеличить скорость теплообмена можно с помощью принудительной вентиляции). На заметку: в трансформаторах ДКС принудительная вентиляция увеличивает номинальную мощность на 40%.

7. Размещение силовых трансформаторов рядом с нагрузкой

Сокращение расстояния низковольтной линии между силовым трансформатором и основной нагрузкой полезны по нескольким причинам:

  • снижение потерь энергии и меньшего падения напряжения;
  • снижается стоимость низковольтной линии электропередач до потребителя.

Необходимо помнить то, что установка масляного трансформатора в помещении имеет ограничения. Установка сухого трансформатора не имеет ограничений и не требует согласования.

8. Дополнительные аксессуары

Нужно помнить, что все дополнительные аксессуары устанавливаются в случае индивидуальной необходимости и увеличивают конечную стоимость проекта.

Например:

  • крюки для перемещения;
  • принудительная вентиляция;
  • защитный кожух IP23-IP31;
  • виброопоры.

Пример выбора мощности силового трансформатора

Хочу привести реальный пример выбора мощности силового трансформатора в одном из недавно выпущенных мною проектов. Проект проходил экспертизу и получил замечание по выбору силового трансформатора, вернее нужно было обосновать мощность силового трансформатора.

По техническим условиям было разрешено 180 кВт по третьей категории электроснабжения. На данном этапе я делал лишь одну позицию (склад) с потребляемой мощностью 20 кВт, остальные позиции будут запроектированы позже.

Естественно выбор силового трансформатора я делал исходя из мощности 180 кВт.

Вы, наверное, помните, что у меня же есть статья:

Выбор силового трансформатора по расчетной мощности.

В этой статье я привел ссылки некоторых нормативных документов, поэтому повторяться не буду. Там же я привел и методические указания по выбору силового трансформатора.

На эту тему имеется еще одна статья:

Перегрузочная способность масляных силовых трансформаторов.

Так что обязательно ознакомьтесь, о чем я писал ранее.

В общем, суть такая, что если выбирать трансформатор по методическим указанием, то нам достаточно мощности силового трансформатора 160 кВА. Именно на это и ссылался эксперт. В проекте выбрана трансформаторная подстанция 250 кВА в металлическом корпусе. Самый дешевый вариант.

Я в свою очередь привел ссылку из ТКП 45-4.04-297-2014 п.11.20. Там сказано, что коэффициент загрузки однотрансформаторной подстанции должен быть 0,9-0,95. Там же написано, что выбор трансформатора должен производиться на основании технических характеристик трансформаторов от заводов-изготовителей.

Рассчитаем коэффициент загрузки трансформатора.

Кз=Sр/Sтр

– полная расчетная мощность, кВА;

Sтр – мощность силового трансформатора, кВА.

Sр=Р/cos=180/0,8=225кВА.

Коэффициент мощности я принял 0,8.

Кз(250)=225/250=0,9

Кз(160)=225/160=1,4

А теперь представим,  лето, температура воздуха 30 градусов. Как вы думаете, металлическая оболочка будет сильно греться на солнце? В таких условия воздух вокруг трансформатора, на мой взгляд, будет тоже не менее 30 градусов, а скорее всего и больше, т.к. КТП будет под прямыми солнечными лучами. Утверждать не буду, это лишь мои догадки.

Следующая таблица показывает нормы максимально допустимых систематических нагрузок при температуре 30 градусов.

Нормы максимально допустимых систематических нагрузок

Проверим трансформатор 160 кВА. Sр=225 кВА – это не значит, что трансформатор постоянно будет загружен на такую мощность. На такую мощность он будет загружен лишь пару часов в день. В остальное время он будет загружен, скажем на 65 % от этой расчетной мощности.

225*0,65=146,25 кВА.

Тогда К1=146,25/160=0,91, примем значение К1=0,9 – начальная загрузка трансформатора.

Согласно приведенной таблице и при температуре окружающей среды 30 градусов, К1=0,9 трансформатор 160 кВА в нормальном режиме с Sр=225 кВА (Кз=К2=1,4)  сможет работать около…0 часов. В таких условиях максимальный коэффициент  загрузки трансформатора 1,27 в течение 0,5 часа.

Конечно, следует еще привести таблицу норм допустимых аварийных перегрузок.

Нормы допустимых аварийных перегрузок

По этой таблице наш трансформатор сможет работать чуть больше 2 часов.

Не смотря на то, что трансформатор способен выдерживать аварийные перегрузки, следует иметь ввиду, что в таких режимах трансформатор очень сильно изнашивается и срок эксплуатации его сокращается.

Разумеется, по графику нагрузки значительно проще выбрать мощность силового трансформатора. В наших условиях проектирования, я считаю всегда должен быть небольшой запас прочности оборудования (резерв мощности), поскольку энергосистема развивается, количество потребляемой электроэнергии увеличивается и все чаше в ТУ пишут одним из требований: проверка существующих трансформаторов, т.е. многие подстанции загружены до предела,  а для небольших предприятий это может оказаться проблемой.

Вывод: трансформатор 160 кВА не сможет нормально работать при наших условиях эксплуатации, поэтому в проекте выбран трансформатор 250 кВА.

Кстати, энергонадзор согласовал КТП без проблем.

Вы согласны со мной либо нужно тупо руководствоваться методическими указаниями?

Советую почитать:

Понижающий трансформатор и все аспекты его выбора

Большинство бытовых приборов не могут напрямую подключаться к электросети в 220В. Для их питания необходимо пониженное напряжение и получить его можно только при использовании специального оборудования. К таким приборам относится понижающий силовой трансформатор. Этот прибор способен преобразовывать переменное напряжение одного значения в такой же параметр, только с другими показателями. Он широко используется в радиоэлектронной и электротехнической отраслях промышленности, в быту.

Конструктивные особенности

Схема трансформатора

Основным блоком агрегата является ферромагнитная катушка. Ее обмотки выполнены из медных проводов. По принципу действия они делятся на первичные – на них подается напряжение из сети и вторичные – с которых оно снимается потребителями.

Между собой их связывает переменное магнитное поле, наводимое в сердечнике трансформатора электронного понижающего. При этом между ними отсутствует электрический контакт. У таких моделей число витков на первичной обмотке больше, чем у вторичной, что приводит к уменьшению параметров на выходе.

Все рабочие детали трансформатора напряжения понижающего, располагаются в корпусе, но есть приборы и не имеющие его. Наличие или отсутствие кожуха зависит от технологии изготовления устройства. В одном случае – это сердцевина, заключенная в обмотке, выполненной в стержневом виде. Во втором сердечник находится внутри броневого вида, при котором витки могут располагаться как вертикально, так и горизонтально.

На чем основывается работа оборудования

Функционирование таких приборов основывается на законе Фарадея или явлении электромагнитной индукции. Она заключается в следующем. На первичную обмотку трансформатора электронного понижающего поступает напряжение. При этом переменный ток проходя через нее приводит к созданию магнитного поля. Это обеспечивает появление напряжения во вторичной обмотке за счет возбуждения электродвижущей силы.

Смотрим видео, принцип работы прибора:

Соотношение параметров приблизительно соответствует числу витков в соответствующих обмотках трансформаторов понижающих однофазных. Поэтому уменьшение напряжения приводит к повышению силы тока. Кроме этого в процессе работы оборудования неизбежны незначительные потери энергии, не превышающие 2-3% и мощности.

Виды и их особенности

Приборы, используемые для преобразования напряжения, представлены различными модификациями. В зависимости от типа сердечника они подразделяются на:

  1. Стержневые;
  2. Броневые;
  3. Тороидальные.

Технические характеристики у понижающих трансформаторов почти не отличаются, в то время как способ изготовления у каждого из представленных видов особенный.

Смотрим видео, виды и их классификация:

Среди всего разнообразия моделей наибольшее распространение получили сухие трансформаторы напряжения понижающие. Но очень часто находят применение и силовые приборы, работающие на масле.

Они могут быть:

  • Одно;
  • Трехфазными.

Трансформатор электронный понижающий первого типа получает питание от сети, в которой ток течет по четырем проводам, три из которых – это фаза и один – ноль. Однофазные получают ток, протекающий по двух проводам. В жилых домах обычно используются именно такие сети.

Силовые масляные трансформаторы понижающие трехфазные имеют идеальный единичный коэффициент, а некоторые из них могут преобразовывать напряжение равное 600В. Обычно такими параметрами характеризуются крупногабаритные приборы, использующиеся на производстве. Есть среди трансформаторов электронных понижающих, и компактные, предназначенные для применения в быту.

Различают оборудование и по выходному напряжению. Оно может быть, как 12 так 380В. Возможно некоторые собирают трансформатор своими руками. Особых сложностей в этом нет, а инструкцию и схему можно легко найти в сети.

Основные характеристики

Маркировка оборудования зависит от его параметров. И чтобы в ней разобраться необходимо знать все его технические характеристики. Поскольку трансформаторы электронные понижающие бывают одно- или трехфазными, то и параметры у них будут соответственно отличаться.

Виды и типы

Основными для рассматриваемых приборов считаются такие показатели, как:

  • Частота;
  • Мощность;
  • Выходное напряжение;
  • Габариты;
  • Вес.

И если первый параметр будет неизменным у различных моделей, то все остальные имеют существенные различия. Причем габариты и все увеличиваются вместе с возрастанием мощности. Наибольшего значения эта характеристика достигает у больших промышленных устройств. Но и габариты такого трансформатора электронного понижающего весьма впечатляющие.

В то же время бытовые модели отличаются небольшими размерами и массой. Они легки в транспортировке и монтаже.

Как правильно выполнить расчет?

Отличие понижающих приборов от повышающих состоит в соотношении количества витков на обмотках. И именно этот параметр называется коэффициентом трансформации напряжения. У всех повышающих моделей этот параметр меньше единицы.

Выполнить расчет понижающего трансформатора можно основываясь на законах физики. Выполняется это следующим образом. Доказанным фактом является утверждение, что работа прибора основана на явлении электромагнитной индукции. Ток, проходя по обмотке приводит к появлению магнитного потока. Он возбуждает ЭДС. А так как сердечник трансформаторов напряжения понижающих бытовых изготавливается из стали, то он концентрирует магнитное поле с потоком внутри него.

Определить значение ЭДС в одном витке можно основываясь на законе Фарадея по формуле:

е=Ф, где

Ф- производная потока магнитной индукции по времени.

Основываясь на этом равенстве и проведя ряд вычислений получаем следующее соотношение:

U1/U2 ≈ E1/E2 = N1/N2 = К, где

U1 и U2 – действующие напряжения;

E1 и E2 – ЭДС;

N1 и N2 – число витков.

Если исходя из этой формулы коэффициент получается больше 1, значит, ваш прибор понижающий.

Назначение обмоток

Устройство трансформатора напряжения понижающего, было рассмотрено выше, а в этом разделе будет рассказано об одном из самых важных элементов. Это первичная и вторичная обмотки. Они располагаются на магнитопроводе понижающих трансформаторов. Причем ближе к нему находится та, на которой более низкое напряжение. Такое расположение не случайно, так как ее легче изолировать.

Смотрим видео, правильное подключение трансформатора к сети:

Между ними находятся прокладки или другие изоляционные детали, которые чаще всего выполняются из электрокартона.

Первичная обмотка подключается к источнику переменного напряжения, а вторичная к устройствам, потребляющим энергию. Причем к одному трансформатору может быть одновременно подключено несколько таких приборов.

Для выполнения обмотки используются провода, изолированные кабельной бумагой. Они могут иметь различные типы сечения:

  • Круглое;
  • Прямоугольное.

По способу расположения они делятся на:

  • Располагаемые на стержнях концентрически;
  • Дисковые наматываемые в порядке чередования.
Преимущества и недостатки

Использование рассматриваемого оборудования не только в промышленности, но и в быту объясняется не только необходимостью снижения напряжения до безопасной для человека величины 12В. Такие приборы отличаются нетребовательностью к входным параметрам. Они способны работать при напряжении в 110В, обеспечивая постоянное его значение на выходе.

К недостаткам понижающих трансформаторов можно отнести;

  • Ограниченный емкостной ресурс, ограниченный 5 годами;
  • Малую мощность, лучшие из них не способны обеспечивать более 30 Вт;
  • Более высокая стоимость, чем у индуктивных моделей.

Но в то же время у них не мало и преимуществ. Одним из основных являются более компактные габариты и вес, что делает из более удобными в монтаже и транспортировке. Также эти приборы не создают радиопомех и способны обеспечить плавное увеличение напряжения. Понижающие трансформаторы меньше нагреваются. Этот параметр очень часто оказывается решающим при выборе оборудования.

Оснащение некоторых моделей терморегуляторами позволяет им отключаться при перегреве электросхем и КЗ, тем самым продлевая срок службы.

 

Как правильно подобрать понижающий трансформатор? / Статьи

Как правильно подобрать понижающий трансформатор

 

Значительная доля интересной и редкой на нашем рынке техники, не получило широкого распространения — по причине того, что в целом такая техника была ориентирована на внутренний рынок страны производителя. И как это часто бывает, стандарты электропитания существенно отличаются. Рассмотрим на примере техники из Японии, напряжение в сети 100В, а не 220В как мы привыкли. Или разъемы вилки питания, стандарты в Азии и Европе, также существенно отличаются. Тут к нам приходят на помощь различные модификации понижающих, повышающих трансформаторов. Так какой трансформатор выбрать? И на какие параметры трансформатора стоит обратить внимание, при его непосредственном выборе? Именно на эти вопросы, мы постараемся ответить в этом посте. Информация будет постоянно обновляться, мы будем дописывать какие-либо существенные аспекты с которыми столкнемся сами, либо кто-то из членов клуба Ecolife Systems. Забегая вперед, хотим сказать, что варианты с тиристорным преобразователем и инвертором напряжения, не будут рассматриваться. Т.к. основная цель – это знакомство обывателя, с уже готовыми реализациями для бытового использования.

Понижающий трансформатор

Дословно принцип устройства трансформатора, можно определить так:

На вход устройства подаётся напряжение (при этом в обмотке возникает электродвижущая сила, которая порождает магнитное поле). Это поле пересекает витки второй катушки, где возникает своя электродвижущая сила самоиндукции. В свою очередь во второй катушке тоже возникает напряжение, которое будет отличаться от первичного во столько же раз, во сколько отличается количество витков обеих обмоток.

Существует множество модификаций трансформаторов напряжения: понижающие однофазные, двухфазные и трёхфазные. Существуют автотрансформаторы и трансформаторы тока. Не вдаваясь в детали и многообразие модификаций, остановимся только на понижающих однофазных трансформаторах. В качестве примера возьмем: учитывая что у нас есть прибор с мощностью в 700 Ватт, подходящий по мощности, а именно превышающий мощность прибора процентов на 25-30. понижающий японский трансформатор Kashimura NTI-18 (мощность 100 Ватт) или его аналог Kashimura NTI-18 NF (мощность 100 Ватт), произведенный в Китае, для внутреннего рынка Японии. Оба аппарата практически идентичны как внешне, так и по параметрам. И небольшим отличием скорее будет только выходное напряжение, цена и качество исполнения.

Kashimura NTI-18

Фото 2 Kashimura NTI-18

Мощность трансформатора 1000 Ватт

Kashimura NTI-18NF

Фото 2 Kashimura NTI-18NF

Мощность трансформатора 1000 Ватт

  • выходное напряжение. Японский аналог — Kashimura NTI-18, выдает на выходе, твердые 100 вольт, когда как вторая модель 110 вольт, этот параметр смутил многих, но видимо существует какое-то обоснование. Входные вилки и выходную розетку будет довольно трудно перепутать, существенное отличие — это круглое и плоское сечение контактов вилки и технических отверстий розетки.

  • цена. В зависимости от модели цены отличаются, в нашем варианте японец существенно дешевле оппонента, но довольно трудно найти его на рынке.

  • качество исполнения. Бытует мнение о ненадлежащем качестве товаров произведенном в Китае, можем смело Вас заверить, касательно бренда Kashimura, аппараты экспортные превзошли наши ожидания! Видимо стоит учитывать, что товар произведенный для внутреннего рынка Japan, проходит надлежащим образом сертификацию устройств для внутреннего рынка.

Подведем итоги, на что нужно обратить внимание при выборе понижающего трансформатора для Вашего оборудования. Во-первых, уделяем большое внимание мощности и напряжению на выходе трансформатора. Во-вторых, не менее существенным параметром будет, производитель устройства. Этот параметр скажется на качестве и гаранте приобретаемого оборудования. Есть еще ряд существенных параметров, всё что связанно касательно корпуса устройства, использования-наличия заземления, характеристик внешнего воздействия (некоторые из продуктов предусматривают то, что оборудование может находиться в помещении с повышенной влажностью, кухня и т.д.). Всё это и многое другое мы будем постепенно более детально рассматривать на примере различной продукции японских брендов. Поэтому периодически просто проверяйте нашу ленту новостей или же просто подпишитесь на нашу рассылку, мы будем держать Вас в курсе последних наших обновлений.

ДРУГИЕ СТАТЬИ


Технологии хранения щелочной воды

17 марта 2019, 22:32