Posted on

Содержание

Расчет диаметра трубопровода по расходу, зависимость расхода от давления

Расчет диаметра трубопровода по расходуДля того чтобы правильно смонтировать конструкцию водопровода, начиная разработку и планирование системы, необходимо рассчитать расход воды через трубу.

От полученных данных зависят основные параметры домашнего водовода.

В этой статье читатели смогут познакомиться с основными методиками, которые помогут им самостоятельно выполнить расчет своей водопроводной системы.

Как рассчитать необходимый диаметр трубы

Цель расчета диаметра трубопровода по расходу: Определение диаметра и сечения трубопровода на основе данных о расходе и скорости продольного перемещения воды.

Выполнить такой расчет достаточно сложно. Нужно учесть очень много нюансов, связанных с техническими и экономическими данными. Эти параметры взаимосвязаны между собой. Диаметр трубопровода зависит от вида жидкости, которая будет по нему перекачиваться.

Если увеличить скорость движения потока можно уменьшить диаметр трубы. Автоматически снизится материалоемкость. Смонтировать такую систему будет намного проще, упадет стоимость работ.

Однако увеличение движения потока вызовет потери напора, которые требуют создание дополнительной энергии, для перекачки. Если очень сильно ее уменьшить, могут появиться нежелательные последствия.

С помощью формул ниже можно как рассчитать расход воды в трубе, так и, определить зависимость диаметра трубы от расхода жидкости.

Когда выполняется проектирование трубопровода, в большинстве случаев, сразу задается величина расхода воды. Неизвестными остаются две величины:

  •  Диаметр трубы;
  • Скорость потока.

Сделать полностью технико-экономический расчет очень сложно. Для этого нужны соответствующие инженерные знания и много времени. Чтобы облегчить такую задачу при расчете нужного диаметра трубы, пользуются справочными материалами. В них даются значения наилучшей скорости потока, полученные опытным путем.

Расчет необходимого диаметра трубы

Итоговая расчетная формула для оптимального диаметра трубопровода выглядит следующим образом:

d = √(4Q/Πw)
Q – расход перекачиваемой жидкости, м3/с
d – диаметр трубопровода, м
w – скорость потока, м/с

Подходящая скорость жидкости, в зависимости от вида трубопровода

Прежде всего учитываются минимальные затраты, без которых невозможно перекачивать жидкость. Кроме того, обязательно рассматривается стоимость трубопровода.

При расчете, нужно всегда помнить об ограничениях скорости двигающейся среды. В некоторых случаях, размер магистрального трубопровода должен отвечать требованиям, заложенным в технологический процесс.

На габариты трубопровода влияют также возможные скачки давления.

Когда делаются предварительные расчеты, изменение давление в расчет не берется. За основу проектирования технологического трубопровода берется допустимая скорость.

Когда в проектируемом трубопроводе существуют изменения направления движения, поверхность трубы начинает испытывать большое давление, направленное перпендикулярно движению потока.

Такое увеличение связано с несколькими показателями:

  • Скорость жидкости;
  • Плотность;
  • Исходное давление (напор).

Причем скорость всегда находится в обратной пропорции к диаметру трубы. Именно поэтому для высокоскоростных жидкостей требуется правильный выбор конфигурации, грамотный подбор габаритов трубопровода.

К примеру, если перекачивается серная кислота, значение скорости ограничивается до величины, которая не станет причиной появления эрозия на стенках трубных колен. В результате структура трубы никогда не будет нарушена.

Скорость воды в трубопроводе формула

Объёмный расход V (60м³/час или 60/3600м³/сек) рассчитывается как произведение скорости потока w на поперечное сечение трубы S (а поперечное сечение в свою очередь считается как S=3.14 d²/4): V = 3.14 w d²/4. Отсюда получаем w = 4V/(3.14 d²). Не забудьте перевести диаметр из миллиметров в метры, то есть диаметр будет 0.159 м.

Формула расхода воды

В общем случае методология измерения расхода воды в реках и трубопроводах основана на упрощённой форме уравнения непрерывности, для несжимаемых жидкостей:

Расход воды через трубу таблица

Расход через трубу

Зависимость расхода от давления

Нет такой зависимости расхода жидкости от давления, а есть — от перепада давления. Формула выводится просто. Имеется общепринятое уравнение перепада давления при течении жидкости в трубе Δp = (λL/d) ρw²/2, λ — коэффициент трения (ищется в зависимости от скорости и диаметра трубы по графикам или соответствующим формулам), L — длина трубы, d — ее диаметр, ρ -плотность жидкости, w — скорость. С другой стороны, есть определение расхода G = ρwπd²/4. Выражаем из этой формулы скорость, подставляем ее в первое уравнение и находим зависимость расхода G = π SQRT(Δp d^5/λ/L)/4, SQRT — квадратный корень.

Коэффициент трения ищется подбором. Вначале задаете от фонаря некоторое значение скорости жидкости и определяете число Рейнольдса Re=ρwd/μ, где μ — динамическая вязкость жидкости (не путайте с кинематической вязкостью, это разные вещи). По Рейнольдсу ищете значения коэффициента трения λ = 64/Re для ламинарного режима и λ = 1/(1.82 lgRe — 1.64)² для турбулентного (здесь lg — десятичный логарифм). И берете то значение, которое выше. После того, как найдете расход жидкости и скорость, надо будет повторить весь расчет заново с новым коэффициентом трения. И такой перерасчет повторяете до тех пор, пока задаваемое для определения коэффициента трения значение скорости не совпадет до некоторой погрешности с тем значением, что вы найдете из расчета.

Похожие статьи:

vseprotruby.ru

Расчёт расхода воды по сечению трубы и давлению. Как рассчитать расход воды по диаметру трубы – теория и практика. Вычисление на основе сечения трубы

Параметры расхода воды:

  1. Величина диаметра трубы, которая также определяет дальнейшую пропускную способность.
  2. Величину стенок труб, которая после определит внутренне давление в системе.

Единственное, что не влияет на расход – это длина коммуникаций.

Если диметр известен, расчет можно провести по таким данным:

  1. Конструкционный материал для трубостроительства.
  2. Технология, влияющая на процесс сборки трубопровода.

Характеристики влияют на давление внутри систему водоснабжение и определяют расход воды.

Если вы ищете ответ на вопрос, как определить расход воды, то вы должны усвоить две формулы расчета, определяющие параметры использования.

  1. Формула для расчета на сутки — Q=ΣQ×N/100. Где ΣQ – годовое суточное использование воды на 1 жителя, а N – количество жителей в здании.
  2. Формула для расчета на час — q=Q×K/24. Где Q – суточный расчет, а К – соотношение по СНиПу неравномерное потребление (1.1-1.3).

Эти нехитрые расчеты смогут помочь определить расход, который покажет нужды и потребности данного дома. Есть таблицы, которыми можно воспользоваться в обсчете жидкости.

Справочные данные в расчете воды

При использовании таблиц вам следует просчитать все краны, ванные и водонагреватели в доме. Таблица СНиП 2.04.02-84.

Стандартные нормы потребления:

  • 60 литров – 1 человек.
  • 160 литров – на 1 человека, если в доме обустроен более хороший водопровод.
  • 230 литров – на 1 человека, в доме, где установлен качественный водопровод и ванная.
  • 350 литров – на 1 человек с водопроводом, встроенной техникой, ванной, туалетом.

Зачем рассчитывать воду по СНиПу?

Как определить расход воды на каждый день – не самая востребованная информация среди обычных жителей дома, но специалистам по установке трубопроводов эта информация требуется еще меньше. И по большей мере им требуется знать каков диаметр соединения, и какое давление в системе оно поддерживает.

Но чтоб определить эти показатели необходимо знать, сколько необходимо воды в трубопроводе.

Формула, помогающая определить диаметр трубы и скорость течения жидкости:

Стандартная скорость жидкость в системе без напора составляет 0,7 м/с и 1,9 м/с. А скорость от внешнего источника, например бойлера, определяют по паспорту источника. При знании диаметра определяется скорость потока в коммуникациях.

Расчет потери напора воды

Потерю расхода воды вычисляют с учетом падения давления по одной формуле:

В формуле L – обозначает длин соединения, а λ – потери трения, ρ – ковкость.

Показатель трения меняется от таких значений:

  • уровень шероховатости покрытия;
  • препятствие в аппаратуре на запорных местах;
  • скорость течения жидкости;
  • протяженность трубопровода.

Простота расчета

Зная потери давления, скорость жидкости в трубах и объем необходимой воды, как определить расход воды и величины трубопровода становится намного понятнее. Но для того чтоб избавится от долгих расчетов, можно воспользоваться особой таблицей.

Где D – диаметр трубы, q – потребительский расход воды, а V – скорость воды, і – курс. Для определения значений их необходимо найти в таблице и соединить по прямой линии. Также определяют расход и диаметр, при этом учитывая наклон и скорость. Следовательно, самым простым способом расчета является использование таблиц и графика.

Иногда очень важно точно рассчитать объем воды, проходящей через трубу. К примеру, когда нужно спроектировать новую систему отопления. Отсюда и возникает вопрос: как посчитать объем трубы? Этот показатель по

dkmtorg.ru

Расход воды через трубу

В некоторых случаях приходится сталкиваться с необходимостью расчета расхода воды через трубу. Этот показатель говорит о том, сколько воды может пропустить труба, измеряется в м³/с.

  • Для организаций, не поставивших счетчик на воду, начисление платы происходит из учета проходимости трубы. Важно знать, насколько точно эти данные просчитаны, за что и по какому тарифу надо платить. Физических лиц это не касается, для них, при отсутствии счетчика, количество прописанных человек умножается на потребление воды 1 человеком по санитарным нормам. Это достаточно большой объем, а с современными тарифами гораздо выгоднее поставить счетчик. Точно также в наше время часто выгоднее самому греть воду колонкой, чем платить коммунальным службам за их горячую воду.
  • Огромную роль расчет проходимости трубы играет при проектировании дома, при подведении к дому коммуникаций.

Важно увериться, что каждое ответвление водопровода сможет получить свою долю из основной трубы даже в часы пикового расхода воды. Водопровод создан для комфорта, удобства, облегчения человеку труда.

Если каждый вечер до жителей верхних этажей вода будет практически не доходить, о каком комфорте может идти речь? Как можно пить чай, мыть посуду, купаться? А все пьют чай и купаются, поэтому тот объем воды, который смогла предоставить труба, распределился по нижним этажам. Совсем плохую роль эта проблема может сыграть при пожаротушении. Если пожарники подключатся к центральной трубе, а в ней нет напора.

Иногда расчет расхода воды через трубу может пригодиться, если после ремонта водопровода горе-мастерами, замены части труб, напор сильно упал.

Основы проектирования автополива

Гидродинамические расчеты непростое дело, обычно осуществляются квалифицированными специалистами. Но, допустим, вы занимаетесь частным строительством, проектируете свой уютный просторный дом.

Как рассчитать расход воды через трубу самому?

Основы проектирования автополива

Казалось бы, достаточно знать диаметр отверстия трубы, чтобы получить, может, и округленные, но в целом справедливые цифры. Увы, этого очень мало. Другие факторы способны изменять результат вычислений в разы. Что же влияет на максимальный расход воды через трубу?

  1. Сечение трубы. Очевидный фактор. Отправная точка гидродинамических вычислений.
  2. Давление в трубе. При увеличении давления через трубу с тем же сечением проходит больше воды.
  3. Изгибы, повороты, изменение диаметра, разветвления тормозят движение воды по трубе. Разные варианты в разной степени.
  4. Протяженность трубы. По более длинным трубам будет проходить меньше воды за единицу времени, чем по коротким. Весь секрет в силе трения. Подобно тому, как она задерживает движение привычных для нас объектов (автомобилей, велосипедов, саней и т. д.), сила трения препятствует водяному потоку.
  5. У трубы с меньшим диаметром оказывается больше площади соприкосновения воды с поверхностью трубы по отношению к объему водяного потока. А от каждой точки соприкосновения появляется сила трения. Так же, как и в более длинных трубах, в более узких трубах скорость движения воды становится меньше.
  6. Материал труб. Очевидно, что степень шероховатости материала влияет величину силы трения. Современные пластиковые материалы (полипропилен, ПВХ, металлопласт и т. д.) оказываются очень скользкими по сравнению с традиционной сталью и позволяют двигаться воде быстрее.
  7. Длительность эксплуатации трубы. Известковые отложения, ржавчина сильно ухудшают пропускные возможности водопровода. Это самый каверзный фактор, ведь степень засоренности трубы, ее новый внутренний рельеф и коэффициент трения весьма сложно просчитать с математической точностью. К счастью, расчет расхода воды чаще всего требуется для нового строительства и свежих, не использовавшихся ранее материалов. А с другой стороны, подключаться эта система будет к уже существующим, много лет существующим коммуникациям. И как она сама себя поведет через 10, 20, 50 лет? Новейшие технологии значительно улучшили эту ситуацию. Пластиковые трубы не ржавеют, их поверхность практически не портится со временем.
Разводка воды на даче своими руками

Таким образом, легко рассчитать расход воды через трубу по простой маленькой формуле не представляется возможным. Требуемый объем данных и вычислений не всегда под силу человеку без специального образования.

Расчет расхода воды через кран

Если требуется рассчитать расход воды только через отверстие крана, которое значительно меньше диаметра основной трубы, частный случай гидродинамических расчетов, то вычислений немного.

Объем вытекаемой жидкости находится путем умножения сечения отверстия трубы S на скорость вытекания V. Сечение это площадь определенной части объемной фигуры, в данном случае, площадь круга. Находится по формуле S = πR2. R будет радиусом отверстия трубы, не путать с радиусом трубы. π постоянная величина, отношение длины окружности к ее диаметру, приблизительно равняется 3,14.

Как установить циркуляционный насос отопления

Скорость вытекания находится по формуле Торричелли: . Где g ускорение свободного падения, на планете Земля равное приблизительно 9,8 м/с. h высота водяного столба, который стоит над отверстием.

US-800 расходомер счетчик. Описание. Цена. Заказ ТД РАСХОДОМЕР

Пример

Рассчитаем расход воды через кран с отверстием диаметром 0,01 м и высотой столба 10 м.

Сечение отверстия = πR2 = 3,14 х 0,012 = 3,14 х 0,0001 = 0,000314 м².

Скорость вытекания = √2gh = √2 х 9,8 х 10 = √196 = 14 м/с.

Расход воды = SV =0,000314 х 14 = 0,004396 м³/с.

В переводе на литры получается, что из заданной трубы способно вытекать 4,396 л в секунду.

o-trubah.com

Расчет потребления воды по сечению трубы. Упрощенные расчеты

Расчет потребления воды по сечению водопроводной трубы выступает в качестве отправного пункта в сложной системе гидродинамических вычислений. При постройке или реконструкции здания, при обустройстве системы пожаротушения крайне необходимо просчитать, сколько воды будет поступать на объект при известной величине давления в системе, если установить трубы определенного сечения.

При расчете расхода воды принимаются во внимание несколько факторов, одни из важнейших — это сечение подающей трубы и давление в системе

Какие факторы принимают в расчет, проводя вычисление расхода воды

Определение расхода воды по диаметру трубы позволяет получить данные, весьма приближенные к реальным, но далеко не всегда. На реальном расходе, помимо диаметра трубы, сказывается целый ряд факторов:

  • уровень давления. При более высоком давлении в системе трубопровода потребители будут получать больший объем воды. Расчет расхода воды по диаметру трубы и давлению позволяет получить более точные данные, чем при использовании только одного параметра. Опираясь на эти величины, определяется необходимая толщина стенки трубы;
  • напор воды в системе зависит от изменения диаметра труб, изгибов и поворотов, разветвлений, наличия запорной арматуры. Чем сложнее конфигурация водопровода, тем сложнее определить реальные показатели расхода воды через трубу при давлении, указанном согласно СНиП;
  • силой трения, препятствующей движению водного потока, при большей протяженности системы расход воды через трубу существенно снижается, так как падает скорость движения жидкости;
  • шероховатость внутренних стенок водопровода. Современные полимерные конструкции обладают примерно на десять процентов более высокой пропускной способностью, чем самые новые изделия из традиционных материалов – бетона, чугуна и стали;
  • при длительной эксплуатации внутреннюю поверхность трубопровода засоряют различные отложения. Изменение внутреннего рельефа вследствие засоренности вряд ли возможно просчитать с помощью математических формул. Так что, точно определить количество проходящей через трубу воды окажется невозможно. Новые полимерные материалы позволяют не принимать фактор постепенной закупорки системы в расчет, так как образование наростов на их внутренней поверхности практически исключается.

Расход воды будет зависеть конфигурации водопровода, а также типа труб, из которых смонтирована сеть

Так что, проводя расчеты давления воды в зависимости от диаметра трубы, не принимая во внимание другие факторы, сказывающиеся на реальном расходе жидкости, можно допустить существенные ошибки.

Методы расчета количества воды по сечению трубы

Пропускную способность трубопровода можно просчитать, используя несколько различных методик. Можно воспользоваться:

  • физическими методами расчета по специальным формулам, отличным при проведении вычислений для водопровода и канализации;
  • табличными методами расчета, приводящими приближенные значения, чего в большинстве случаев достаточно для принятия последующих решений. Для получения точных значений пользуются таблицами Шевелевых. В этих таблицах помимо внутреннего сечения учтен целый ряд других параметров, влияние которых сказывается на пропускной способности трубопровода;
  • специальными бесплатными онлайн-калькуляторами;
  • специальными компьютерными программами для расчета различных параметров, связанных с эксплуатацией трубопроводной системы. Крупные российские компании используют платную отечественную программу «Гидросистема». В интернете можно найти ссылки, позволяющие воспользоваться программой «TAScope», получившей широкое распространение во многих странах.

Расчет расхода воды по диаметру и другим параметрам

Получение расчетных данных расхода воды позволяет определиться:

  • с подбором труб нужного диаметра, который увязывается с предполагаемой пропускной способностью;
  • с толщиной их стенок, связанной с предполагаемым внутренним давлением;
  • с материалами, которые будут использованы при прокладке трубопровода;
  • с технологией монтажа магистрали.

Расчет потребления воды позволяет правильно выбрать тип труб и их диаметр

Рассчитать объем потребляемой воды возможно по несложной формуле:

q= π×d2/4 ×V

В приведенной формуле использованы параметры: d – внутреннего диаметра трубы; V – скорости течения водного потока; q – величина расхода воды.

Обратите внимание! Для расчета не имеют значения особенности скорости водного потока, которая может быть как естественной, при самотечном движении, так и созданной искусственно при помощи нагнетающего внешнего источника.

В безнапорной системе, где вода движется самотеком от водонапорной башни, скорость водного потока находится в пределах от 0,7 м/с до 1,9 м/с (в системе городского водопровода водный поток обычно перемещается со скоростью полтора метра в секунду). При использовании внешнего источника для нагнетания придаваемую им скорость определяют по паспортным данным нагнетателя.

Приведенная формула включает три параметра и позволяет, зная два из них, определить третий.

Определение расхода воды при возможном падении напора

Рассмотренная формула для определения расхода воды по внутреннему диаметру трубы и скорости водного потока, считается упрощенной. Ею не учитывается изменение напора под воздействием обстоятельств, которые могут привести к более низкому или высокому давлению в трубопроводной системе. Формула Дарси позволяет произвести расчет, учитывающий потери на крайних точках трубопровода. Выглядит она так:

ΔΡ = λL/D*V2/2gρ

В формуле Дарси учтены такие параметры:

P – вязкость; λ – коэффициент трения, величина которого определяется:

  • конфигурацией трубопровода, прямолинейного или имеющего сложные повороты и изгибы;
  • турбулентностью течения водного потока;
  • шероховатостью внутренней поверхности труб;
  • наличием препятствий в виде участков с применением запорной арматуры.

На коэффициент трения влияет наличие запорных элементов и их количество

L – длина труб; D  — величина внутреннего сечения; V – скорость перемещения водного потока; g – ускорение свободного падения.

Упрощенные расчеты

Формулу Дарси применяют при проведении сложных гидродинамических расчетов. В большинстве случаев вполне достаточно использования обычной формулы для определения расхода воды. Сложных расчетов можно избежать, прибегнув к использованию таблиц, построенных на сочетании четырех параметров:

  • величины внутреннего сечения — D;
  • расхода жидкости — q;
  • скорости течения — V;
  • уклона труб – i.

Частным случаем гидродинамических расчетов является определение расхода воды через отверстие крана. Используется формула q = SV, в которой помимо величин расхода воды и скорости водного потока введено значение площади сечения отверстия крана. Она определяется так:

S = πr2

Если скорость водного потока неизвестна, ее определяют по формуле Торичелли V = 2gh. В формуле Торичелли: g – величина ускорения свободного падения; h – высота столба воды над отверстием крана.

Рассчитать потребление воды, опираясь на известную величину внутреннего сечения трубы вполне возможно. Точность этого расчета будет зависеть от воздействия некоторых других факторов. В ряде случаев, когда не требуется получения идеально точных значений, ими вполне позволительно пренебречь. Естественно, что для сложных гидродинамических расчетов упрощенные формулы использовать нежелательно.

trubamaster.ru

Калькулятор расчета давления воды в водопроводе + подробное описание опыта

Нередко случается так, что давление воды на точках водоразбора в квартире – явно недостаточное. Это приводит к неудобствам при пользовании сантехническими приборами, к «зависанию» или полной остановке бытовой техники, подключенной к водопроводу, к некорректной работе современных устройств (душевых кабинок, джакузи, биде и т.п.), требующих определенного напора воды. Естественно, такая ситуация требует принятия мер административного характера (которые помогают, увы, не всегда), или установки специальных повышающих насосов или насосных станций.

Калькулятор расчета давления воды в водопроводеКалькулятор расчета давления воды в водопроводе

Чтобы предъявить претензии или спланировать установку дополнительного оборудования, желательно заранее знать, какое же давление преимущественно держится в водопроводе, то есть насколько оно отличается от нормативного. Если есть манометр, то снять показания — труда не составит. Но что делать, если такого прибора нет? Не беда, существует простой и точный экспериментальный способ, под который и составлен расположенный ниже калькулятор расчета давления воды в водопроводе.

Цены на насосные станции

насосная станция

Описание проведения замеров и расчетов – в текстовой части ниже калькулятора.

Калькулятор расчета давления воды в водопроводе

Перейти к расчётам

Как провести опытные замеры и вычисления?

Для самостоятельного измерения давления потребуется отрезок прозрачного шланга (трубки) длиной порядка 2 метров. Диаметр в данном случае никакого решающего значения не имеет – главное, чтобы была возможность герметично надеть шланг на смеситель или любой другой патрубок, оснащенный запорным краном.

Далее, поступают следующим образом (см схему):

Схема проведения экспериментального вычисления давления в водопроводе.Схема проведения экспериментального вычисления давления в водопроводе.
  • Шланг надевается на смеситель или патрубок, герметично, чтобы не просачивались ни вода, ни воздух. Лучше всего – обтянуть обычным хомутом.
  • В шланг запускается небольшое количество воды, затем он понимается вертикально и фиксируется в таком положении. Уровень воды в нижней петле должен приходиться примерно на высоту крана (патрубка). Это наглядно показано на иллюстрации слева. После этого замеряют начальную длину воздушного столба ho в миллиметрах. Значение записывают.
  • Далее, шланг сверху герметично закупоривают какой-нибудь пробкой, а затем открывают кран полностью. Вода своим давлением сожмет воздух в трубке и поднимется на определенную высоту. Главное – ни в коем случае не допустить просачивания воздуха сверху.
  • После того как уровень стабилизируется, делают еще один промер высоты воздушного столба (на рисунке справа) – hэ.

Эти две величины и являются исходными для внесения в калькулятор и получения значения давления воды в водопроводе. Результат будет выдан в технических атмосферах (бар) и в метрах водяного столба – как кому удобнее.

2016-08-10_161356Одно из решений проблемы – установка насосной станции

Ситуацию со стабильно недостаточным напором воды можно решить установкой насосной станции с аккумулирующим резервуаром. Как правильно подойти к выбору насосной станции – читайте в специальной публикации нашего портала.

stroyday.ru

Как определить расход воды зная сечение трубы на выходе и давление?

Помните формулу скорости при свободном падении v**2=2gh? В вашем случае h — высота столба воды, соответствующая давлению: h=p/(po*g). Значит, v**2=2p/po (po — плотность жидкости: для воды 1000кг/м**3). Подставляя ваше значение давления р=0.25*10**6 Па, получаем v=22,36 м/с. Умножая на сечение, получаем теоретический расход Qтеор=0,002236 м**3/с. Сужение струи учитывается коэф. фи, примерно равным 0,66. Итак, расход Q=0,0015 м**3/с = 88,5 л/мин.

По этим данным — никак.

Считая ламинарным P=ro*g*h ; v=&#8730; (2*g*h) =&#8730; (2*P/ro) Q= S*v= S*&#8730; (2*P/ro) Точнее … <a rel=»nofollow» href=»http://infobos.ru/str/563.html» target=»_blank»>http://infobos.ru/str/563.html</a>

touch.otvet.mail.ru

Примеры гидравлических расчетов

Пример 6.1. Расход горячей воды с температурой 95°С через радиатор водяного отопления Q = 0,1 м3/ч. Определить потери давления между сечениями 1-1 и 2-2, если диаметр подводящих трубопроводов d = 0,0125 м, а их общая длина l = 5 м. Принять следующие коэффициенты сопротивления: для поворота ζ1 = 1,45 для крана ζ2 = 0,5, для радиатора ζ3 = 2,1.

Решение:

Суммарные потери давления складываются из потерь давления по длине и местных потерь:

Средняя скорость движения воды в трубопроводе:

Число Рейнольдса определяем с учетом того, что кинематический коэффициент вязкости воды при температуре 95°С ν = 0,3·10-6 м2/с (табл.4.5):

Абсолютная шероховатость стальной трубы (Приложение 7), относительная шероховатость

Таким образом, коэффициент гидравлического трения определяем по формуле:

Вычислим потери давления по длине при плотности воды ρ = 961,9 кг/м3 (табл.4.1):

Местные потери давления складываются из потерь на поворот, в пробковом кране и в радиаторе:

Суммарные потери давления

Пример 6.2. Вода, перекачивается насосом из открытого бака А в расположенный ниже резервуар B, где поддерживается постоянное давление рв = 0,18 МПа (абс.) по трубопроводу общей длиной = 225 м и диаметром=250 мм. Разность уровней воды в бакахh=3 м. Определить потребный напор, создаваемый насосом для подачи в бак B расхода воды = 98 л/с. Принять суммарный коэффициент местных сопротивленийζ = 6,5. Эквивалентная шероховатость стенок трубопровода Δ = 0,15 мм. Жидкость – вода с плотностью ρ = 1000 кг/м3 и вязкостью ν = 0,01 Ст. Атмосферное давление ра = 0,1 МПа.

Решение:

Потребный напор, создаваемый насосом для подачи в бак B расхода воды равен

Статический напор складывается из пьезометрической высоты на поверхности жидкости в резервуаре Ви разности уровней воды в резервуарах h. Т.к. вода перекачивается в нижний бак, то вторую составляющую подставляем со знаком «-».

Потери напора складываются из потерь напора на трение по длине трубопровода и потерь на местных сопротивлениях.

Таким образом

Потери напора по длине трубопровода определим по формулеДарси, записав ее через расход:

Для правильного вычисления коэффициента трения λ определим режим течения жидкости в трубопроводе:

Согласно уравнению неразрывности скорость движения жидкости в трубопроводе

Тогда формула числа Рейнольдса примет вид:

Подставив значения, определим режим течения жидкости:

= 4991102320

Величина числа Рейнольдса указывает на турбулентный режим движения. Для такого значения числа коэффициент трения вычислим по универсальной формуле Альтшуля:

Вычислим коэффициент Дарси:

Вычислим потери напора по длине трубопровода

=3,291 м.

Местные потери напора определим по формуле Вейсбаха, записав ее через расход:

Вычислим местные потери :

= 1,32 м.

Окончательно подставив полученные значения, определим потребный напор, используя для расчета избыточное давление в баке В:

Методические рекомендации к проведению расчетов

Задачи на расчет простого трубопровода делятся на три типа.

1 тип. Даны: расход жидкости Q в трубопроводе, его геометрические параметры (l,dz), шероховатость труб; давление в конечном сечении (либо в начальном для всасывающих трубопроводов) и свойства жидкости (ρ,ν). Местные сопротивления заданы коэффициентами ζ либо оцениваются по справочным данным.

Требуется найти потребный напор Hпотр.

Алгоритм решения:

  1. Определить режим течения. С этой целью нужно найти число Рейнольдса Re по известным Q, d и ν.

  2. При ламинарном режиме напор вычисляется по формулам (6.7) и (6.8)

  3. При турбулентном режиме задача решается с помощью формул (6.3) или (6.4) в зависимости от шероховатости труб (Пример 6.2).

2 тип. Даны: располагаемый напор Hрасп, все величины, перечисленные в задаче 1-го типа, кроме расхода Q.

Так как число Рейнольдса Re нельзя вычислить, то режимом движения необходимо задаться, основываясь на роде жидкости. Для вязких жидкостей (масло) выбирать ламинарный режим течения, для маловязких (вода, бензин, керосин) – турбулентный. Для проверки правильности выбора в конце решения необходимо вычислить число Рейнольдса. Либо по формулам (6.7) и (6.8) выразить диаметр через критическое число Рейнольдса и определить Hкр, соответствующее смене режима. Сравнивая Hкр и Hрасп, определяют режим течения.

При ламинарном режиме задача решается на основании формул (6.7) и (6.8).

При турбулентном режиме в уравнениях (6.7) и (6.9) содержаться две неизвестные Q и λт, зависящие от числа Рейнольдса. В этом случае для решения задачи требуется метод последовательных приближений. Для этого в первом приближении следует задаться коэффициентом λт. Выбрав начальное значение λт, решить задачу по 1-му типу. По полученным данным следует заново найти λт и повторить все вычисления, приближаясь к истинному результату.

3 тип. Даны: располагаемый напор Hрасп, расход жидкости Q в трубопроводе, его геометрические параметры и свойства жидкости, перечисленные выше, кроме диаметра трубопровода d.

Так как число Рейнольдса Re нельзя вычислить, то режимом движения либо необходимо задаться, либо по формулам (6.7) и (6.8) выразить диаметр через критическое число Рейнольдса и определить Hкр, соответствующее смене режима. Сравнивая Hкр и Hрасп, определяют режим течения.

При ламинарном режиме задача решается на основании формул (6.7) и (6.8).

При турбулентном режиме решение нужно проводить с использованием графиков. Для этого следует

1) задать ряд значений диаметра d и по ним подсчитать Hпотр;

2) построить график Hпотр = f(d);

3) по графику, зная Hрасп, определить d.

Задачи

Задача 6.1. По трубопроводу, соединяющему два резервуара, в которых поддерживаются постоянные уровни, перетекает вода с плотностью ρ = 1000 кг/м3. Диаметр трубопровода d = 20 мм. В верхнем баке поддерживается избыточное давление р0изб = 15 кПа, а в нижнем — вакуумметрическое давление р0вак = 7 кПа. Разность уровней в баках H = 5 м. Определить расход жидкости, если коэффициент гидравлического трения λ = 0,028, а длина трубопровода l = 15 м. Местными потерями напора пренебречь.

Задача 6.2. Из напорного бака по наклонному трубопроводу переменного сечения движется жидкость с относительной плотностью δ = 0,85. Диаметры участков трубопровода d1 = 50 мм, d2 = 30 мм, а длина соответственно равна l1 = 80 м, l2 = 40 м. Начало трубопровода расположено выше его конца на величину z = 3,5 м. Для обоих участков трубопровода коэффициент гидравлического трения λ = 0,038. Какой уровень Н необходимо поддерживать в напорном баке, чтобы скорость движения жидкости на выходе из трубопровода была v = 1,8 м/с? Местными потерями напора пренебречь.

Задача 6.3. Вода перетекает из бака А в бак Б по трубе диаметром d = 25 мм, на которой установлены вентиль с коэффициентом сопротивления ζв = 3,5, а также диффузор с ζд = 0,5 и диаметром выходного отверстия D = 75 мм. Показание вакуумметра pвак = 10 кПа, высота Н = 2,5 м, h = 2 м. Определить расход Q c учетом всех местных сопротивлений. При решении потерями на трение пренебречь, принять коэффициент сопротивления каждого колена ζкол = 0,5, учесть потери напора на входе в трубу (внезапное сужение) и на выходе в бак (внезапное расширение). Взаимным влиянием сопротивлений пренебречь.

Задача 6.4. Для измерения расхода воды, которая подается по трубе А в бак Б установлен расходомер Вентури В. Определить максимальный расход, который можно пропустить через данный расходомер при условии отсутствия в нем кавитации, если давление насыщенных паров соответствует hн.п. = 2 мм вод.ст. Уровень воды в баке поддерживается постоянным, равным H = 1,5 м, высота расположения трубы h = 0,5 м. Размеры расходомера: d1 = 50 мм и d2 = 20 мм. Атмосферное давление принять соответствующим 760 мм рт.ст., коэффициент сопротивления диффузора ζдиф = 0,2. Учесть потери на внезапное расширение при входе в бак.

Задача 6.5. Определить расход воды, вытекающей из трубы диаметром d = 22 мм через плавное расширение (диффузор) и далее по трубе диаметром D = 28 мм в бак. Коэффициент сопротивления диффузора ξдиф = 0,2 (отнесен к скорости в трубе диаметром d), показание манометра pм = 20 кПа; высота h = 0,7 м, H = 6 м. Учесть потери на внезапное расширение, потерями на трение пренебречь, режим течения считать турбулентным.

Задача 6.6. Вода по трубе 1 подается в открытый бак. Во избежание переливания воды через край бака устроена вертикальная сливная труба 2 диаметром d = 50 мм. Определить необходимую длину L трубы 2 из условия, чтобы при Q = 10 л/с вода не переливалась через край бака. Режим течения считать турбулентным, а величинами h пренебречь (h = 0). Принять следующие коэффициенты сопротивления: на входе в трубу ζ1 = 0,5, в колене ζ2 = 0,5, на трение по длине трубы λ = 0,03.

Задача 6.7. По трубопроводу диаметром d = 50 мм насос перекачивает воду на высоту Н = 10 м. Коэффициент сопротивления вентиля ζ = 8. За какое время насос наполнит резервуар емкостью W = 40 м3, если манометр, установленный на выходе из насоса, показывает избыточное давление рм = 250 кПа. Сопротивлением трубопровода пренебречь.

Задача 6.8. Определить давление в напорном баке р, необходимое для получения скорости истечения из брандспойта V2 = 20 м/с. Длина шланга l = 20 м, диаметр d1 = 20 мм, диаметр выходного отверстия брандспойта d2 = 10 мм. Высота уровня воды в баке над отверстием брандспойта Н = 5 м. Учесть местные гидравлические сопротивления при входе в трубу ζ1 = 0,5, в кране ζ2 = 3,5, в брандспойте ζ3 = 0,1, который отнесен к скорости V2, потери на трение в трубе λ = 0,018.

Задача 6.9. Определить минимальное давление pм, измеряемое манометром перед сужением трубы, при котором будет происходить подсасывание воды из резервуара А в узком сечении трубы. Диаметры трубы d1 = 60 мм и d2 = 20 мм высота ее расположения h1 = 6 м, высота уровня жидкости в баке h2 = 1 м. Принять коэффициенты сопротивления сопла ζсоп = 0,08, диффузора ζдиф = 0,3.

Задача 6.10. Определить расход воды через сифонный трубопровод, если высота H1 = 1 м, Н2 = 2 м, Н3 = 4 м. Общая длина трубы l = 20 м, диаметр d = 20 мм. Режим течения считать турбулентным. Учесть потери на входе в трубу ζ1 = 1, в коленах ζ2 = 0,2, в вентиле ζ3 = 4, на трение в трубе λ = 0,035. Подсчитать вакуум в верхнем сечении х-х трубы, если длина участка от входа в трубу до этого сечения lх = 8 м.

Задача 6.11. Насос нагнетает воду в напорный бак, где установились постоянный уровень на высоте H = 3,5 м и постоянное давление р2 = 0,2 МПа. Манометр, установленный на выходе из насоса на трубе диаметром d1 = 80 мм, показывает p1 = 0,3 МПа. Определить расход жидкости Q, если диаметр искривленной трубы, подводящей жидкость к баку, равен d2 = 65 мм; коэффициент сопротивления этой трубы принят равным ζ = 0,2.

Задача 6.12. Определить потребный напор, который необходимо создать в сечении 0-0 для подачи в бак воды вязкостью ν = 0,008 Ст, если длина трубопровода l = 80 м, его диаметр d = 50 мм, расход жидкости Q = 15 л/с, высота Hо = 30 м, давление в баке р2 = 0,2 МПа, коэффициент сопротивления крана ζ1 = 5, колена ζ2 = 0,8, а шероховатость стенок трубы Δ = 0,04. Потерями на расширение потока пренебречь.

Задача 6.13. Вода перетекает из бака А в резервуар Б по трубе диаметром d = 25 мм, длиной l = 10 м. Определить расход воды Q, если избыточное давление в баке р1 = 200 кПа, высота уровней Н1 = 1 м, Н2 = 5 м. Режим течения считать турбулентным. Принять следующие коэффициенты сопротивления: на входе в трубу ζ1 = 0,5, в вентиле ζ2 = 4, в коленах ζ3 = 0,2, на трение λ = 0,025. Учесть потери при выходе трубопровода в бак Б.

Задача 6.14. Определить расход в трубе для подачи воды с вязкостью ν = 0,01 Ст на высоту H = 16,5 м, если диаметр трубы d = 10 мм, ее длина l = 20 м и располагаемый напор в сечении трубы перед краном Hрасп = 20 м. При решении принять коэффициент сопротивления крана ζ1 = 4, колена ζ2 = 1, а потерями на расширение потока и скоростным напором в трубопроводе пренебречь. Трубу считать гидравлически гладкой.

Указание: Задачу решить методом последовательных приближений, задавшись коэффициентом Дарси λ, а затем, уточняя его, найти величину расхода Q с необходимой точностью.

Задача 6.15. Определить расход воды с вязкостью ν = 0,01 Ст, перетекающей через трубу из бака А в резервуар Б, если диаметр трубы d = 20 мм, ее длина l = 10 м, высота Н = 8 м. При решении принять коэффициент сопротивления крана ζ1 = 3, каждого колена ζ2 = 1, а эквивалентную шероховатость трубы Δ = 0,05 мм. Учесть потери на внезапное сужение потока при выходе из бака А и внезапное расширение при входе потока в резервуар Б.

Указание: Задачу решить методом последовательных приближений, задавшись коэффициентом Дарси λ, а затем, уточняя его.

Задача 6.16. Определить предельную высоту всасывания масла насосом при подаче Q = 0,4 л/с из условия бескавитационной работы насоса, считая, что абсолютное давление перед входом в насосе должно быть p ≥ 30 кПа. Длина и диаметр всасывающего трубопровода: l = 2 м; d = 20 мм. Плотность масла ρ = 900 кг/м3, вязкость ν = 2 Ст. Атмосферное давление 750 мм.рт.ст. Сопротивлением входного фильтра пренебречь.

Задача 6.17. При каком диаметре трубопровода подача насоса составит Q = 1 л/с, если на выходе из него располагаемый напор Hрасп = 9,6 м; длина трубопровода l = 10 м; эквивалентная шероховатость Δ = 0,05 мм; давление в баке p0 = 30 кПа; высота H0 = 4 м; вязкость жидкости ν = 0,015 Ст и ее плотность ρ = 1000 кг/м3? Местными гидравлическими сопротивлениями в трубопроводе пренебречь. Учесть потери при входе в бак.

Задача 6.18. Определить максимальный расход воды Q, который можно допустить во всасывающем трубопроводе насоса из условия отсутствия кавитации перед входом в насос, если высота всасывания h= 4 м, размеры трубопровода: l = 6 м; d = 24 мм; предельное давление бензина принять рв = 40 кПа. Режим течения считать турбулентным. Коэффициент сопротивления приемного фильтра ζф = 2; коэффициент сопротивления трения λт = 0,03; h0 = 750 мм.рт.ст.; ρб = 1000 кг/м3.

Задача 6.19. Определить абсолютное давление жидкости перед входом в центробежный насос при подаче Q = 1 л/с и высоте всасывания h = 0,6 м. Всасывающую трубу, длина которой l = 7,6 м, диаметр d = 20 мм, считать гидравлически гладкой. Учесть сопротивление приемного клапана с фильтрующей сеткой ζф = 3. Вязкость жидкости ν = 0,006 Ст, ее плотность ρ = 750 кг/м3. Скоростным напором при входе в насос пренебречь. Атмосферное давление соответствует 750 мм.рт.ст.

Задача 6.20. Вода с вязкостью ν = 0,02 Ст нагнетается насосом из колодца в водонапорную башню по вертикальному трубопроводу. Определить диаметр трубы от крана К до бака d2, если высота башни Н = 10 м, глубина погружения насоса Но = 5 м, высота уровня жидкости в баке h = 1 м, длина участка трубопровода от насоса до крана ζк = 3, показание манометра рм = 0,3 МПа, а подача насоса Q = 1,5 л/с. При решении пренебречь скоростным напором на выходе из насоса, но учесть потерю скоростного напора при входе в бак. Трубы считать гидравлически гладкими.

Указание: Задачу решить методом последовательных приближений, задавшись начальным значением диаметра трубопровода d, а затем, уточняя его, найти величину d с необходимой точностью.

studfile.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *