Posted on

Содержание

Подключение трехфазного двигателя к трехфазной сети

Содержание:
  1. Основные схемы подключения
  2. Использование схемы «звезда-треугольник»
  3. Трехфазный двигатель с магнитным пускателем
  4. Видео

Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Подключение трехфазного электродвигателя к однофазной сети

3-х фазный мотор можно использовать для работы от бытовой сети переменного тока одной фазы напряжением 220 вольт. Переделка возможна, даже если нет большого опыта электротехнических работ с минимальным навыком монтажа. Затраты на дополнительные элементы схемы малы.
Подключение трехфазного электродвигателя к однофазной сети

Виды соединения обмоток


Трехфазный двигатель содержит статор – неподвижную часть с закрепленными проволочными катушками. Они смещены относительно друг друга по окружности на 120 угловых градусов. Переменный ток, проходя через обмотки, создает изменяющееся магнитное поле, толкающее подвижную часть двигателя – ротор, или как называли раньше – якорь.
Известно два способа включения обмоток между собой:
Подключение трехфазного электродвигателя к однофазной сети
  • Звезда — первые концы обмоток соединены между собой, а фазные проводники сети подключены на вторые выводы катушек.
    Подключение трехфазного электродвигателя к однофазной сети
  • Треугольник – катушки соединены последовательно друг за другом, конец третьей обмотки включен к началу первой. Схематически образуют треугольник, к вершинам которого подключены фазы.
    Подключение трехфазного электродвигателя к однофазной сети

Этапы выполнения работы:


1. Внимательно осмотрев электродвигатель, отыскать панельку (обычно, алюминиевая пластинка) с информацией о параметрах. Не нужно браться за переделку мотора мощностью более 1 кВт (1kW). Надпись DY 220/400 означает, что мотор допускается включать как по схеме «треугольник» (D), так и «звезда» (Y). Рабочее напряжение составляет 220 вольт одно-/либо 400 трехфазной. Клеммы, обозначенные L(1÷3), для подключения фаз.
2. Стандартно катушки 3-фазного электромотора включены «звездой». Изменение положения полосковых перемычек создаст схему «треугольник».
3. После этого L1 соединим с фазной жилой, а на L3 — нулевой провод. Среднюю клемму (L2) подключим на сдвигающий конденсатор, второй вывод которого соединяем с фазой или нулем. Это определяет направление вращения якоря. Мощность двигателя 100 Вт потребует емкости 8÷10 мкФ, для 0,25 кВт нужен конденсатор 20 мкФ.
4. Удобно оперативно менять направление вращения, переключая конденсатор с фазного проводника на нулевой. Двухполюсный выключатель подаст питание двигателя.

Подключение к однофазной сети


Снять крышку коммутационной коробки электродвигателя, получив доступ к перемычкам.
Предварительно открутив гайки крепления, поменять положение перемычек, изменив схему соединения обмоток на «треугольник». После этого гайки надежно затянуть и установить на место крышку коробки, отметив провода подключения 1, 2 и 3 фазы.
Подключение трехфазного электродвигателя к однофазной сети
Определить среднюю обмотку, перерезать жилу, зачистить изоляцию. Концы обжать клеммным наконечником, если они есть, подключить в разрыв конденсатор.
Подключение трехфазного электродвигателя к однофазной сети
Удобно, надежно коммутировать схему при помощи клеммных пар. Подключив на соединитель провода от двигателя и конденсатора, с другого конца подаются заземление, фаза и нуль. Аккуратное затягивание винтов клемм обеспечит надежный электрический контакт.
ВАЖНО! В двигателе есть проводник с желто-зеленой изоляцией. Он подключен к корпусу. Соединенный через третьи контакты вилки шнура и розетки с заземлением, защищает от пробоя напряжения по массе мотора. К нему нельзя подключать другие провода электрической сети – только желто-зеленый конец сетевой вилки.
Работоспособность схемы можно проверить подключением провода от конденсатора на фазу и включив питание 220. Если все детали исправны, двигатель должен вращать ротор в одну сторону.
Сняв питание, переключаем конденсатор на нулевой проводник – мотор вращает в обратную сторону. Выбрав подходящее направление, оставляем нужное подключение постоянным.
Подключение трехфазного электродвигателя к однофазной сети
Оперативную смену стороны вращения на противоположную, обеспечит переключатель подключения конденсатора к фазе или нулю.
ВАЖНО! Менять направление разрешается только после отключения питания и полной остановке ротора.

Безопасность


Переделка электродвигателя связана с работой в сети 220 вольт. Неосторожное обращение, неаккуратность в работе связана с угрозой жизни или здоровья. Не оставляйте соединений без надежной изоляции. Ограничивайте доступ посторонних к монтажу до его завершения.

Смотрите видео


Пуск трёхфазного двигателя без конденсаторов: 4 схемы

Асинхронные электродвигатели просты по конструкции, дешевы, массово применяются в различных производствах. Не обходятся без них домашние мастера, запитывая их от 220 вольт с пусковыми и рабочими емкостями.

Но, есть альтернативный вариант. Это — подключение трёхфазного двигателя к однофазной сети без конденсаторов, который тоже имеет право на существование.

Ниже я показываю 4 схемы реализации такого проекта. Вы можете выбрать для себя любой из них, более подходящий под ваши личные интересы и местные условия эксплуатации.

Содержание статьи

С этой темой я впервые столкнулся в конце 1998 года, когда к нам в электролабораторию РЗА пришел друг связист с журналом Радио за №6 от 1996 года и показал статью про безконденсаторный запуск.

Мы сразу решили испытать ее в деле, благо все детали, включая тиристоры и подходящий двигатель, у нас имелись. Как раз был перерыв на обед.

Для проверки спаяли электронный блок навесным монтажом. Справились где-то меньше, чем за час. Схема заработала практически без наладки. Оставили ее для наждака.

Порадовали маленькие габариты блока и отсутствие необходимости подбирать конденсаторы. Особых отличий в потере мощности по сравнению с конденсаторным пуском замечено не было.

Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов

Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.

Асинхронный двигатель

Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора.

Характеристики электродвигателя

Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.

Три обмотки статора необходимо подключать по схеме треугольника.

Схема статора

Их выводы собираются на клеммной колодке тремя последовательными перемычками.

Схема подключения обмоток

Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.

Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».

Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.

Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.

Принцип работы электронного ключа

Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.

Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.

Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».

Виды токов

Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.

Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.

Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.

Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.

При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.

Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе

Схема двунаправленного электронного ключа

Силовая выходная часть электронного ключа, осуществляющая коммутацию обмотки, выполнена на двух мощных диодах (VD1, VD2) и тиристорах (VS1, VS2), включенных по схеме обычного моста.

Однако здесь они выполняют другую задачу: своими плечами из одного тиристора и диода поочередно шунтируют обмотку подключенного электродвигателя при достижении амплитудного значения синусоиды напряжения на схеме.

За счет такого подключения создан электронный ключ двунаправленного действия, реагирующий на положительную и отрицательную полуволну гармоники.

Диодами VD3 и VD4 осуществляется двухполупериодное напряжение сигнала, поступающего на цепи управления. Оно ограничивается и стабилизируется резистором R1 и стабилитроном VD5.

Сигналы на открытие тиристоров электронного ключа поступают от биполярных транзисторов (VT1 и VT2).

Переменный резистор R7 с номиналом на 10 килоом предназначен для регулировки момента открытия силового тиристора. Когда его ползунок установлен в минимальное положение сопротивления, то электронный ключ срабатывает при наибольшем напряжении амплитуды на обмотке B.

Максимальное введение сопротивления резистора R7 закрывает электронный ключ.

Запуск схемы осуществляют при положении ползунка R7, соответствующем максимальному сдвигу фаз токов между обмотками. После этого его сдвигают, определяют наиболее устойчивый режим работы, который зависит от приложенной нагрузки и мощности двигателя.

Все электронные детали со своими номиналами приведены на схеме. Они не являются дефицитными. Их можно заменить любыми другими элементами, соответствующими по электрическим характеристикам.

Вариант их размещения на электронной печатной плате показан на картинке. Регулировочный резистор R7 показан справа двумя подключенными проводами, синим и коричневым. Сам он не виден на фото.

Электронная плата

Силовая часть, созданная для работы с электродвигателями небольшой мощности, может выполняться без радиаторов охлаждения, как показано здесь. Если же диоды и тиристоры работают на пределе своих возможностей, то теплоотвод обязателен.

Электронный блок ключа работает под напряжением сети 220 вольт. Его детали должны быть надежно заизолированы и защищены от случайного прикосновения человеком. Меры безопасности от поражения электрическим током необходимо соблюдать.

2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия

Здесь я полагаюсь на информацию из интернета, ибо вижу, что в принципе конструкции рабочие, а принципы управления токами в обмотках те же, что предложил В Голик.

Кстати, авторы статей ссылаются на автомобильный украинский журнал «Сигнал» №4 за 1999 год. Пришлось поискать его в интернете. Однако разочаровался, там оказалась полностью перепечатанная статья из журнала Радио под авторством В Голик. Вот так…

Если знаете, где можно найти первоисточник на эту информацию, то сообщите в комментариях.

Электронные ключи, выполненные по технологии Бурлако, работают так же. Они просто выполнены из других, более усовершенствованных полупроводников, как и силовая часть.

Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик

Картинка подключения трехфазного электродвигателя упростилась. Вместо двунаправленного силового блока из двух тиристоров и диодов здесь работает один симистор VS1 серии ТС-2-10.

Электронный ключ на симисторе

Он также шунтирует одну обмотку «B» в момент достижения синусоидой напряжения амплитудного значения, когда ток параллельной цепочки минимален.

При этом создается сдвиг фаз токов в параллельных обмотках, как и в предыдущей схеме, порядка 50-80 угловых градусов, что достаточно для вращения ротора.

Работой симитора VS1 управляет ключ, выполненный на симметричном динисторе VS2 для каждого полупериода гармоники напряжения. Он получает команды от фазосдвигающей цепочки, выполненной из резистивно-емкостных элементов.

Сдвиг фазы сигнала конденсатором C дополняется общим сопротивлением R1+R2. Подстроечный резистор R2 на 68 кОм работает как R7 в предыдущей схеме, регулируя время заряда конденсатора и, соответственно, момент подключения VS2, а через него VS1 в работу.

Рекомендации автора по сборке и наладке

Схема испытывалась и предназначена для работы с электродвигателями, раскручивающими ротор до 1500 оборотов в минуту с электрической мощностью 0,5÷2,2 кВт.

На устройствах электронных ключей, работающих с мощными электродвигателями, необходимо обеспечивать теплоотвод с симистора VS1.

При наладке устройства обращают внимание на оптимальную подгонку угла сдвига фаз токов между обмотками, когда двигатель запускается и работает нормально: без шума, гула и вибраций. Для этого может потребоваться изменение номиналов у элементов фазосдвигающей цепочки.

Семисторы можно использовать другой марки. Важно, чтобы они соответствовали электрическим характеристикам. Вместо DB3 допустимо установить отечественный динистор KP1125.

Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами

Она же хорошо подходит под управление двигателями, собранными для вращения со скоростью 3000 оборотов в минуту. С этой целью у нее изменена система подключения обмоток с треугольника на разомкнутую звезду.

На картинке ниже их полярность показана точками.

Схема разомкнутой звезды

В этой ситуации создается больший крутящий момент для запуска ротора.

Рассматриваемая схема отличается от предыдущей дополнительным электронным ключом, подключенным к обмотке «A», создающим дополнительно сдвиг фазы тока. Он необходим для трудных условий работы.

Рекомендации автора по наладке и работе не изменились.

Преимущества схемы тиристорного преобразователя: автор В Соломыков

Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.

Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.

Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.

Схема тиристорного преобразователя

Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.

Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:

  1. DD1 — К176ЛЕ5;
  2. DD2 — К176 ИР2.

Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.

Логическая часть

Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.

Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.

Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.

Логика К176ИР2К176ИР2

Таблица данных К176ИР2 и состояний регистров

Число разрядов

4х2

Входы

Выход

Сторона сдвига

Направо

C

D

R

Q0

Qn

Тип ввода

Последовательно

H

Н

H

Qn-1

Тип вывода

Параллельно

B

H

B

Qn-1

Тактовая частота

2,5MHz

X

H

Q1

Qn не меняется

Рабочая температура

-45÷+85

X

X

B

H

H

Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.

К176ЛЕ5

Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.

Диаграмма работы тиристоров

Силовая часть схемы, принципы ее управления и наладки

При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.

При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.

В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.

Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.

Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.

Емкость конденсаторов предварительно рассчитывают по формуле:

С = 0.01P (Вт) / n ∙ 1 / 30n (мкФ).

При номинальной частоте вращения ротора выставляют n=1.

Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.

Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.

Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.

Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.

Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.

Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.

Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.

Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.

Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.

Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.

О подключении трехфазных электродвигателей в сеть 220в: схема подключения

Промышленность выпускает электродвигатели, предназначенные для работы в различных условиях, в том числе для сети 220 вольт. Однако у многих людей сохранились трёхфазные асинхронные электродвигатели 380В (люди старшего поколения помнят такое явление, как «принёс домой с работы»). Такие аппараты нельзя включать в розетку. Для использования таких приборов в домашних условиях и подключении вместо 380 220 вольт схема сборки и подключения электромашины нуждаются в доработке – переключении обмоток и подключении конденсаторов.

Подключение промышленного двигателя к однофазной сети

Подключение промышленного двигателя к однофазной сети

Принцип действия трёхфазного асинхронного электродвигателя

Обмотки в статоре такой машины намотаны со сдвигом в 120°. При подаче на них трёхфазного напряжения появляется вращающееся магнитное поле, приводящее в движение ротор электромашины.

При подключении к трёхфазной электромашине к сети однофазного напряжения 220 вольт вместо вращающегося поля появляется пульсирующее. Для приведения в движение электромотора в однофазной сети пульсирующее поле преобразовывается во вращающееся.

Справка. В аппаратах, изготовленных для работы в сети 220 вольт, для этого служат пусковые обмотки или особенности конструкции статора.

При включении в сеть двигателя 380 на 220 к нему подключаются фазосдвигающие ёмкости. Запуск трехфазного двигателя с 220 без конденсаторов возможен приведением во вращение ротора. Это создаст сдвиг магнитного поля, и электромашина, потеряв в мощности, продолжит работать. Так включают циркулярки и другие подобные механизмы с низким пусковым моментом.

Начала и концы обмоток

В каждой обмотке электромашины есть начало и конец. Они выбираются условно, независимо от направления намотки, однако должны соответствовать направлению намотки остальных катушек.

Важно! В электросхемах начало катушек отмечается точкой.

Соединение катушек при подключении трехфазного двигателя к сети 220В

Большинство электродвигателей предназначены для работы с линейным напряжением 0,4кВ. В этих машинах обмотки включены “звездой”. Это значит, что концы обмоток соединены вместе, а к началам подключается 3 фазы. Напряжение на каждой обмотке составляет 220В.

При включении в сеть с линейным напряжением 220В применяется соединение “треугольник”. При этом начало следующей обмотки подключается к концу предыдущей.

Некоторые аппараты мощностью более 30 кВт изготавливаются для сети с линейным напряжением 660В. В таких аппаратах при включении в сеть 0,4кВ обмотки подключаются “треугольником”.

Как подключить трехфазный электродвигатель в сеть 220в

Обмотки трёхфазной машины при включении от 220 вольт соединяются различными способами. Синхронная скорость и скорость вращения от этого не меняются.

Соединение звездой

При включении трехфазного электродвигателя на 220 вольт проще всего применить имеющееся соединение “звезда”. К двум выводам подаётся питание 220В, а к третьему оно подаётся через фазосдвигающую ёмкость. Однако при этом на каждой из катушек оказывается не 220В, а 110, что приведёт к падению мощности до 30%. Поэтому такое подключение на практике не применяется.

Соединение треугольником

Самая распространенная  схема подключения трехфазного электродвигателя к сети 220 – треугольник. При этом питание подаётся на одну сторону треугольника, а параллельно другой стороне подключаются конденсаторы. Реверс осуществляется изменением стороны треугольника, на которой находится ёмкость.

Подключение звездой и треугольником

Подключение звездой и треугольником

Изменение схемы подключения обмоток трёхфазного электродвигателя на треугольник

Самое сложное при подключении трёхфазной электромашины к бытовой сети 220 вольт – соединить её обмотки треугольником.

Изменение соединений на клеммнике

При подключении к сети 220 вольт проще всего эта операция выполняется, если провода подключены к клеммнику. На нём в два ряда установлены шесть болтов.

Соединение производится попарно, кусочками проволоки или перемычками, идущими в комплекте с двигателем.

Соединение выводов на клеммнике звездой и треугольником

Соединение выводов на клеммнике звездой и треугольником

Сборка треугольника, согласно маркировке выводов

Если клеммник отсутствует, а на выводах есть маркировка, то задача также простая. Обмотки маркируются С1-С4, С2-С5, С3-С6, где С1, С2, С3 – начала обмоток, и концы соединяются С1-С6, С2-С4, С3-С5.

Интересно. В старых электродвигателях импортного производства вывода маркируются A-X, B-Y, C-Z, а современные обозначения: U1-U2, V1-V2, W1-W2.

Что делать, если есть только три вывода

Сложнее всего собрать схему подключения со «звезды» на «треугольник» в электромашинах, соединение обмоток которых находится внутри корпуса. Эта операция выполняется при полной разборке электромашины. Для переключения обмоток на треугольник необходимо:

  1. разобрать электродвигатель;
  2. найти внутри место соединения обмоток и рассоединить его;
  3. к концам обмоток припаять отрезки гибких проводов и вывести их наружу;
  4. собрать аппарат;
  5. попарно вызвонить вывода катушек;
  6. соединить старый вывод одной катушки с новым проводом следующей;
  7. операцию повторить ещё два раза.

Соединение при отсутствии маркировки

Если маркировки нет, а из корпуса выходит шесть концов, то необходимо определить начало и конец каждой обмотки:

  1. Тестером попарно определить вывода, относящиеся к каждой обмотке. Пометить пары;
  2. В одной из пар выбрать провод. Отметить его как начало обмотки, оставшийся отмечается как конец;
  3. Соединить отмеченную обмотку последовательно с другой парой проводов;
  4. Подключить к соединённым катушкам напряжение ~12-36В;
  5. Замерить вольтметром напряжение на оставшейся паре. Вместо вольтметра можно использовать контрольную лампочку;
  6. Статор с обмотками представляет собой трансформатор и при согласованном соединении вольтметр покажет наличие напряжения. В этом случае во второй паре проводов отмечаются начало и конец катушки. При отсутствии напряжения изменить полярность подключения одной из пар выводов и повторить п.п. 4-5;
  7. Соединить одну из отмеченных пар с оставшейся неразмеченной и повторить п.п. 3-6.

После определения начала и концов во всех обмотках, они соединяются треугольником.

Подключение фазосдвигающих конденсаторов

Для нормальной работы электромашине необходимы пусковые и рабочие ёмкости.

Выбор номинала рабочего конденсатора

Есть разные формулы для определения необходимой ёмкости рабочего конденсатора, учитывающие номинальный ток, cosφ и другие параметры, но чаще всего просто берётся 7мкФ на 100Вт или 70мкФ на 1кВт мощности.

После сборки схемы целесообразно включить последовательно с машиной амперметр и, увеличивая и уменьшая рабочую ёмкость, добиться минимальной величины показаний прибора.

Важно! Рабочие конденсаторы применяются для переменного напряжения не меньше 300В.

Выбор и подключение пусковых конденсаторов

Пуск с использованием только рабочих фазосдвигающих конденсаторов длительный, а при значительном моменте на валу машины невозможен. Для облегчения пуска и уменьшения его длительности на период разгона электромашины параллельно рабочим подключаются пусковые ёмкости. Они выбираются в 2-3 раза больше, чем рабочие. Номинальное напряжение также более 300В. Пуск происходит несколько секунд, поэтому допускается подсоединение электролитических конденсаторов.

Как подключить трехфазный двигатель на 220 вольт с использованием пусковых конденсаторов

Схема запуска должна предусматривать отключение пусковых ёмкостей после пуска электромашины. Если этого не сделать, то машина начнёт перегреваться. Для этого есть разные способы:

  • Отключение пусковых ёмкостей с помощью реле времени. Задержка отключения составляет несколько секунд и подбирается опытным путём;
  • Применение универсального переключателя (ключа УП) на 3 положения. Его диаграмма включения собирается таким образом, чтобы в первом положении все контакты были разомкнуты, во втором замыкались два: питание и пусковые конденсаторы, а в третьем – только питание. Для реверсивной работы используется ключ на 5 положений;
  • Специальная кнопочная станция – ПНВС (пускатель нажимной с пусковым контактом). В этих конструкциях есть 3 контакта. При нажатии “Пуск” замыкаются все, но крайние фиксируются, а средний нужен, чтобы запустить машину, и отпадает после отпускания кнопки. Нажатие на кнопку “Стоп” отключает зафиксированные контакты.
Кнопка ПНВС

Кнопка ПНВС

Как переделать схему вращения в реверсивную

Для реверса электродвигателя необходимо изменить направление вращения магнитного поля. При запуске мотора без конденсаторов ему предварительно придаётся вручную необходимое направление вращения, а в конденсаторной схеме производится переключение ёмкости с нулевого провода на фазный. Это производится тумблером, переключателем или пускателями.

Реверс конденсаторного двигателя

Реверс конденсаторного двигателя

Важно! Пусковые конденсаторы подсоединяются параллельно рабочим и переключаются при изменении направления вращения одновременно с ними.

Электронные преобразователи бытового напряжения в промышленное трёхфазное 380В

Эти трёхфазные инверторы применяются для использования в бытовой сети трехфазных двигателей. Электродвигатели подключаются напрямую к выходу аппарата.

Необходимая мощность преобразователя выбирается, в зависимости от тока электрической машины. Есть три режима работы таких приборов:

  • Пусковой. Допускает кратковременное (до 5 секунд) двукратное превышение мощности. Этого достаточно для запуска электродвигателя;
  • Рабочий, или номинальный;
  • Перегрузочный. Допускает в течение получаса превышение тока в 1,3 раза.

Преимущества инвертора 220 в 380:

  • подключение не переделанных трёхфазных электромашин на 220 вольт;
  • получение полной мощности и момента электромашины без потерь;
  • экономия электроэнергии;
  • плавный запуск и регулировка оборотов.
Инвертор 220 в 380

Инвертор 220 в 380

Несмотря на появление электронных преобразователей, конденсаторные схемы включения трёхфазных электродвигателей продолжают применяться в быту и небольших мастерских.

Видео

Подключение трехфазного двигателя к однофазной сети

Для работы разнообразных электрических устройств используются асинхронные двигатели, которые просты и надежны в работе и монтаже – их легко можно установить своими руками. Подключение трехфазного двигателя к однофазной и трехфазной сети осуществляется звездой и треугольником.

Общая информация

Асинхронный трехфазный двигатель состоит из следующих основных частей: обмоток, подвижного ротора и неподвижного статора. Обмотки могут быть соединены межу собой, а к их открытым контактам подключается основное питание сети или последовательно, т. е. конец одной обмотки соединен с началом следующей.

схема звезда наглядноФото — схема звезда наглядно

Подключение может осуществляться к однофазной, двухфазной и трехфазной сети, при этом двигатели в основном рассчитаны на два напряжения – 220/380 В. Переключение типа соединения обмоток позволяет менять номинальное напряжение. Несмотря на то, что в принципе подключение двигателя возможно и к однофазной сети, оно редко используется, т. к. конденсатор снижает эффективность устройства. И от номинальной мощности потребитель получает приблизительно 60 %. Но если иного варианта нет, то нужно подключать схемой «треугольник», тогда перегрузка мотора будет меньшей, чем при звезде.

Перед подсоединением обмоток в однофазной сети нужно обязательно проверить емкость конденсатора, который будет использоваться. Для этого нужна формула:

C мкф = P Вт /10

Если исходные параметры конденсатора неизвестны, то рекомендуется использовать пусковую модель, которая может «подстроиться» под работу двигателя и контролировать его обороты. Также часто для работы устройства с короткозамкнутым ротором используют реле тока или стандартный магнитный пускатель. Эта деталь схемы позволяет обеспечить полную автоматизацию рабочего процесса. Причем для бытовых моделей (с мощностью от 500 в до 1 кВт) можно использовать пускатель от стиралки или холодильника, в дальнейшем увеличивая емкость конденсатора или изменяя обмотку реле.

Видео: как подключать трехфазный двигатель в 220В

Способы подключения

При однофазной сети необходимо сдвигать фазу при помощи специальных деталей, чаще всего это конденсатор. Но в некоторых условиях его заменят тиристор. Если установить тиристорный ключ в корпус электродвигателя, то при закрытом положении он не только сдвигает фазы, но и значительно увеличивает пусковой момент. Это способствует повышению КПД до 70 %, что является прекрасным показателем для такого подсоединения. Используя только эту деталь можно отказаться от применения вентилятора и основных типов конденсаторов – пускового и рабочего.

Но и это подключение не является идеальным. При работе ЭД с тиристором потребляется на 30 % больше электрического тока, чем с конденсаторами. Поэтому такой вариант применяется только на производстве или при отсутствии выбора.

Рассмотрим, как производится подключение трехфазного асинхронного двигателя к трехфазной сети, если используется схема треугольник.

простой треугольникФото — простой треугольник

На чертеже указаны два конденсатора – пусковой и рабочий, кнопка пуска, диод, сигнализирующий о начале работы и резисторная система торможения и полной остановки. Также в данном случае применяется переключатель, который имеет три позиции: «удержание», «старт», «стоп». При установке рукоятки в первом положении к контактам начинает поступать электрический ток. Здесь важно сразу же после того, как двигатель заведется перейти в режим «старт», иначе обмотки могут загореться из-за перегрузки. Во время окончания рабочего процесса рукоятка фиксируется в точке «стоп».

подключение при помощи конденсаторов электролитовФото — подключение при помощи конденсаторов электролитов

Иногда при подключении в фазу удобнее останавливать трехфазный двигатель за счет энергии, которая запасена в конденсаторе. Иногда вместо них используются электролиты, но это более сложный вариант установки устройства. В этом случае очень важны параметры конденсатора, в частности, его емкость – от неё зависит торможение и время полной остановки движущихся частей. Также в этой схеме используются выпрямляющие диоды и резисторы. Они помогут при необходимости ускорить остановку двигателя. Но их технические характеристики должны иметь следующий вид:

  1. У резистора сопротивление не должно превышать 7 кОм;
  2. Конденсатор должен выдерживать напряжение 350 вольт и выше (в зависимости от напряжения сети).

Имея под рукой схему с остановки мотора, при помощи конденсатора можно осуществить подключение с реверсом. Главным отличием от предыдущего чертежа является модернизация трехфазного двухскоростного двигателя за счет двойного переключателя и магнитного пускового реле. Переключатель также как и в предыдущих вариантах имеет несколько основных позиций, но фиксируется только на «старт» и «стоп» — это очень важно.

реверс при помощи пускателяФото — реверс при помощи пускателя

Реверсивное подключение двигателя возможно также через магнитный пускатель. В таком случае нужно изменить порядок очередности фаз статора, тогда можно будет обеспечить перемену направления вращения. Чтобы это сделать, нужно сразу после нажатия на кнопку пускателя «Вперед», нажать кнопку «Назад». После этого блокировочный контакт отключит катушку переднего хода и переведет питание на задний – направление вращения изменится. Но нужно быть внимательным при подключении пускателя – если перепутать местами контакты, то при переходе произойдет не реверсирование, а короткое замыкание.

Еще одним необычным способом, как можно подключить трехфазный двигатель, является вариант с использованием четырехполюсного УЗО. Её особенностью является возможность использования без нуля сети.

  1. В большинстве случаев, ЭД требуется только 3 фазы и 1 провод заземления, ноль необязателен, т. к. нагрузка симметрична;
  2. Принцип подключения таков: фазы питания отводим к автоматическому выключателю, а ноль соединяем прямо с клеммой УЗО – N, после этого её ни к чему не подключаем;
  3. От автомата кабели также аналогично подсоединяются к УЗО. Заземляем двигатель и все.

Как подключить трехфазный двигатель в однофазную сеть своими руками

Трехфазный двигатель для однофазной сети

Теоретический материал, изложенный в первой части темы, посвященной однофазному подключению трехфазного электродвигателя, предназначен для того, чтобы домашний мастер мог осознанно перевести промышленные устройства сети 380 вольт на бытовую электрическую проводку 220.

Рекомендуем внимательно ознакомиться с этой статьей здесь.

Благодаря ей вы не просто механически повторите наши рекомендации, а будете выполнять их осознанно.


Содержание статьи

Оптимальные схемы для подключений трехфазного двигателя к бытовой однофазной сети

Среди многочисленных способов подключения электродвигателя на практике широкое распространение получило всего два, именуемые коротко:

  1. звездой;
  2. треугольником.

Название дано по методу соединения обмоток в электрической схеме внутри статора. Оба способы отличаются тем, что у них на каждую фазу двигателя прикладывается напряжение разной величины.

В схеме звезды линейное напряжение подводится сразу на две обмотки, соединенные последовательно. Их электрическое сопротивление складывается, осуществляет бо́льшее противодействие проходящему току.

У треугольника линейное напряжение подается на каждую обмотку индивидуально и поэтому ему оказывается меньшее сопротивление. Токи создаются выше по амплитуде.

Обращаем внимание на два этих отличия и делаем практические выводы для их использования:

  1. схема звезды обладает пониженными токами в обмотках, позволяет эксплуатировать электродвигатель длительно с минимальными нагрузками, обеспечивать небольшие крутящие моменты на валу;
  2. более высокие токи, создаваемые схемой треугольника, обеспечивают лучшую выходную мощность, позволяют использовать двигатель в экстремальных нагрузках, поэтому ему требуется надежное охлаждение для длительной работы.

Два этих отличия подробно объяснены на картинке. Внимательно посмотрите на нее. Красными стрелками для наглядности специально помечены приходящие напряжения с линии (линейные) и приложенные к обмоткам (фазные). У схемы треугольника они совпадают, а для звезды — снижены за счет подключения двух обмоток через нейтраль.

Способы подвода напряжения к обмоткам двигателя
Эти способы следует проанализировать применительно к условиям работы вашего будущего механизма на этапе проектирования, до начала его создания. Иначе двигатель схемы звезды может не справляться с подключенными нагрузками и будет останавливаться, а у треугольника — перегреваться и в итоге сгорит. Нагрузку по току двигателя можно предусмотреть выбором схемы подключения.

Как узнать схему подключения обмоток статора у асинхронного двигателя

На каждом заводе принято на корпусе электротехнического оборудования помещать информационные таблички. Пример ее исполнения для трехфазного электродвигателя показан на фотографии.

Табличка на корпусе двигателя
Домашнему мастеру можно обращать внимание не на всю информацию, а только на:

  1. мощность потребления: по ее величине судят о работоспособности подключаемого привода;
  2. схему соединения обмоток — вопрос только что разобран;
  3. число оборотов, которое может потребовать подключения редуктора;
  4. токи в фазах — под них созданы обмотки;
  5. класс защиты от воздействий внешней среды — определяет условия эксплуатации, включая защиту от атмосферной влаги.

Сведениям завода обычно можно доверять, но они создавались для нового двигателя, поставляемого в продажу. Эта схема за все время эксплуатации может подвергаться реконструкции несколько раз, потеряв свой первозданный вид. Старый двигатель при неправильном хранении может потерять работоспособность.

Следует выполнить электрические измерения его схемы и проверить состояние изоляции.

Как определить схемы подключения обмоток статора

Для проведения электрических замеров необходимо иметь доступ к каждому окончанию всех трех обмоток. Обычно шесть их выводов подключены на свои болты внутри клеммной коробки.

Но, среди способов заводского монтажа встречается такой, когда специальные асинхронные модели изготовлены по схеме звезды так, что нейтральная точка собрана концами обмоток внутри корпуса, а на вводную коробку заведена одной жилой ее сборка. Этот неудачный для нас вариант потребует раскручивания на корпусе шпилек крепления крышек для снятия последних. Затем надо подобраться к месту соединения обмоток и разъединить их концы.

Электрическая проверка концов обмоток статора

Для работы нам потребуется омметр. Можно воспользоваться тестером в этом режиме или даже простой батарейкой с лампочкой. Любым из этих приборов необходимо проверить цепь каждой обмотки. Этот вопрос более подробно изложен отдельной статьей.

Прозвонка обмоток омметром
После нахождения обоих концов для одной обмотки их необходимо пометить собственной маркировкой для проведения последующих проверок и подключения.

Замеры полярности у обмоток статора

Поскольку обмотки навиты строго определённым образом, то нам необходимо точно найти у них начала и окончания. Для этого существует два простых электрических метода:

  1. кратковременная подача постоянного тока в одну обмотку для создания импульса;
  2. использование источника переменной ЭДС.

В обоих случаях работает принцип электромагнитной индукции. Ведь обмотки собраны внутри магнитопровода, хорошо обеспечивающего трансформацию электроэнергии.

Проверка импульсом от батарейки

Работа выполняется сразу на двух обмотках. Картинка показывает этот процесс для трех — так меньше рисовать.

Проверка полярностей обмоток импульсом постоянного напряжения
Процесс состоит из двух этапов. Вначале определяются однополярные обмотки, а затем проводится контрольная проверка, позволяющая исключить возможную ошибку у выполненных измерений.

Для поиска однополярных зажимов на любую свободную обмотку подключается вольтметр постоянного тока, переключенный на предел чувствительной шкалы. По нему будем осуществлять проверку напряжения, появляющегося за счет трансформации импульса.

Минусовой вывод батарейки жестко соединяют с произвольным концом второй обмотки, а плюсом кратковременно дотрагиваются до ее второго окончания. Этот момент на картинке показан контактом кнопки Кн.

Наблюдают поведение стрелки вольтметра, реагирующей на подачу импульса в своей цепи. Она может двигаться к плюсу или минусу. Совпадение полярностей обеих обмоток будет показано положительным отклонением, а отличие — отрицательным.

При снятии импульса стрелка пойдет в обратную сторону. На это тоже обращают внимание. Затем маркируют концы.

После этого замер выполняют на третьей обмотке, а контрольную проверку осуществляют переключением батарейки на другую цепочку.

Проверка понижающим трансформатором

Источник ЭДС переменного тока на 24 вольта рекомендуется использовать в целях обеспечения электрической безопасности. Пренебрегать этим требованием не рекомендуется.

Вначале берут две произвольные обмотки, например, №2 и №3. Попарно соединяют вместе их вывода и к этим местам подключают вольтметр, но уже переменного тока. В оставшуюся обмотку №1 подают напряжение от понижающего трансформатора и наблюдают появление показаний от него на вольтметре.

Определение полярности обмоток подачей пониженного напряжения
Если вектора направлены одинаково, то они не будут влиять друг на друга и вольтметр покажет их общую величину — 24 вольта. Когда же полярность перепутана, то на вольтметре встречные вектора сложатся, дадут в сумме число 0, которое отобразится на шкале показанием стрелки. Сразу после замера тоже следует маркировать концы.

Затем необходимо проверить полярность для оставшейся пары и выполнить контрольный замер.

Такими простыми электрическими опытами можно надёжно определить принадлежность концов к обмоткам и их полярность. Это поможет их правильно собрать для схемы конденсаторного запуска.

Проверка сопротивления изоляции обмоток статора

Если двигатель при хранении находился в неотапливаемом помещении, то он контактировал с влажным воздухом, отсырел. Его изоляция нарушилась, способна создавать токи утечек. Поэтому ее качество надо оценивать электрическими измерениями.

Тестер в режиме омметра не всегда способен выявить такое нарушение. Он покажет только явный брак: слишком маленькая мощность его источника тока не обеспечивает точный результат замера. Для проверки состояния изоляции необходимо пользоваться мегаомметром — специальным прибором с мощным источником питания, обеспечивающим приложение к измерительной цепи повышенного напряжения 500 или 1000 вольт.

Оценка состояния изоляции должна проводиться до подачи рабочего напряжения на обмотки. Если выявлены токи утечек, то можно попытаться просушить двигатель в теплой, хорошо проветриваемой среде. Часто этот прием позволяет восстановить работоспособность электрической схемы, собранной внутри сердечника статора.


Запуск асинхронного двигателя по схеме звезды

Для этого способа концы всех обмоток К1, К2, К3 соединяются в точке нейтрали и изолируются, а на их начала подается линейное напряжение.

Подключение трехфазного двигателя по схеме звезды
К одному началу жестко подключается рабочий ноль сети, а к двум другим — потенциал фазы следующим способом:

  • первая любая обмотка соединяется жестко;
  • вторая врезается через конденсаторную сборку.

Для стационарного подключения асинхронного двигателя необходимо предварительно определить фазу и рабочий ноль питающей сети.

Как подобрать конденсаторы

В схеме запуска электродвигателя используется две цепочки для подключения обмотки через конденсаторные сборки:

  • рабочая — подключенная во всех режимах;
  • пусковая — используемая только для интенсивной раскрутки ротора.

В момент запуска параллельно работают обе эти схемы, а при выводе на рабочий режим цепочка пуска отключается.

Емкость рабочих конденсаторов должна соответствовать потребляемой мощности электрического двигателя. Для ее вычисления используют эмпирическую формулу:

C раб=2800∙I/U.

Входящие в нее величины номинального тока I и напряжения U как раз и вводят корректировку по электрической мощности двигателя.

Емкость пусковых конденсаторов обычно в 2÷3 крата превышает рабочую.

Правильность подбора конденсаторов влияет на образование токов в обмотках. Их необходимо проверять после запуска двигателя под нагрузкой. Для этого замеряют токи в каждой обмотке и сравнивают их по величине и углу. Хорошая эксплуатация осуществляется при минимально возможном перекосе. В противном случае двигатель работает нестабильно, а какая-то обмотка или две станут перегреваться.

Рекомендуемые выключатели

В пусковой схеме показан выключатель SA, который вводит в работу на короткое время запуска пусковой конденсатор. Существует много конструкций кнопок, позволяющих выполнять эту операцию.

Однако, хочется обратить внимание на специальное устройство, выпускаемое в советские времена промышленностью для стиральных машин с активатором — центрифугой.

Специальный выключатель
В его закрытом корпусе спрятан механизм в составе:

  • двух контактов, работающих на замыкание от нажатия на верхнюю кнопку «Пуск»;
  • одного контакта, размыкающего всю цепь от кнопки «Стоп».

При нажатии на кнопку Пуск подается фаза схемы на двигатель через рабочие конденсаторы одной цепочкой и пусковые — другой. Когда же кнопку отпускают, то один контакт разрывается. Его подключают к пусковым конденсаторам.

Запуск асинхронного двигателя по схеме треугольник

Больших отличий этого способа от предыдущего практически нет. Пусковая и рабочая цепочки работают по тем же алгоритмам.

Подключение трехфазного двигателя по схеме треугольник
В этой схеме приходится учитывать повышенные токи, протекающие в обмотках и иные методы подбора для них конденсаторов.

Их расчет выполняется по похожей на предыдущую, но другой формуле:

C раб=4800∙I/U.

Соотношения между пусковыми и рабочими конденсаторами не изменяются. Не забывайте оценивать их подбор контрольными замерами токов под номинальной нагрузкой.


Заключительные выводы

  1. Существующие технические способы позволяют подключать трехфазные асинхронные двигатели к однофазной сети 220 вольт. Многочисленные исследователи предлагают для этого свои экспериментальные схемы большим ассортиментом.
  2. Однако, этот метод не обеспечивает эффективное использование ресурса электрической мощности из-за больших потерь энергии, связанных с некачественным преобразованием напряжения для подключения к фазам статора. Поэтому двигатель работает с низким КПД, повышенными затратами.
  3. Длительная эксплуатация станков с подобными двигателями экономически не обоснована.
  4. Способ можно рекомендовать только для подключения неответственных механизмов на короткий участок времени.
  5. С целью эффективного использования асинхронного электродвигателя необходимо применять полноценное трехфазное подключение либо современный дорогой инверторный преобразователь соответствующей мощности.
  6. Однофазный электродвигатель с такой же мощностью в бытовой сети лучше справиться со всеми задачами, а его эксплуатация обойдется дешевле.

Таким образом, конструкции асинхронных двигателей, ранее массово подключаемые к домашней проводке, сейчас не пользуются популярностью, а способ их подключения морально устарел, используется редко.

Асинхронный двигатель с наждачным кругом без защитного щитка и упора
Вариант подобного механизма показан фотографией наждака со снятым для наглядности защитным щитком и ограничительным упором. Даже при таком исполнении работать на нем затруднительно из-за потерь мощности.

Практические советы Александра Шенрок, изложенные в его видеоролике, наглядно дополняют материал статьи, позволяют лучше осмыслить эту тему. Рекомендую его к просмотру, но, критически отнеситесь к замеру сопротивления изоляции тестером.

Задавайте вопросы в комментариях, делитесь статьей с друзьями через кнопки социальных сетей.

Полезные товары

Схема подключения трехфазного электродвигателя 380в на 220в через конденсатор

электродвигатель

электродвигатель

Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.

Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.

В связи с этим двигатель желательно иметь помощнее.

Важно! Подключая двигатель, будьте предельно осторожны. Делайте все не спеша. Меняя схему, отключайте электропитание и разряжайте конденсатор электролампой. Работы производите как минимум вдвоем.

Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.

Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.

Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.

Важно! Какой бы емкости ни были конденсаторы, их рабочее напряжение должно быть не ниже 400в, в противном случае они долго не проработают и могут взорваться.

Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.

Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.

трехфазный двигатель

трехфазный двигатель

трехфазный двигатель

трехфазный двигатель

 

 

 

 

 

Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.

Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд.  Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.

Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.

схема подключения

схема подключения

Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.

Рис. 1                                                                                             

рис 1

рис 1

электродвигатель

электродвигатель

На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.

 

 

 

На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.

электродвигатель

электродвигатель

Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.

электродвигатель

электродвигатель

Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.

Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.

Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.

Расчет конденсаторов. Емкость рабочего конденсатора.

Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.

Емкость пускового конденсатора.

Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.

Особенности подбора конденсаторов.

Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.

Реверс.

Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».

Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Более подробно можно увидеть на рисунке.

схема

схема

Важно! Существуют электродвигатели трехфазные на 220в. У них каждая обмотка рассчитана на 127в и при подключении в однофазную сеть по схеме «треугольник» ― двигатель просто сгорит. Чтобы этого не произошло, такой мотор в однофазную сеть следует подключать только по схеме — «звезда».

 

 

 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *