Posted on

Содержание

Падение напряжения: расчет, формула, как найти

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Мнемоническая диаграмма для закона Ома

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение  происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Закон Ома для участка цепи

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Падение напряжения на резисторе

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пример калькулятора для автоматизации вычислений

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Расчёт потерь напряжения в кабеле

 

Потеря напряжения в кабеле — величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения (по ГОСТ 23875-88). Этот параметр необходимо знать при производстве любых электромонтажных работ — начиная от видеонаблюдения и ОПС и заканчивая системами электроснабжения промышленных объектов.

 

Рис.1 Рис.2

При равенстве сопротивлений Zп1=Zп2=Zп3 и Zн1=Zн2=Zн3 ток в нулевом проводе отсутствует (Рис.1), поэтому для трёхфазных линий потери напряжения рассчитываются для одного проводника.

В двух- и однофазных линиях, а также в цепи постоянного тока, ток идёт по двум проводникам (Рис.2), поэтому вводится коэффициент 2 (при условии равенства Zп1=Zп2).

Доступна Windows-версия программы расчёта потерь напряжения

Пояснения к расчёту

Расчёт потерь линейного (между фазами) напряжения в кабеле при трёхфазном переменном токе производится по формулам:

 

Для расчёта потерь фазного напряжения U=220 В; 1 фаза.

 

P — активная мощность передаваемая по линии, Вт;
Q — реактивная мощность передаваемая по линии, ВАр;

R — удельное активное сопротивление кабельной линии, Ом/м;
X — удельное индуктивное сопротивление кабельной линии, Ом/м;
L — длина кабельной линии, м;
— линейное напряжение сети, В;
— фазное напряжение сети, В.

 

Пожелания, замечания, рекомендации по улучшению раздела расчётов на нашем сайте просьба присылать по электронной почте [email protected]

Разрешается копирование java-скриптов при условии ссылки на источник.

 

ВСЕ РАСЧЁТЫ

при нагрузке, порядок расчета и способы определения

Падение напряжения

Понятия и формулы

На каждом сопротивлении r при прохождении тока I возникает напряжение U=I∙r, которое называется обычно падением напряжения на этом сопротивлении.

Если в электрической цепи только одно сопротивление r, все напряжение источника Uист падает на этом сопротивлении.

Если в цепи имеются два сопротивления r1 и r2, соединенные последовательно, то сумма напряжений на сопротивлениях U1=I∙r1 и U2=I∙r2 т. е. падений напряжения, равна напряжению источника: Uист=U1+U2.

Напряжение источника питания равно сумме падений напряжения в цепи (2-й закон Кирхгофа).

1. Какое падение напряжения возникает на нити лампы сопротивлением r=15 Ом при прохождении тока I=0,3 А (рис. 1)?

Падение напряжения подсчитывается по закону Ома: U=I∙r=0,3∙15=4,5 В.

Напряжение между точками 1 и 2 лампочки (см. схему) составляет 4,5 В. Лампочка светит нормально, если через нее проходит номинальный ток или если между точками 1 и 2 номинальное напряжение (номинальные ток и напряжение указываются на лампочке).

2. Две одинаковые лампочки на напряжение 2,5 В и ток 0,3 А соединены последовательно и подключены к карманной батарее с напряжением 4,5 В. Какое падение напряжения создается на зажимах отдельных лампочек (рис. 2)?

Одинаковые лампочки имеют равные сопротивления r. При последовательном включении через них проходит один и тот же ток I. Из этого следует, что на них будут одинаковые падения напряжения, сумма этих напряжений должна быть равна напряжению источника U=4,5 В. На каждую лампочку приходится напряжение 4,5:2=2,25 В.

Можно решить эту задачу и последовательным расчетом. Сопротивление лампочки рассчитываем по данным: rл=2,5/0,3=8,33 Ом.

Ток в цепи I = U/(2rл )=4,5/16,66=0,27 А.

Падение напряжения на лампочке U=Irл=0,27∙8,33=2,25 В.

3. Напряжение между рельсом и контактным проводом трамвайной линии равно 500 В. Для освещения используются четыре одинаковые лампы, соединенные последовательно. На какое напряжение должна быть выбрана каждая лампа (рис. 3)?

Одинаковые лампы имеют равные сопротивления, через которые проходит один и тот же ток. Падения напряжения на лампах будут тоже одинаковыми. Значит, на каждую лампу будет приходиться 500_4=125 В.

4. Две лампы мощностью 40 и 60 Вт с номинальным напряжением 220 В соединены последовательно и включены в сеть с напряжением 220 В. Какое падение напряжения возникает на каждой из них (рис. 4)?

Первая лампа имеет сопротивление r1=1210 Ом, а вторая r2=806,6 Ом (в нагретом состоянии). Ток, проходящий через лампы, I=U/(r1+r2 )=220/2016,6=0,109 А.

Падение напряжения на первой лампе U1=I∙r1=0,109∙1210=132 В.

Падение напряжения на второй лампе U2=I∙r2=0,109∙806,6=88 В.

На лампе с большим сопротивлением большее падение напряжения, и наоборот. Накал нитей обеих ламп очень слаб, однако у лампы 40 Вт он несколько сильнее, чем у лампы 60 Вт.

5. Чтобы напряжение на электродвигателе Д (рис. 5) было равно 220 В, напряжение в начале длинной линии (на электростанции) должно быть больше 220 В на величину падения (потери) напряжения на линии. Чем больше сопротивление линии и ток в ней, тем больше падение напряжения на линии.

В нашем примере падение напряжения в каждом проводе линии равно 5 В. Тогда напряжение на шинах электростанции должно быть равно 230 В.

6. От аккумулятора напряжением 80 В потребитель питается током 30 А. Для нормальной работы потребителя допустимо 3% падения напряжения в проводах из алюминия с сечением 16 мм2. Каким может быть максимальное расстояние от аккумулятора до потребителя?

Допустимое падение напряжения в линии U=3/100∙80=2,4 В.

Сопротивление проводов ограничивается допустимым падением напряжения rпр=U/I=2,4/30=0,08 Ом.

По формуле для определения сопротивления подсчитаем длину проводов: r=ρ∙l/S, откуда l=(r∙S)/ρ=(0,08∙16)/0,029=44,1 м.

Если потребитель будет отдален от аккумулятора на 22 м, то напряжение на нем будет меньше 80 В на 3%, т.е. равным 77,6 В.

7. Телеграфная линия длиной 20 км выполнена из стального провода диаметром 3,5 мм. Обратная линия заменена заземлением через металлические шины. Переходное сопротивление между шиной и землей rз=50 Ом.2)/4=9,6 мм2.

Сопротивление линии rл=ρ∙l/S=0,11∙20000/9,6=229,2 Ом.

Результирующее сопротивление r=229,2+300+2∙50=629,2 Ом.

Напряжение источника U=I∙r=0,005∙629,2=3,146 В; U≈3,2 В.

Падение напряжения в линии при прохождении тока I=0,005 А будет: Uл=I∙rл=0,005∙229,2=1,146 В.

Сравнительно малое падение напряжения в линии достигается благодаря малой величине тока (5 мА). Поэтому в месте приема должно быть чувствительное реле (усилитель), которое включается от слабого импульса 5 мА и своим контактом включает другое, более мощное реле.

8. Как велико напряжение на лампах в схеме на рис. 28, когда: а) двигатель не включен; б) двигатель запускается; в) двигатель в работе.

Двигатель и 20 ламп включены в сеть с напряжением 110 В. Лампы рассчитаны на напряжение 110 В и мощность 40 Вт. Пусковой ток двигателя Iп=50 А, а его номинальный ток Iн=30 А.

Подводящий медный провод имеет сечение 16 мм2 и длину 40 м.

Из рис. 7 и условия задачи видно, что ток двигателя и ламп вызывает в линии падение напряжения, поэтому напряжение на нагрузке будет меньше 110 В.

Отсюда напряжение на лампах Uламп=U-2∙Uл.

Надо определить падение напряжения в линии при различных токах: Uл=I∙rл.

Сопротивление всей линии

Ток, проходящий через все лампы,

Падение напряжения в линии, когда включены только лампы (без двигателя),

Напряжение на лампах в этом случае равно:

При пуске двигателя лампы будут светить слабее, так как падение напряжения в линии больше:

2∙Uл=(Iламп+Iдв )∙2∙rл=(7,27+50)∙0,089=57,27∙0,089=5,1 В.

Минимальное напряжение на лампах при пуске двигателя будет:

Когда двигатель работает, падение напряжения в линии меньше, чем при пуске двигателя, но больше, чем при выключенном двигателе:

2∙Uл=(Iламп+Iном )∙2∙rл=(7,27+30)∙0,089=37,27∙0,089=3,32 В.

Напряжение на лампах при нормальной работе двигателя равно:

Даже небольшое снижение напряжения на лампах относительно номинального сильно влияет на яркость освещения.

Определение падения напряжения

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Потери напряжения определены следующей формулой:

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.


Расчет падения напряжения при питании потребителей шлейфом

Расчет падения напряжения при питании потребителей по радиальным схемам достаточно прост. Один участок, одно сечение кабеля, одна длина, один ток нагрузки. Подставляем эти данные в формулу и получаем результат.

При питании потребителей по магистральным схемам (шлейфом) расчет падения напряжения выполнить сложнее. Фактически, приходится выполнять несколько расчетов падения напряжения для одной линии: нужно выполнять расчет падения напряжения для каждого участка. Дополнительные сложности возникают при изменении потребляемой мощности электроприемников, запитанных по магистральной схеме. Изменение мощности одного электроприемника отражается на всей цепочке.

Насколько часто на практике встречается питание по магистральным схемам и шлейфом? Примеров привести можно много:

  • В групповых сетях — это сети освещения, розеточные сети.
  • В жилых домах этажные щиты запитаны по магистральным схемам.
  • В промышленных и коммерческих зданиях также часто применяются магистральные схемы питания и питания шлейфом щитов.
  • Шинопровод является примером питания потребителей по магистральной схеме.
  • Питание опор наружного освещения дорог.

Рассмотрим расчет падения напряжения на примере наружного освещения.

Предположим, что нужно выполнить расчет падения напряжения для четырёх столбов наружного освещения, последовательно запитанных от щита наружного освещения ЩНО.

Длина участков от щита до столба, между столбами: L1, L2, L3, L4.
Ток, протекающий по участкам: I1, I2, I3, I4.
Падение напряжения на участках: dU%1, dU%2, dU%3, dU%4.
Ток, потребляемый светильниками на каждом столбе, Ilamp.

Столбы запитаны шлейфом, соответственно:

Ток, потребляемый лампой, неизвестен, зато известна мощность лампы и её тип (либо из каталога, либо по п.6.30 СП 31-110-2003).

Ток определяем по формуле:

Формула расчета полного фазного тока

Iф — полный фазный ток
P — активная мощность
Uф — фазное напряжение
cosφ — коэффициент мощности
Nф — число фаз (Nф=1 для однофазной нагрузки, Nф=3 для однофазной нагрузки)

Напомню, что линейное (междуфазное) напряжение больше фазного напряжения в √3 раз:

При расчете падения напряжения в трехфазной сети подразумевают падение линейного напряжения, в однофазных — однофазного.

Расчет падения напряжения выполняется по формулам:

Формула расчета падения напряжения в трехфазной цепи

Формула расчета падения напряжения в однофазной цепи

Iф — полный фазный ток, протекающий по участку
R — сопротивление участка
cosφ — коэффициент мощности

Сопротивление участка рассчитывается по формуле

ρ — удельной сопротивление проводника (медь, алюминий)
L — длина участка
S — сечение проводника
N — число параллельнопроложенных проводников в линии

Обычно в каталогах приводят удельные значения сопротивления для различных сечений проводников

При наличии информации об удельных сопротивлениях проводников формулы расчета падения напряжения принимают вид:

Формула расчета падения напряжения в трехфазной цепи

Формула расчета падения напряжения в однофазной цепи

Подставляя в формулу соответствующие значения токов, удельных сопротивлений, длины, количества параллельнопроложенных проводников и коэффициента мощности, вычисляем величину падения напряжения на участке.

Нормативными документами регламентируется величина относительного падения напряжения (в процентах от номинального значения), которая рассчитывается по формуле:

U — номинальное напряжение сети.

Формула расчета относительного падения напряжения одинакова для трехфазной и однофазной сети. При расчете в трехфазной сети нужно подставлять трехфазное падение и номинальное напряжения, при расчете в однофазной сети — однофазные:

Формула расчета относительного падения напряжения в трехфазной сети

Формула расчета относительного падения напряжения в однофазной сети

С теорией закончено, рассмотрим, как это реализовать с использованием DDECAD.

Примем следующие исходные данные:

  • Мощность лампы 250Вт, cosφ=0,85.
  • Расстояние между столбами, от щита до первого столба L1=L2=L3=L4=20м.
  • Питание столбов осуществляется медным кабелем 3×10.
  • Ответвление от питающего кабеля до лампы выполнено кабелем 3×2,5, L=6м.

Для каждого столба в программе DDECAD создаём расчетную таблицу.

Заполняем данные для лампы в каждой расчетной таблице:

Подключаем к расчетной таблице Столб 3 расчетную таблицу Столб 4, к Столб 2 — Столб 3, к Столб 1 — Столб 2, к ЩНО — Столб 1:

Далее, из расчетной таблицы ЩНО рассчитанное программой значение падения напряжения в конце первого участка (Столб 1) переносим в зелёную ячейку расчетной таблицы Столб 1:

Переносить значения следует делая ссылку на ячейку расчетной таблицы вышестоящего щита. В случае Столб 1 и ЩНО это делается так:

  1. В расчетной таблице Столб 1 курсор устанавливают на зелёную ячейку в столбике «∆U».
  2. Нажимают «=».
  3. Переключаются на расчетную таблицу ЩНО.
  4. Устанавливают курсор на ячейку в столбике «∆U∑», находящуюся в строке Столб 1.
  5. Нажимают «Enter».

Получаем рассчитанное значение падения напряжения в конце второго участка (Столб 2) — 0,37% и рассчитанное падение напряжения на лампе — 0,27%.

Аналогично делаем для всех остальных расчетных таблиц и получаем рассчитанные значения падения напряжения на всех участках.
Так как мы выполнили связывание таблиц (средствами программы, подключая одну таблицу к другой, и вручную, перенося значения падения напряжения), то получили связанную систему. При внесении любых изменений всё будет автоматически пересчитано.

Расчет падения напряжения в кабеле

Для работы электроприборов необходимы определённые параметры сети. Провода обладают сопротивлением электрическому току, поэтому при выборе сечения кабелей необходимо учитывать падение напряжения в проводах.

Что такое падение напряжения

При измерении в разных частях провода, по которому течёт электрический ток, по мере движения от источника к нагрузке наблюдается изменение потенциала. Причина этого – сопротивление проводов.

Как замеряется падение напряжения

Измерить падение можно тремя способами:

  • Двумя вольтметрами. Замеры производятся в начале и конце кабеля;
  • Поочерёдно в разных местах. Недостаток метода в том, что при переходах может измениться нагрузка или параметры сети, что повлияет на показания;
  • Одним прибором, подключённым параллельно кабелю. Падение напряжения в кабеле мало, а соединительные провода большой длины, что приводит к погрешностям.

Важно! Падение напряжения может составлять от 0,1В, поэтому приборы используются класса точности не ниже 0,2.

Сопротивление металлов

Электрический ток – это направленное движение заряженных частиц. В металлах это движение свободных электронов сквозь кристаллическую решётку, которая оказывает сопротивление этому движению.

В расчетах удельное сопротивление обозначается буквой “p” и соответствует сопротивлению одного метра провода сечением 1мм².

Для самых распространённых металлов, используемых для изготовления проводов, меди и алюминия, этот параметр равен 0,017 и 0,026 Ом*м/мм², соответственно. Сопротивление отрезка провода вычисляется по формуле:

Например, 100 метров медного провода сечением 4мм² имеет сопротивление 0,425 Ом.

Если сечение S неизвестно, то, зная диаметр проводника, оно рассчитывается как:

Как рассчитать потери напряжения

По закону Ома, при протекании тока через сопротивление на нём появляется разность потенциалов. В этом отрезке кабеля при токе 53А, допустимом при открытой прокладке, падение составит U=I*R=53А*0,425Ом=22,5В.

Для нормальной работы электрооборудования величина напряжения сети не должна выходить за пределы ±5%. Для бытовой сети 220В – это 209-231В, а для трёхфазной сети 380В допустимые пределы колебаний – 361-399В.

При изменении потребляемой мощности и тока в электрокабелях падение напряжения в токопроводящих жилах и его значение возле потребителя меняется. Эти колебания необходимо учитывать при проектировании электроснабжения.

Выбор по допустимым потерям

При расчёте потерь необходимо учитывать, что в однофазной сети используется два провода, соответственно, формула расчёта падения напряжения меняется:

В трёхфазной сети ситуация сложнее. При равномерной нагрузке, например, в электродвигателе, мощности, подключенные к фазным проводам, компенсируют друг друга, ток по нулевому проводу не идёт, и его длина в расчётах не учитывается.

Если нагрузка неравномерная, как в электроплитах, в которых может быть включен только один ТЭН, то расчёт ведётся по правилам однофазной сети.

В линиях большой протяжённости, кроме активного, учитывается также индуктивное и ёмкостное сопротивление.

Расчёт можно выполнить по таблицам или при помощи онлайн-калькулятора. В ранее приведённом примере в однофазной сети и при расстоянии 100 метров необходимое сечение составит не менее 16мм², а в трёхфазной – 10 мм².

Выбор сечения кабелей по нагреву

Ток, текущий через сопротивление, выделяет энергию Р, величина которой рассчитывается по формуле:

В кабеле из предыдущего примера Р=40А²*0,425Ом=680Вт. Несмотря на длину, этого достаточно для того, чтобы нагреть проводник.

При нагреве провода свыше допустимой температуры изоляция выходит из строя, что приводит к короткому замыканию. Величина допустимого тока зависит от материала токопроводящей жилы, изоляции и условий прокладки. Для выбора необходимо пользоваться специальными таблицами или онлайн-калькулятором.

Как уменьшить падение напряжения в кабеле

При прокладке электропроводки на большие расстояния сечение кабеля, выбранное по допустимому падению напряжения, многократно превосходит выбор, сделанный по нагреву, что приводит к увеличению стоимости электроснабжения. Но есть способы уменьшить эти расходы:

  • Повысить потенциал в начале питающего кабеля. Возможно только это при подключении к отдельному трансформатору, например, в дачном посёлке или микрорайоне. При отключении части потребителей потенциал в розетках остальных окажется завышенным;
  • Установка возле нагрузки стабилизатора. Это требует расходов, но гарантирует постоянные параметры сети;
  • При подключении нагрузки 12-36В через понижающий трансформатор или блок питания располагать их рядом с потребителем.

Справка. При понижении напряжения растёт ток в сети, падение напряжения и необходимое сечение проводов.

Способы снижения потерь в кабеле

Кроме нарушения нормальной работы электроприборов, падение напряжения в проводах приводит к дополнительным расходам на электроэнергию. Уменьшить эти затраты можно разными способами:

  • Увеличение сечения питающих проводов. Этот метод требует значительных расходов на замену кабелей и тщательной проверки экономической целесообразности;
  • Уменьшение длины линии. Прямая, соединяющая две точки, всегда короче кривой или ломаной линии. Поэтому при проектировании сетей электроснабжения линии следует прокладывать максимально коротким прямым путём;
  • Снижение окружающей температуры. При нагреве сопротивление металлов растёт, и увеличиваются потери электроэнергии в кабеле;
  • Уменьшение нагрузки. Этот вариант возможен при наличии большого числа потребителей и источников питания;
  • Приведение cosφ к 1 возле нагрузки. Это уменьшает потребляемый ток и потери.

Важно! Все изменения необходимо отображать на схемах.

К сведению. Улучшение вентиляции в кабельных лотках и других конструкциях приводит к снижению температуры, сопротивления и потерь в линии.

Для достижения максимального эффекта необходимо комбинировать эти способы между собой и с другими методами энергосбережения.

Расчёт падения напряжения и потерь электроэнергии в кабеле важен при проектировании систем электроснабжения и кабельных линий.

Видео

Определение напряжения на нагрузке

Падение напряжения в электрической сети может стать настоящей проблемой с приобретением современных мощных электроприборов. Чаще всего от этого страдают жильцы старых многоквартирных и частных домов, проводка в которых проложена 20, а то и 30 лет назад. Для энергопотребителей тех времен сечения кабеля было вполне достаточно, однако сегодня практически все пользователи полностью перешли на электрическую технику, эксплуатация которой требует модернизации проводки.

Наглядную картину можно наблюдать на примере освещения. Когда в электрической сети падает напряжение при подключении нагрузки с малым сопротивлением, лампы начинают гореть с меньшей яркостью. Причиной такого явления может быть недостаточное сечение проводки.

Чтобы убедиться в том, что источник выдает больший вольтаж, чем потребитель, необходимо вычислить напряжение на нагрузке. Сделать это можно путем включения в цепь вольтметра или по формуле. В первом случае измерительный прибор, который изначально имеет достаточно высокое сопротивление на входе, необходимо подключать параллельно линии. Это позволяет избежать шунтирования нагрузки и искажения результатов измерения.

Как рассчитать напряжение по формуле

Когда возникают перебои в подаче электроэнергии к приборам, важно проанализировать работу линии. При этом следует определить напряжение на нагрузке по формуле – такое решение дает максимально точный результат и позволяет вычислить другие параметры аналогичным способом. Так, формула расчета напряжения на нагрузке выглядит следующим образом:

U1 – напряжение источника;

ΔU – падение напряжения в линии;

R – сопротивление линии.

В том случае, если сопротивление линии и напряжение источника постоянны, напряжение на нагрузке напрямую зависит от силы тока в линии.

Например, при подключении прибора в электрическую сеть с напряжением 220 В, током 10 А и сопротивлением линии, равным 2 Ом, напряжение на нагрузке составит:

В режиме холостого хода падения напряжения в линии нет (ΔU = 0), поэтому напряжение на нагрузке теоретически равно вольтажу источника (U2 = U1). Однако на практике напряжение источника равняться напряжению потребителя не может, поскольку и проводка, и источник электроэнергии, и подключенный к сети прибор имеют собственное сопротивление.

Пример. Напряжение источника составляет 220 В, внутреннее его сопротивление можно не учитывать. Сопротивление проводки – 1 Ом. Сопротивление включенного в сеть электрического прибора – 12 Ом. Суммарное сопротивление цепи составит 13 Ом. Ток в линии рассчитывается по закону Ома и составляет:

Напряжение на нагрузке вычисляется по формуле, приведенной выше:

Таким образом, видно, что напряжение на нагрузке меньше исходных 220 В, остальной вольтаж «теряется» на проводах.

Падение напряжения при подключении нагрузки потребителя

Из-за скачков вольтажа в сети страдают преимущественно жители частного сектора, дачных и коттеджных поселков. Из-за чего же происходит падение напряжения при подключении потребителя?

Первая причина этого явления – недостаточное сечение электрической проводки в доме. Дело в том, что слишком тонкие жилы кабеля не выдерживают большой нагрузки, которая возникает при включении в сеть электроприборов с высокой мощностью. Вторая причина – некачественные контакты в местах соединения проводов, что создает дополнительное сопротивление на линии.

Из-за падения напряжения в обоих случаях есть риск перегрева проводки или участка, в котором находится неисправный контакт. Это может стать причиной полного прекращения подачи электроэнергии на объект и даже возгорания.

Иногда падение напряжения наблюдается не на стороне пользователя, а на линиях электропередач. Оно может возникать вследствие перегрузки подстанции. В этом случае решить проблему может лишь поставщик электроэнергии путем замены устаревшей подстанции на более новую модель с современной релейной защитой. Еще одной причиной низкого напряжения может быть недостаточное сечение проводов на линии электропередач, а также нестабильное распределение нагрузки фаз на стороне подстанции. Как и в первом случае, устранить эти недочеты может только поставщик коммунальной услуги.

Узнать, действительно ли поставщик электроэнергии виноват в «провалах» напряжения, можно, опросив соседей. Если у них подобной проблемы нет, значит, стоит искать причину на территории участка. Зачастую этот вопрос успешно решается путем замены проводки на новый кабель с большим сечением. Однако в некоторых случаях падение напряжения продолжает наблюдаться. Причина может заключаться в так называемых «скрутках» – соединениях проводов путем их скручивания. Дело в том, что каждый некачественный контакт на линии снижает конечное напряжение в сети. Чтобы этого избежать, рекомендуется использовать заводские зажимы, которые гораздо более надежны, чем другие способы соединения электрических кабелей, а также абсолютно безопасны.

В случаях с применением низковольтных аккумуляторных батарей тоже могут наблюдаться «провалы». Если при включении потребителей падает напряжение зарядки источника питания, наиболее вероятная причина этого – некачественные контакты.

При падении напряжения в сети принципиально важно выяснить и устранить причину этого. В противном случае бездействие может обернуться печальными последствиями, особенно если дело касается электрической бытовой проводки. Современные кабели с подходящим сечением и качественно выполненные соединения проводов – залог длительной и эффективной работы всех электроприборов.

Последствия при падении напряжения по длине кабеля и расчет потерь

Линии электропередач транспортируют ток от распределительного устройства к конечному потребителю по токоведущим жилам различной протяженности. В точке входа и выхода напряжение будет неодинаковым из-за потерь, возникающих в результате большой длины проводника.

Падение напряжения по длине кабеля возникает по причине прохождения высокого тока, вызывающего увеличение сопротивления проводника.

На линиях значительной протяженности потери будут выше, чем при прохождении тока по коротким проводникам такого же сечения. Чтобы обеспечить подачу на конечный объект тока требуемого напряжения, нужно рассчитывать монтаж линий с учетом потерь в токоведущем кабеле, отталкиваясь от длины проводника.

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования. Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения.

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

Расчет с применением формулы

На практике при монтаже линий электропередач магистрального типа и отведения кабелей к конечному потребителю с дальнейшей разводкой на объекте используется медный или алюминиевый кабель.

Удельное сопротивление для проводников постоянное, составляет для меди р = 0,0175 Ом*мм2/м, для алюминиевых жил р = 0,028 Ом*мм2/м.

Зная сопротивление и силу тока, несложно вычислить напряжение по формуле U = RI и формуле R = р*l/S, где используются следующие величины:

  • Удельное сопротивление провода — p.
  • Длина токопроводящего кабеля — l.
  • Площадь сечения проводника — S.
  • Сила тока нагрузки в амперах — I.
  • Сопротивление проводника — R.
  • Напряжение в электрической цепи — U.

Использование простых формул на несложном примере: запланировано установить несколько розеток в отдельно стоящей пристройке частного дома. Для монтажа выбран медный проводник сечением 1,5 кв. мм, хотя для алюминиевого кабеля суть расчетов не изменяется.

Поскольку ток по проводам проходит туда и обратно, нужно учесть, что расстояние длины кабеля придется умножать вдвое. Если предположить, что розетки будут установлены в сорока метрах от дома, а максимальная мощность устройств составляет 4 кВт при силе тока в 16 А, то по формуле несложно сделать расчет потерь напряжения:

Если сравнить полученное значение с номинальным для однофазной линии 220 В 50 Гц, получается, что потери напряжения составили: 220-14,93 = 205,07 В.

Такие потери в 14,93 В — это практически 6,8 % от входного (номинального) напряжения в сети. Значение, недопустимое для силовой группы розеток и осветительных приборов, потери будут заметны: розетки будут пропускать ток неполной мощности, а осветительные приборы — работать с меньшим накалом.

Мощность на нагрев проводника составит P = UI = 14,93*16 = 238,9 Вт. Это процент потерь в теории без учета падения напряжения на местах соединения проводов, контактах розеточной группы.

Проведение сложных расчетов

Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность.

Для проведения расчетов падения напряжения в кабеле используют формулу:

∆U = (P*r0+Q*x0)*L/ U ном

В этой формуле указаны следующие величины:

  • P, Q — активная, реактивная мощность.
  • r0, x0 — активное, реактивное сопротивление.
  • U ном — номинальное напряжение.

Чтобы обеспечить оптимальную нагрузку по трехфазных линиям передач, необходимо нагружать их равномерно. Для этого силовые электродвигатели целесообразно подключать к линейным проводам, а питание на осветительные приборы — между фазами и нейтральной линией.

Есть три варианта подключения нагрузки:

  • от электрощита в конец линии;
  • от электрощита с равномерным распределением по длине кабеля;
  • от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.

Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.

Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.

По формуле потери напряжения составляют:

∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.

Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.

Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.

Использование готовых таблиц

Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам — длина кабеля в 1000 м и величина тока в 1 А.

В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.

Таблица 1. Определение потерь напряжения по длине кабеля

Площадь сечения, мм2Линия с одной фазойЛиния с тремя фазами
ПитаниеОсвещениеПитаниеОсвещение
РежимПускРежимПуск
МедьАлюминийКосинус фазового угла = 0,8Косинус фазового угла = 0,35Косинус фазового угла = 1Косинус фазового угла = 0,8Косинус фазового угла = 0,35Косинус фазового угла = 1
1,524,010,630,020,09,425,0
2,514,46,418,012,05,715,0
4,09,14,111,28,03,69,5
6,010,06,12,97,55,32,56,2
10,016,03,71,74,53,21,53,6
16,025,02,361,152,82,051,02,4
25,035,01,50,751,81,30,651,5
35,050,01,150,61,291,00,521,1
50,070,00,860,470,950,750,410,77

Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.

Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:

∆U = 1 В*0,05 км*100А = 5 В

Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.

На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме — 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда

∆U при запуске = 0,52*0,05*500 = 13 В

∆U щита = 10*1400/100 = 14 В

∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % — допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.

Применение сервис-калькулятора

Расчеты, таблицы, графики, диаграммы — точные инструменты для вычисления падения напряжения по длине кабеля. Упростить работу можно, если выполнить расчеты с помощью онлайн-калькулятора. Преимущества очевидны, но стоит проверить данные на нескольких ресурсах и отталкиваться от среднего полученного значения.

Как это работает:

  1. Онлайн-калькулятор разработан для быстрого выполнения расчетов на основе исходных данных.
  2. В калькулятор нужно ввести следующие величины — ток (переменный, постоянный), проводник (медь, алюминий), длина линии, сечение кабеля.
  3. Обязательно вводят параметры по количеству фаз, мощности, напряжению сети, коэффициенту мощности, температуре эксплуатации линии.
  4. После введения исходных данных программа определяет падение напряжения по линии кабеля с максимальной точностью.
  5. Недостоверный результат можно получить при ошибочном введении исходных величин.

Пользоваться такой системой можно для проведения предварительных расчетов, поскольку сервис-калькуляторы на различных ресурсах показывают не всегда одинаковый результат: итог зависит от грамотной реализации программы с учетом множества факторов.

Тем не менее, можно провести расчеты на трех калькуляторах, взять среднее значение и отталкиваться от него на стадии предварительного проектирования.

Как сократить потери

Очевидно, что чем длиннее кабель на линии, тем больше сопротивление проводника при прохождении тока и, соответственно, выше потери напряжения.

Есть несколько способов сократить процент потерь, которые можно использовать как самостоятельно, так и комплексно:

  1. Использовать кабель большего сечения, проводить расчеты применительно к другому проводнику. Увеличение площади сечения токоведущих жил можно получить при соединении двух проводов параллельно. Суммарная площадь сечения увеличится, нагрузка распределится равномерно, потери напряжения станут ниже.
  2. Уменьшить рабочую длину проводника. Метод эффективный, но его не всегда можно использовать. Сократить длину кабеля можно при наличии резервной длины проводника. На высокотехнологичных предприятиях вполне реально рассмотреть вариант перекладки кабеля, если затраты на трудоемкий процесс гораздо ниже, чем расходы на монтаж новой линии с большим сечением жил.
  3. Сократить мощность тока, передаваемую по кабелю большой протяженности. Для этого можно отключить от линии несколько потребителей и подключить их по обходной цепи. Данный метод применим на хорошо разветвленных сетях с наличием резервных магистралей. Чем ниже мощность, передаваемая по кабелю, тем меньше греется проводник, снижаются сопротивление и потери напряжения.

Внимание! При эксплуатации кабеля в условиях повышенной температуры проводник нагревается, падение напряжения растет. Сократить потери можно при использовании дополнительной теплоизоляции или прокладке кабеля по другой магистрали, где температурный показатель существенно ниже.

Расчет потерь напряжения — одна из главных задач энергетической отрасли. Если для конечного потребителя падение напряжения на линии и потери электроэнергии будут практически незаметными, то для крупных предприятий и организаций, занимающихся подачей электроэнергии на объекты, они впечатляющие. Снизить падение напряжения можно, если правильно выполнить все расчеты.

Откуда берется падение напряжения в проводах, как его починить

Откуда берется падение напряжения в проводах, как его починить

В этой статье ЭлектроВести расскажут, что такое потеря напряжения в кабеле и как его починить.

Электрическая энергия, при передаче по проводам на расстояние от источника к потребителю, всегда по пути расходуется. Будь то передача энергии от электростанции до подстанции, или от электрораспределительного щитка в нашем подъезде — до розетки и до потребителя (до того или иного электрического прибора, подключенного к розетке).

Любого обывателя больше всего беспокоит тот отрезок цепи, который расположен между счетчиком и потребителем, ведь именно за насчитанные счетчиком ватты нам и приходится платить. И лучше бы, чтобы бесполезных потерь энергии было бы как можно меньше.

Но уже здесь за бесполезные потери энергии отвечают как проводка, так и соединительные провода (шнуры), идущие от приборов к вилкам (и в конце концов — к розеткам). Дело в том, что провода эти, по закону Джоуля-Ленца, нагреваются, особенно если потребитель достаточно мощный. В общем и целом, нагрев проводов — это следствие падения напряжения на них, поскольку провода наши вполне реальны и обладают конечным электрическим сопротивлением R.

Для наглядной демонстрации предлагается устроить следующий эксперимент. Включите в сеть водонагреватель мощностью 2 кВт, и через минуту потрогайте провод, соединяющий его с розеткой. Провод ощутимо теплый, не так ли? Еще бы, ведь через него идет ток около 9 ампер.

Если сечение провода 1,5 кв. мм, то сопротивление двух жил метра такого провода составляет 0,024 Ом, а значит при токе в 9 ампер на нем постоянно, пока водонагреватель работает, в форме тепла рассеивается мощность примерно 2 Вт! А если взять электрический чайник с его метром двухжильного провода, а утюг, а масляный обогреватель… Да еще и попробовать подключить их к розетке через обычный дешевый удлинитель «для телевизора». Провод ощутимо разогреется, а это — явные потери.

В конце концов каждый провод, соединяющий какой бы то ни было прибор с розеткой, сам по себе всегда расходует определенную активную мощность, которую безжалостно учитывает счетчик. Мы уже и не говорим о сечении электропроводки, на меди в которой порой желают сэкономить бережливые хозяева. Начнем с того, что сопротивление любого реального проводника можно легко вычислить по следующей формуле:

Итак, в чем же суть потерь энергии на проводах, как эти расходы прикинуть, и как их в конце концов уменьшить? Начнем с того, что в проводах, шнурах, кабелях, принято использовать медь.

Медь имеет удельное электрическое сопротивление 0,018 Ом*м/кв.мм. Это значит, что сопротивление одной жилы медного провода сечением 1 кв.мм, длиной 1 км составит 18 Ом. А если провод двухжильный, то сопротивление окажется 36 Ом. А один метр ДВУХЖИЛЬНОГО провода сечением 1 кв.мм даст сопротивление 0,036 Ом.

Падение напряжения на проводе зависит от электрического тока, который по нему в данный момент течет. Зная ток (поделив мощность прибора на напряжение в сети), из Закона Ома для участка цепи можно найти это падение напряжения:

Умножив падение напряжения на номинальный ток прибора, находим мощность, рассеиваемую на проводе. Вывод напрашивается сам собой: чем меньше сечение соединительного провода и чем он длиннее — тем больше падение напряжения на данном проводе, и, соответственно, — больше электрические потери, получаемые в форме тепла.

Вредные последствия неадекватно большого падения напряжения на проводах давно известны электрикам.

Во-первых, перегревается проводка, что практически повышает вероятность возгорания и возникновения пожара в помещении.

Во-вторых, расход энергии на бесполезный нагрев проводки ведет к лишним материальным расходам на оплату счетов за электричество.

В-третьих, падение напряжения на проводах отнимается по сути у прибора, который должен получить все напряжение полностью.

В-четвертых, ресурс проводов из-за их перегрева тратится быстрее, как и ресурс импульсных блоков питания потребителей, получающих напряжение меньше номинала, и поэтому вынужденных потреблять больше тока.

В заключении хотелось бы отметить, что никогда не стоит экономить на площади сечения медных проводов при выполнения проводки в помещении. К примеру: двухжильный медный провод сечением 2,5 кв.мм на 5 метрах даст 7,2 Вт тепла уже при токе в 10 А. Насколько это экономично? Лучше выбирать сечение провода таким образом, чтобы при максимальной нагрузке на сеть плотность тока была бы не более 4 А на кв.мм жилы.

Ранее ЭлектроВести писали, что до недавнего времени жители Хмельницкого неоднократно наблюдали за масштабными пожарами на свалке, справиться с которыми представители Государственной службы по чрезвычайным ситациям не могли по несколько суток. При этом жители близлежащих территорий задыхались от нестерпимой дыма и вони. Поэтому в 2016 году был проведен аудит на определение объемов газа в городе, после чего — объявлен конкурс на определение инвестора для строительства станции по дегазации полигона и производства электроэнергии. Победителем конкурса стал один из производителей электрической энергии, который в 2017 году установил установку для откачки и сжигания «свалочного» газа.

По материалам: electrik.info.

Найти падение напряжения на внутреннем сопротивлении. Падение напряжения. электрическое сопротивление и проводимость

Одним из главных элементов электрической цепи является приемник электрической энергии.

Электроприем­ники служат для преобразования электрической энергии в другие виды энергии: механическую (электродвигатели, электромагниты), тепловую (нагревательные приборы, сварочные аппараты, промышленные печи), световую (лампы электроосвещения), химическую (электролитиче­ские ванны) и т.д.

Эти энергетические преобразования (как и любые дру­гие) происходят лишь при условии, что на их пути имеется сопротивление (электрическое сопротивление).

Ранее отмечалось, что ток в электрической цепи создается электрическим полем. Электрическое поле в про­воднике при постоянном токе называется стационарным электрическим полем.

Стационарное электрическое поле, как и электроста­тическое поле, характеризуется напряженностью, потен­циалом и разностью потенциалов.

Так как перемещение зарядов по проводнику сопро­вождается затратой энергии (электроны, сталкиваясь с ионами кристаллической решетки, возбуждая их к теп­ловому движению, теряют энергию), то в соответствии с положением (6) § 1.1- на концах проводника имеется разность потенциалов, т. е. напряжение или падение напряжения.

Таким образом, падение напряжения является коли­чественной оценкой энергетических преобразований в цепи (1).

На схемах электрических цепей напряжение обозна­чают стрелкой в направлении от большего потенциала к меньшему.

На схемах принято показывать направление напряже­ния в ту же сторону, что и направление тока, внутри участка цепи, как на рис. 2.12. Однако следует помнить, что вне участка цепи падение напряжения на нем на­правлено навстречу току, оказывая ему противодействие (сопротивление). Это видно из рис. 2.5.

Таким образом, ток создает падение напряжения в проводнике, которое оказывает противодействие току.

Сравнивая падения напряжений на участках неразветвленной цепи при одинаковом токе, можно оценить, какой участок оказывает большее сопротивление току.

Падение напряжения на проводнике зависит от тока, поэтому не может быть характеристикой проводника. Способность проводников сопротивляться току оценива­ется падением напряжения, приходящимся на единицу тока, которое называется электрическим сопро­тивлением, обозначается R(r) и является параметром проводника:

R = U/I. (2.6)

Электрическое сопротивление проводника (электро­приемника) численно равно падению напряжения на нем, созданному током, 1 А и оказывающему противодействие этому току (2).

За единицу сопротивления ом (Ом) принято сопро­тивление такого проводника, на котором при токе 1А падает напряжение 1В:

1Ом = 1 В/1 А. Применяют также 1 килоом (кОм) = 10 3 Ом и

1 мегаом (МОм) = 10 6 Ом.

Рассматривая сопротивление проводника, важно по­нимать, от каких факторов оно зависит.

Экспериментально установлено, что падение напря­жения на проводнике (электроприемнике) прямо пропор­ционально току (3). Эта закономерность называется законом Ома для участка цепи:

U = IR, I = U/R. (2.7)

Графическим выражением закона Ома является так называемая вольт-амперная характеристика проводника (рис. 2.6).

Из закона Ома следует, что сопротивление не зави­сит от тока. Однако это справедливо лишь в случае, если не изменяется температура проводника.

Для металлов зависимость сопротивления от темпе­ратуры выражается формулой

R 2 =R 1 ,

где R 1 , R 2 — сопротивления провода при начальной t 1 и конечной t 2 температурах; α — температурный коэф­фициент сопротивления, 1/°С.

Единица проводимости — сименс (См),

Значения токов, напряжений, мощностей, сопротивле­ний и проводим остей, находятся во взаимосвязи. Исполь­зуя формулы (1.4), (2.1), (2.4) и закон Ома, получаем; P = A/t = Uq/t =UIt =U

P =IU=Il R= I 2 R ; (2.10)

P= UI =UU/R =U 2 /R =U 2 g (2.11)

В электротехнике и электронике для преднамеренного создания сопротивления электрическому току применяют резисторы (рис. 2.7), которые характеризуются двумя параметрами: номинальным значением сопро­тивления (с определенным допуском в процентах) и максимальным значением мощности рассеяния. Указанные параметры приводятся на корпусе резистора. Дляразличных целей изготавливают резисторы в огромном диапазоне сопротивлений: oт сотых долей ома до десят­ков и сотен мегаом.

Для изготовления токоведущих элементов электриче­ских устройств используются проводниковые материалы (в основном металлы и их сплавь). Различают проводниковые материалы с малым удельным сопротивле­нием, большим удельным сопротивлением и сверхпро­водники.

Изматериалов с малым удельным сопротивлением наиболее широкое применение получили медь и алюминий (для изготовления проводов, кабелей, обмоток машин и аппаратов и т.д.). Применяются также сплавы меди (бронза, латунь) и сталь.Из материалов с большим удельным сопротивлением, отметим металлические сплавы: нихром (сплав никеля, хрома, железа) и фехраль (сплав железа, хрома, алю­миния), применяемые в электронагревательных приборах, а также манганин (медно-марганцевый сплав) и констан­тан (медно-никелевый сплав) Важным достоинством манганина и константана является то, что их сопротив­ления практически не зависят от температуры. Это обусловило их применение при изготовлении обмоток измерительных приборов (манганин), образцовых сопро­тивлений и резисторов (константан),

В электротехнике применяют также угольные мате­риалы (щетки электрических машин), металлокерамику (для контактов выключателей), припои и др.

При глубоком охлаждении некоторых металлов и материалов (ниобия, свинца, ртути, алюминия и др.) до температур, близких к абсолютному нулю (О К или — 273 °С), они переходят в состояние сверхпрово­димости, с наступлением которого их сопротивление скачком уменьшается до нуля. Температура, при кото­рой материал переходит в сверхпроводящее состояние, называется критической. Например, для алюминия критическая температура 1,2 К.

В настоящее время найдены материалы (сплавы и химические соединения), критическая температура которых выше 100 К. Их можно использовать в элект­ронике, в частности в электронно-вычислительных маши­нах (ЭВМ), что позволит уменьшить габариты и стоимость ЭВМ. Возможно, в ближайшем будущем будут созданы сверхпроводники, критическая температура которых бу­дет близкой к температуре окружающей среды.

Перспективными проводниками являются электропро­водящие пластики. Обычно пластик является электроизоляционным материалом. Однако ученые нашли такие сорта пластиков, которые при соответствующей обра­ботке меняют свои электрофизические свойства и про­водят электрический ток не хуже меди. Изготовленные из такого материала провода значительно дешевле мед­ных и прочнее их.

Страница 38 из 77

Сопротивление проводов цепей низкое, но им нельзя пренебрегать. При передаче тока нагрузки происходит падение напряжения между началом цепи и местом подключения нагрузки. Правильная работа нагрузки (двигатель, цепь освещения и т.д.) зависит от того, что напряжение на его зажимах поддерживается на уровне, близкому к номинальному значению. Таким образом, необходимо рассчитать провода цепи так, чтобы при токе полной нагрузки напряжение на зажимах нагрузки оставалось в пределах, которые необходимо соблюдать для правильной работы оборудования.
В данном разделе рассматриваются методы определения падений напряжения, с целью обеспечения:
Соответствия действующим стандартам и правилам;
Требований со стороны нагрузки;
Существенных требований к работе оборудования.
3.1 Максимальное падение напряжения
Максимально допустимые пределы падения напряжения различны в разных странах. Типовые значения для электроустановок низкого напряжении даны ниже на Рис. G26.

Рис. G26: Максимальное падение напряжения между точкой подключения к сети и точкой потребления мощности
Данные пределы падения напряжения относятся к нормальному установившемуся рабочему режиму и не применяются к моментам запуска двигателей; одновременного включения (случайно) нескольких нагрузок, и т.д., как это было описано в главе В, раздел 4.3 (коэффициент одновременности и т.д.). Если падение напряжения превышает значения, данные на Рис. G26, используйте провода с большим сечением, чтобы исправить эту ситуацию. Если разрешить падение напряжения 8%, это может привести к проблемам в работе двигателей, например: Обычно, для удовлетворительной работы двигателя необходимо, чтобы напряжение было в пределах +5% от номинального значения в установившемся режиме работы.
Пусковой ток двигателя может в 5 — 7 раз превышать значение тока полной нагрузки (или даже более).
Если позволить 8% падения напряжения при полной нагрузке, то во время запуска двигателя может произойти снижение напряжения до 40%. При таких условиях двигатель либо:
Не запустится (то есть, останется неподвижным из-за недостаточного вращающего момента, неспособного преодолеть момент нагрузки), что приведет к перегреву двигателя и к его отключению;
Или будет ускоряться очень медленно, так что высокое потребление тока нагрузкой (с возможными нежелательными воздействиями пониженного напряжения на другое оборудование) будет продолжаться дольше, чем нормальный период разгона двигателя.
И наконец, 8%-ое падение напряжения представляет собой постоянную потерю мощности, что при продолжительной нагрузке приведет к значительным потерям (учитываемой) энергии. По этим причинам рекомендуется, чтобы максимальное значение падения напряжения 8% в установившемся рабочем режиме не достигалось в цепях, чувствительных к проблемам пониженного напряжения (См. Рис. G27).

Рис. G2: Максимальное падение напряжения
3.2 Расчет падения напряжения при постоянной нагрузке Формулы
На Рис. G28 ниже даны формулы, обычно используемые для расчета падения напряжения в цепи
на километр длины.
Если:
Ib: Ток полной нагрузки, в амперах
L: Длина кабеля — в километрах
R: Сопротивление кабеля — в Ом/км, то:
для меди, S (c.s.a) — площадь поперечного сечения проводника (жилы кабеля) в мм2, Q — Ом
для алюминия
Примечание: R можно пренебречь, если сечение проводника свыше 500 мм2
X: индуктивное реактивное сопротивление кабеля в Ом/км.
Примечание: Х можно пренебречь для проводов сечением меньше 50мм2.29 на следующей странице, которая дает, с адекватным приближением, значение падения межфазного напряжения на 1 км кабеля на 1 ампер, в зависимости от:
Типа цепи: цепь питания двигателя, где значение cos ф близко к 0.8, или цепь освещения, где cos ф близок к единице.
Типа кабеля: одножильный и трехжильный. Падение напряжения в кабеле можно вычислить, как: К x Ib x L
К — дано в таблице,
Ib — ток полной нагрузки в амперах,
L — длина кабеля в км.
Колонку «Питание двигателя», «cos ф = 0.35» на Рис. G29 можно использовать для вычисления падения напряжения во время запуска двигателя (см. пример 1 после Рис. G29).
Примеры
Пример 1 (см. Рис. G30)
Трехжильный медный кабель сечением 35 мм2 длиной 50 м подает питание 400 В к двигателю, потребляющему:
I 100 A при cos ф = 0.8 при нормальной постоянной нагрузке I 500 A (5 In) при cos ф = 0.35 во время запуска
Падение напряжения в начале кабеля, подсоединяющего двигатель в нормальных обстоятельствах
(то есть, на распределительном щите (Рис G30), который распределяет ток в 1000А), составляет
10 В линейного напряжения.
Каково падение напряжения на зажимах двигателя:
I В режиме нормальной работы
I Во время запуска?
Решение:
I Падение напряжения в режиме нормальной работы будет равно:

В таблице G29 дано соотношение 1 В/А/км, и согласно этому: AU для кабеля = 1 x 100 x 0.05 = 5 В AU общее = 10 + 5 = 15 В, то есть.

Это значение меньше, чем разрешенное (8%) и является приемлемым. I Падение напряжения во время запуска двигателя: Аикабеля = 0.52 x 500 x 0.05 = 13 В
Из-за дополнительного тока, потребляемого во время запуска двигателя, падение напряжения на распределительном щите превысит 10 вольт.
Предположим, что ток, подаваемый на распределительный щит во время запуска двигателя, равен 900+500=1 400 А, тогда падение напряжения на распределительном щите пропорционально увеличится, то есть:

AU для распределительного щита = 14 В AU для кабеля двигателя = 13 В AU общее = 13+ 14 = 27 В, то есть:


Рис. в3{: Пример 1


Cечение в мм2

Однофазная цепь

Сблансированная трехфазная цепь

Питание двигателя

Освещение

Питание двигателя

Освещение

Обычный раб. режим

Обычный раб. режим

Рис. G2S: Падение напряжения между фазами Ди для цепи, в вольтах на 1 ампер, на 1 км.
— значение, приемлемое во время запуска двигателя.
3 Определение падения напряжения
Пример 2 (см. Рис. G31)
3-х фазная 4-х проводная линия с медными проводниками сечением 70 мм2 и длиной 50 м проводит ток 150 A. Линия питает, кроме прочих нагрузок, 3 однофазных цепи освещения, каждая из которых состоит из медного провода сечением 2.5 мм2, длиной 20 м, и проводит ток 20 A.
Предполагается, что токи в кабельной линии сечением 70 мм2 являются сбалансированными и три цепи освещения подсоединены к линии в одной и той же точке. Каково падение напряжения в конечных точках цепей освещения? Решение:
Падение напряжения в 4-жильной линии:

На Рис. G29 показано значение 0.55 В/А/км AU линии = 0.55 x 150 x 0.05 = 4.125 В между фазами
Где:= 2.38 В между фазой и нейтралью.
Падение напряжения в каждой из однофазных цепей освещения: AU для однофазной цепи = 18 x 20 x 0.02 = 7.2 В
Таким образом, общее падение напряжения будет равно: 7.2 + 2.38 = 9.6 В

G — Защита цепей

Рис. G3: Пример 2, Си — медь
Это значение является удовлетворительным, так как оно меньше, чем максимальное допустимое падение напряжения величиной 6%.

2012-01-01 Государственный экзамен по специальности «электроснабжение»

Билет №11

Задача :

Вычислить токи срабатывания и зоны действия токовых отсечек без выдержки времени линий 110 кВ с односторонним питанием. Зону действия токовых отсечек определить графо-аналитическим и аналитическим методом.

Длина линий, км

Удельное

сопротивление, Ом/км

Ток КЗ в т. К1, кА

Вопросы:

    Состав собственных нужд гидроэлектростанций.

    Чем отличаются потери от падения напряжения и как их определяют?

    Влияние компенсации реактивной мощности на устойчивость узла нагрузки.

Билет №11

1.Состав собственных нужд гидроэлектростанций.

Механизмы с. н. ГЭС по назначению делятся на агрегатные и общестанционные.

Агрегатные механизмы с. н. обеспечивают пуск, остановку и нормальную работу гидроагрегатов и связанных с ними при блоч­ных схемах повышающих силовых трансформаторов. К ним отно­сятся: масляные насосы системы регулирования гидротурбины; компрессоры маслонапорных установок, насосы и вентиляторы охлаждения силовых трансформаторов; масляные или водяные насосы системы смазки агрегата; насосы непосредственного водя­ного охлаждения генераторов; компрессоры торможения агрегата; насосы откачки воды с крышки турбины; вспомогательные устрой­ства системы ионного независимого возбуждения генератора; воз­будители в схемах самовозбуждения.

К общестанционным относятся: насосы технического водоснаб­жения; насосы откачки воды из спиральных камер и отсасывающих труб; насосы хозяйственного водоснабжения; дренажные насосы; пожарные насосы; устройства заряда, обогрева и вентиляции аккумуляторных батарей; краны; подъемные механизмы затворов плотины, щитов, шандоров отсасывающих труб, сороудерживающих решеток; компрессоры ОРУ; отопление, освещение и вентиляция помещений и сооружений; устройства обогрева затворов, решеток и пазов. При централизованной системе снабжения агрегатов сжа­тым воздухом в состав общестанционных входят и компрессоры.маслонапорных установок и торможения агрегатов.

На состав и мощность электроприемников с. н. ГЭС оказывают влияние климатические условия: при суровом климате появляется значительная (несколько тысяч киловатт) нагрузка обогрева вы­ключателей, масляных баков, маслонаполненных концевых ка­бельных муфт, решеток, затворов, пазов; при жарком климате эти нагрузки отсутствуют, но возрастает расход энергии на охлажде­ние оборудования, вентиляцию, кондиционирование.

На ГЭС относительно малая доля механизмов с. н. работает непрерывно в продолжительном режиме. Сюда относятся: насосы и вентиляторы охлаждения генераторов и трансформаторов; вспо­могательные устройства системы ионного возбуждения; насосы водяной или масляной смазки подшипников. Эти механизмы при­надлежат к числу наиболее ответственных и допускают перерыв питания лишь на время действия автоматического ввода резерва (АВР). В продолжительном режиме работают также насосы техни­ческого водоснабжения и устройств электрообогрева. Остальные электроприемники работают повторно-кратковременно, кратко­временно или даже только эпизодически. К числу ответственных механизмов с. н. следует также отнести пожарные насосы, насосы маслонапорных установок, некоторые дренажные насосы, компрес­соры ОРУ, механизмы закрытия затворов напорных трубопрово­дов. Эти механизмы допускают перерыв питания до нескольких минут без нарушения нормальной и безопасной работы агрега­тов. Остальные потребители с. н. можно отнести к неответствен­ным.

Маслонапбрные установки гидроагрегатов имеют достаточный запас энергии, чтобы закрыть направляющий аппарат и затормо­зить агрегат даже при аварийной потере напряжения в системе с. н. Поэтому для обеспечения сохранности оборудования при по­тере напряжения на гидростанциях не требуются автономные источники в виде аккумуляторных батарей и дизель-генерато­ров.

Единичная мощность механизмов с. н. гидростанций колеблется от единиц до сотен киловатт. Наиболее мощными механизмами с. н. являются насосы технического водоснабжения, насосы откачки воды из отсасывающих труб, некоторые подъемные механизмы. На большинстве гидростанций, за исключением ГЭС деривацион­ного типа, потребители с. н. сосредоточены на ограниченной тер­ритории, в пределах здания станции и плотины.

В отличие от ТЭС механизмы с. н. ГЭС не требуют непрерывного регулирования производительности; достаточным является повторно-кратковременый режим работы. Источники питания механизмов с. н. являются генераторы и сеть системы.

2.Чем отличаются потери от падения напряжения и как их определяют?

Падение напряжения- геометрическая (векторная) разность между комплексами напряжений начала и конца линии. Падение напряжения — это вектор АВ, т. е.

AB → = U 1 – U 2 = √3I 12 Z 12

Продольной составляющей падения напряжения ∆ U 12 К называют проекцию падения напряжения на действитель­ную ось или на напряжение U 12 К = АС .

Индекс «к» означает, что U 12 К — проекция на напряжение конца линии U 2 . Обычно U 12 К выражается через данные в конце линии: U 2 , P 12 К, Q 12 К.

Поперечная составляющая падения напряжения U 12 К — это проекция падения напряжения на мнимую ось,U 12 К = СВ. Таким образом,

U 1 – U 2 = √3I 12 Z 12 = U 12 К + jU 12 К

Часто используют понятие потеря напряжения — это ал­гебраическая разность между модулями напряжений на­чала и конца линии.U 1 – U 2 = AD . Если попе­речная составляющая — мала (например, в сетях Uном ≥ 110 кВ), то можно приближенно считать, что потеря напряжения равна продольной составляющей падения на­пряжения.

2. В чем отличие понятий потеря напряжения и падение напряжения?

Parent Category: Библия РЗА

Category: 2. ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Условились называть Потерей напряжения алгебраическую разность фазных напряжений в начале и конце линии. Потеря напряжения зависит от параметров сети , а также от активной и реактивной составляющих тока или мощности нагрузки. При расчете величины потери напряжений в сети активное сопротивление необходимо учитывать всегда, а индуктивным сопротивлением можно пренебречь в осветительных сетях и в сетях, выполненных сечениями проводов до 6 мм 2 и кабелей до 35 мм 2.

Потеря напряжения зависит от величины нагрузки и ее коэффициента мощности.

Падение напряжения – это геометрическая разность между векторами напряжений в начале и конце элемента сети..

3. Влияние компенсации реактивной мощности на устойчивость узла нагрузки.

Конденсаторы улучшают cosφ и обеспечивают поддержа­ние напряжения при изменении режима; однако это может резко ухудшить статическую устойчивость узла нагрузки При включении статических конденсаторов в составе мощности нагрузки появляется отрицательная составляющая U 2 /x к.б. и суммарная кривая ∑Q нагр = f(U) оказывается пологой. В свою очередь, эдс эквивалентного генератора при включении конденсаторов уменьшается, что приводит к деформации характеристики ∑Q ген. В результате запас устойчивости узла на­грузки при включении также уменьшается.

Исправить это положение можно, увеличивая в составе нагрузки число двигателей с регулируемым возбуждением.


Рис. 7.6. Устойчивость комплексной нагрузки: а — схема системы; б — влияние

конденсаторов на устойчивость нагрузки; в — влияние изменения

коэффициента мощности на критическое напряже­ние

Вычислить токи срабатывания и зоны действия токовых отсечек без выдержки времени линий 220 кВ с односторонним питанием. Зону действия токовых отсечек определить графо-аналитическим и аналитическим методом (рис. 7).

Вариант (пример)

Длина линий, км

Удельное

сопротивление, Ом/км

Ток 3-х фазного КЗ в т. К1, кА

Падение напряжения на проводах — расстояние от трансформатора до ламп или ленты

Нас часто спрашивают, можно ли светодиодные лампы на 12 вольт такой-то мощности в таком-то количестве отдалить от трансформатора на такое-то расстояние?

Общая рекомендация — это расстояние не должно превышать 5 метров. Это известный факт.

Но что делать, если требуется больше 5 метров? Часто из-за конструктивных ограничений невозможно уложиться в такое короткое расстояние.

Потери на проводах — суть проблемы

В некоторых ситуациях можно превратить число 5 в гораздо большее значение. Для этого нужно оценить падение напряжения на проводах.

Именно оно является причиной ограничений — сам провод имеет внутреннее сопротивление и поэтому «съедает» часть напряжения источника тока. И когда провод слишком длинный, может случиться так, что лампам останется такая малая часть исходного напряжения, что они не загорятся.

Вторая часть проблемы — провод не просто «съедает» часть напряжения, а превращает его в тепло. Помимо того, что это просто бестолковое расходование электричества, так оно ещё и несёт в себе пожарную проблему — провод может нагреться слишком сильно.

Чтобы быть уверенным, что требуемые, например, 15 метров между трансформатором и лампой не принесут неприятностей, нужно оценить, сколько именно вольт потеряется на этих 15 метрах.

Рассчитать падение напряжения на проводе очень просто. Все необходимые для этого данные у Вас, как правило, есть: длина провода, суммарная мощность подключаемых ламп (ленты), напряжение питания и площадь поперечного сечения проводника. Нужно лишь дополнительно узнать удельное электрическое сопротивление материала, из которого изготовлен провод.

Формула для расчёта падения напряжения на проводах

Достаточно легко выводится простая общая формула для расчёта падения напряжения, применимая в любой ситуации.

Нам понадобится только закон Ома R = V ∕ I и формула связи электрической мощности, напряжения и силы тока W = V · I.

Также для оценки сопротивления провода нужно знать значение удельного электрического сопротивления [википедея] материала проводника.

Проведя простые выкладки, получим вот такую формулу, дающую оценку значения падения напряжения на проводах:

Оценка падения напряжения на проводах

Падение напряжения зависит от типа материала провода, сечения провода, его длины, мощности потребителей и напряжения источника питания. В этой формуле обозначено:

  • W — мощность в ваттах потребителей тока на конце провода;
  • V — напряжение источника тока в вольтах, как правило, 12 вольт или 24 вольта;
  • L — длина провода в метрах, т.е. удалённость потребителей от трансформатора;
  • S — площадь сечения провода в мм²;
  • ρ — значение удельного электрического сопротивление в Ом·мм²/м, для меди это примерно 0.018 Ом·мм²/м

Формула проста, но применима только в случае, если ожидаемое падение напряжения невелико, не более нескольких процентов, т.е. когда расстояние между трансформатором и потребителем не превышает 10 метров, а мощность менее 10-20 ватт.

В иных случаях следует воспользоваться более точной формулой:

Точное значение падения напряжения на проводах

Теперь, вычислив значение падение напряжения на проводах, мы можем оценить, какая мощность будет теряться — просто расходоваться на нагрев проводов. Нужно полученное значение падения напряжения умножить на мощность потребителей тока W и поделить на напряжение трансформатора V:

Оценка падения мощности на проводах

Если эта мощность получится слишком большой, то, очевидно, нужно увеличить толщину провода. Иначе можно получить различные неприятности вплоть до пожара.

Выводы

Как легко видеть из формул, чем толще провод, тем падение напряжения меньше.

При этом падение напряжения обратно пропорционально площади сечения проводника.

Двукратное увеличение площади сечения проводника примерно двукратно уменьшает падение напряжения на проводах

Также возможным решением проблемы может быть увеличение значения напряжения источника тока. Если, конечно, потребители тока это позволяют.

Падение напряжения на проводе линейно падает с увеличением напряжения источника тока.

Двукратное увеличение питающего напряжения примерно в два раза снижает падение напряжения

Например, наши низковольтные лампы Е27 на 12-24 вольт одинаково светят и от 12 и от 24 вольт. И в этом случае имеет смысл перейти на трансформатор на 24 вольта.

Также становится понятно, что для мощных потребителей (порядка 100 ватт) понадобятся очень толстые провода.

Пример

Оценим падение напряжения на медном проводе сечением 1.5 мм² и длиной 20 м при 24 вольтах и мощности подключенной ленты 50 ватт.

Подставив в первую формулу эти значения, мы получим, что на проводах «потеряется» примерно 1 вольт и около 2 ватт. В принципе, это не много, но если есть возможность увеличить толщину провода, лучше это сделать.

Можно, конечно, увеличить напряжение источника тока, заложив падение напряжение, но это совсем не лучший выход. Например, если мощность светильников на конце провода 180 ватт, то падение напряжения на проводе составит уже 3.5 вольта, а мощности — 25 ватт. Светильникам останется только 20 вольт, и драйверы некоторых светильников от недостатка напряжения могут войти в нештатный режим работы и начать перегреваться, потребляя гораздо больше заявленной мощности (хотя светодиоды при этом будут выдавать ту же яркость), что только увеличит падения напряжения на проводе. В этой ситуации останется только гадать, что случится раньше — возгорание проводов или выход из строя светильников.

А для трансформаторов на 12 вольт падение напряжения и расход мощности будут ещё в два раза больше.

Единственное правильное решение — увеличить толщину проводника. Как уже было сказано, увеличиваем сечение провода в два раза — примерно в два раза уменьшаем потери на проводах.

У Вас есть вопрос? Спросите консультанта.

Позвоните нам.
Или кликните здесь и задайте свой вопрос — подробный ответ Вы получите очень быстро.
Мы всегда стараемся помочь.Каталог продукции

Обнаружение падения напряжения с использованием мультиметра :: carway.info

При достаточной квалификации электрика диагностику неисправностей электросистемы автомобиля можно осуществить, воспользовавшись таким простым прибором, как функциональный цифровой мультиметр. При этом зачастую ошибок в диагностике можно избежать, всего лишь имея навыки правильного считывания показаний мультиметра.

При измерении напряжения показания мультиметра отображают значение разницы потенциала между красным и черным щупом. Например, если красный щуп замкнуть на 12 В, а черный на 0 В, на табло мультиметра высветится показатель 12 В (разница между 12 и 0). Однако если оба щупа замкнуть на 12 В, разности напряжения между щупами не будет, и на дисплей мультиметра будет выведен показатель 0 вольт.

Контрольное напряжение – прежде всего

Перед проведением любых испытаний электрической системы автомобиля следует убедиться в наличии контрольного напряжения. Измеряется оно на подключенной АКБ автомобиля, приложением щупов мультиметра к обоим клеммам. Красный щуп замыкается на положительную клемму (+), а черный — на отрицательную (-).

Для правильного выполнения процедуры измерения придерживайтесь таких инструкций:
  1. При выключенном мультиметре убедитесь, что щупы подключены к нужным разъемам мультиметра (обычно есть разъемы для переменного и постоянного тока, иногда – два разъема для постоянного тока разной силы)
  2. Переключите мультиметр в режим «Вольты постоянного тока»
  3. Выберите положение круглого переключателя, соответствующее десяткам вольт (обычно маркируется «20»).
  4. После этого замкните красный и черный щупы на клеммы аккумулятора.

Замер на цепи – не показатель

В приведенном примере, если измерение напряжения выполняется на противоположных клеммах АКБ автомобиля (при выключенном двигателе), мультиметр покажет приблизительно 12,7 вольт. Это и есть значение разницы потенциалов.

Если же считывание проводится с предохранителя (или любых двух участков цепи) – на исправной цепи мультиметр покажет 0 вольт, поскольку потенциал на красном и черном щупе идентичен.

 

После ознакомления с теоретическими аспектами, диагностика неисправностей становится более понятной. Теперь можно искать место падения напряжения по цепи.

Проверка отдельного кабеля

В приведенном выше примере показано падение напряжения от положительной клеммы аккумулятора к положительной клемме стартера. При обнаружении такового следует проверить кабель на предмет наличия или отсутствия разрывов. Для выполнения данного теста мультиметр находился в режиме «Вольты постоянного тока», а щупы прикладываются к разным концам исследуемого кабеля. Стартер проворачиваем для подачи нагрузки на кабель.

Предполагаемый результат не должен превышать приблизительно 0,5 вольт, что свидетельствует о возможности нормальной эксплуатации кабеля – разница обусловлена сопротивлением самого кабеля. Если же результат изменения превышает рекомендованную величину в полвольта, это может свидетельствовать о повреждении кабеля или о высоком сопротивлении в цепи.

Исправный кабель берет не больше полувольта

Аналогичный метод испытаний можно применить к любой электрической цепи.
При замыкании мультиметра на отрицательную клемму аккумулятора и контакта стартера на массу, как показано ниже, следует ожидать результата показаний около 0,5 вольт для кабеля, пригодного к эксплуатации.

 

 

 

Аналогичный метод измерения падения напряжения может применяться к любой электрической цепи автомобиля и является надежным методом определения таких типов неисправностей:

  • Открытый контур (разрыв провода или перегоревший предохранитель),
  • Высокое сопротивление (поражение клеммы коррозией или повреждение провода),
  • Неисправность потребителя.

Информация предоставлена компанией Delphi.

Как рассчитать электрическую нагрузку

Электрические цепи находят множество применений, в том числе в быту, автомобилестроении и электронике. Электрические принципы применимы независимо от области применения. У вас есть несколько компонентов, распределенных по схеме, которые составляют нагрузку схемы. У вас есть источник энергии. Вы хотите знать характеристики компонентов нагрузки. У вас есть закон Кирхгофа, который, по сути, гласит, что сумма напряжения нагрузки равна сумме напряжений источника.Вы не хотите повредить какие-либо компоненты цепи, поэтому рассчитываете нагрузку.

Расчет электрической нагрузки в простой цепи

    Рассчитайте электрическую нагрузку для простой линейной цепи, имеющей напряжение источника 9 В и два последовательно включенных резистора по 330 Ом. Второй резистор имеет вывод, идущий на землю. Рассчитайте по следующим уравнениям. Пусть мощность = напряжение * ток (P = VI). Пусть ток = напряжение / сопротивление (I = V / R).

    Примените второй закон Кирхгофа, согласно которому сумма напряжений в цепи равна нулю.Сделайте вывод, что напряжение нагрузки вокруг простой схемы должно составлять 9 вольт. Вычислите, что напряжение нагрузки равномерно распределено на каждом из резисторов, поскольку они имеют одинаковое сопротивление, и что напряжение на каждом из них должно составлять 4,5 В (или -4,5 в соответствии с законом Кирхгофа).

    Рассчитайте I = V / R (расчет тока), так что I = 4,5 / 330 = 13,6 мА (миллиампер). Вычислите P = VI = 9 * 0,0136 = 0,1224 Вт. Обратите внимание, что теперь известны все характеристики нагрузки (напряжение, сопротивление, ток и мощность).Будьте осторожны и выбирайте резисторы мощностью 0,5 Вт.

    Используйте онлайн-симулятор линейных цепей для моделирования простых цепей и расчета нагрузочных характеристик. Воспользуйтесь описанным ниже имитатором линейной схемы под названием «Linear Technology Spice». Создайте образец схемы и поэкспериментируйте с различными компонентами нагрузки. Рассчитайте характеристики нагрузки, используя уравнения напряжения, тока, сопротивления (или индуктивности) и мощности.

Расчет бытовой электрической нагрузки

    Рассчитайте нагрузку для типичного дома на одну семью с помощью онлайн-калькулятора электрической нагрузки.Воспользуйтесь онлайн-калькулятором «Калькулятор электрической нагрузки для дома на одну семью».

    Укажите площадь вашего дома в квадратных футах. Введите количество «цепей для малой бытовой техники» и «цепей для стирки» и при необходимости обратитесь к электрической схеме. Если информация недоступна, используйте значения по умолчанию. Введите значения для «Прикрепленные устройства», «Приборы для приготовления пищи», «Отопление или охлаждение» и «Самый большой двигатель». Нажмите «Рассчитать нагрузку».

    Обратите внимание на «Общая расчетная нагрузка», «Расчетная сила тока», «Общая нейтральная нагрузка», «Общая нейтральная нагрузка» и «Общая нейтральная сила тока».”

Основы расчета падения напряжения

Как узнать, обеспечивает ли ваша проводка разумную эффективность работы? Национальный электротехнический кодекс, 210-19 (a) (FPN 4) и 215-2 (b) (FPN 3), рекомендует падение напряжения 5% для фидерных цепей и 3% для ответвленных цепей. Давайте поработаем несколько примеров, используя уравнения на боковой панели (справа). В наших примерах используется медный провод без покрытия в стальном кабелепроводе для ответвлений на 480 В; мы воспользуемся столбцом коэффициента мощности таблицы 9 NEC.

Пример 1: Определение падения напряжения Проложите многожильный провод № 10 на 200 футов при 20 А. Согласно Таблице 9, наше «сопротивление нейтрали на 1000 футов» составляет 1,1 Ом. Чтобы заполнить числитель, умножьте его следующим образом: (2 x 0,866) x 200 футов x 1,1 Ом x 20A = 7620,8 Деление 7621 на 1000 футов дает падение напряжения 7,7 В. Это падение приемлемо для нашей цепи 480 В. № 12 упадет 11,8 В. Увеличьте длину до 500 футов, и этот № 10 упадет 18 В; № 12 падает 29V.

Пример 2: Определение размера провода Проложите многожильный медный провод на 200 футов при 20 А.Вы можете найти размер провода, алгебраически изменив первое уравнение, или вы можете использовать следующий метод. Чтобы заполнить числитель, умножьте его следующим образом: 1,73 x 212,9 Ом x 200 футов x 20A = 89371,2. Разделив 89371,2 на допустимое падение напряжения 14,4 В, вы получите 6207 круговых милов. Таблица 8 NEC показывает, что провод № 12 удовлетворяет рекомендациям по падению напряжения.

Пример 3: Определение длины провода Проложите многожильный медный провод № 10 для цепи 20 А. Чтобы заполнить числитель, умножьте его следующим образом: 1000 x 14.4V = 14400 Чтобы получить знаменатель, умножьте его следующим образом: (2 x 0,866) x 1,1 Ом x 20A = 38,104 Наконец, разделите числитель на знаменатель следующим образом: 14400 / 38,1044377 футов. та же трасса, вы могли бы проехать 244 фута

Пример 4: Определение максимальной нагрузки Проложите многожильный медный провод № 10 для цепи длиной 200 футов. Чтобы заполнить числитель, умножьте следующим образом: 1000 x 14,4 В = 14400 Чтобы заполнить знаменатель, умножьте следующим образом: (2 x 0,866) x 1,1 Ом x 200 футов = 381.04 Наконец, разделите числитель на знаменатель, как показано ниже: 14400 / 381.04437A Эта схема может обрабатывать 37A на каждом фазном проводе. 200-футовый № 2 может выдержать 24А.

* Число «0,866» относится только к 3-фазной схеме. Он преобразует число «2» в «1,732» (квадратный корень из 3). Для однофазных цепей не используйте в расчетах «0,866». * «CM» обозначает размер провода в круглых милах, как показано в Таблице 8. * Чтобы рассчитать размер провода, используйте 12,9 в качестве K для меди и 21,2 в качестве K для алюминия.* «L» — длина одностороннего провода в футах. * «R» — сопротивление на 1000 футов. Используйте таблицу 9 NEC для проводки переменного тока. Если у вас нелинейные нагрузки, используйте столбец, который помогает учесть коэффициент мощности.

Уравнение 1: Расчет фактического падения напряжения в вольт Падение вольт = (2 x 0,866) x L x R x Амперы / 1000

Уравнение 2: Расчет сечения провода в круглых миллиметрах CM = 2 x K x L x Ампер / допустимое падение напряжения В качестве альтернативы вы можете алгебраически изменить уравнение 1 на: R410002 Допустимое падение напряжения / 1.732 x L x Ампер, а затем найдите размер провода в соответствии с его сопротивлением переменному току.

Уравнение 3: Расчет длины в футах Длина = 1000 x допустимое падение напряжения / (2 x 0,866) x R x амперы

Уравнение 4: Расчет нагрузки в амперах = 1000 x допустимое падение напряжения / (2 x 0,866) x R x L

Калькулятор падения напряжения

Это калькулятор для оценки падения напряжения в электрической цепи. Вкладка «Данные NEC» рассчитывается на основе данных сопротивления и реактивного сопротивления из Национального электрического кодекса (NEC).Вкладка «Расчетное сопротивление» рассчитывается на основе данных сопротивления, рассчитанных на основе сечения провода. Щелкните вкладку «Другое», чтобы использовать настроенные данные сопротивления или импеданса, например, данные других стандартов или производителей проводов.


Когда электрический ток проходит по проводу, он толкается электрическим потенциалом (напряжением), и ему необходимо преодолеть определенный уровень противоположного давления, создаваемого проводом. Падение напряжения — это величина потери электрического потенциала (напряжения), вызванная противоположным давлением провода.Если ток переменный, такое противоположное давление называется импедансом. Импеданс — это вектор или двумерная величина, состоящая из сопротивления и реактивного сопротивления (реакция созданного электрического поля на изменение тока). Если ток прямой, противоположное давление называется сопротивлением.

Чрезмерное падение напряжения в цепи может привести к мерцанию или тусклому горению ламп, плохому нагреву нагревателей, а также к перегреву двигателей и их перегреву. Рекомендуется, чтобы падение напряжения было менее 5% при полной нагрузке.Этого можно добиться, выбрав правильный провод, а также позаботившись об использовании удлинителей и аналогичных устройств.

Существует четыре основных причины падения напряжения:

Во-первых, это выбор материала для проволоки. Серебро, медь, золото и алюминий относятся к металлам с лучшей электропроводностью. Медь и алюминий являются наиболее распространенными материалами для изготовления проводов из-за их относительно низкой цены по сравнению с серебром и золотом. Медь — лучший проводник, чем алюминий, и будет иметь меньшее падение напряжения, чем алюминий, при данной длине и размере провода.

Размер провода — еще один важный фактор при определении падения напряжения. Провода большего диаметра (большего диаметра) будут иметь меньшее падение напряжения, чем провода меньшего диаметра той же длины. В американском калибре проволоки каждое уменьшение на 6 калибра удваивает диаметр провода, а каждое уменьшение на 3 калибра удваивает площадь поперечного сечения провода. В метрической шкале калибра калибр в 10 раз больше диаметра в миллиметрах, поэтому метрическая проволока 50 калибра будет иметь диаметр 5 мм.

Еще одним важным фактором падения напряжения является длина провода.Более короткие провода будут иметь меньшее падение напряжения, чем более длинные провода того же диаметра. Падение напряжения становится важным, когда длина провода или кабеля становится очень большой. Обычно это не проблема в цепях внутри дома, но может стать проблемой при прокладке проводов к хозяйственной постройке, скважинному насосу и т. Д.

Наконец, величина передаваемого тока может влиять на уровни падения напряжения; увеличение тока через провод приводит к увеличению падения напряжения. Пропускная способность по току часто называется допустимой силой тока, то есть максимальным количеством электронов, которые могут быть вытолкнуты за один раз — это слово сокращается от емкости в амперах.

Допустимая нагрузка на провод зависит от ряда факторов. Основной материал, из которого сделана проволока, конечно, является важным ограничивающим фактором. Если по проводу передается переменный ток, скорость чередования может повлиять на допустимую нагрузку. Температура, при которой используется провод, также может повлиять на допустимую нагрузку.

Кабели

часто используются в связках, и когда они соединяются вместе, общее тепло, которое они выделяют, влияет на допустимую нагрузку и падение напряжения. По этой причине существуют строгие правила связывания кабелей.

При выборе кабеля руководствуется двумя основными принципами. Во-первых, кабель должен выдерживать действующую на него текущую нагрузку без перегрева. Он должен быть в состоянии сделать это в самых экстремальных температурных условиях, с которыми он может столкнуться в течение своего срока службы. Во-вторых, он должен обеспечивать достаточно надежное заземление, чтобы (i) ограничивать напряжение, которому подвергаются люди, до безопасного уровня и (ii) позволять току короткого замыкания срабатывать предохранитель за короткое время.

Расчет падения напряжения

Закон Ома — это очень простой закон для расчета падения напряжения:

В падение = I · R

куда:

I: ток через провод, измеренный в амперах

R: сопротивление проводов, измеренное в Ом

Сопротивление проводов часто измеряется и выражается как удельное сопротивление длины, обычно в единицах Ом на километр или Ом на 1000 футов.Также провод переключается. Таким образом, формула для однофазной цепи или цепи постоянного тока принимает следующий вид:

В падение = 2 · I · R · L

Формула для трехфазной цепи принимает следующий вид:

В падение = √3 · I · R · L

куда:

I: ток через провод

R: удельное сопротивление проводов на длину

L: длина в одну сторону

Типичные сечения проводов AWG

American Wire Gauge (AWG) — это система калибров для проволоки, используемая преимущественно в Северной Америке для измерения диаметров круглой, сплошной, цветной и электропроводящей проволоки.Ниже приводится список типичных проводов AWG и их размеров:

AWG Диаметр витков провода Площадь Сопротивление меди
дюйм мм на дюйм на см тыс. Ч. мм 2 Ом / км Ом / 1000 футов
0000 (4/0) 0.4600 11,684 2,17 0,856 212 107 0,1608 0,04901
000 (3/0) 0,4096 10,404 2,44 0,961 168 85,0 0,2028 0,06180
00 (2/0) 0.3648 9,266 2,74 1,08 133 67,4 0,2557 0,07793
0 (1/0) 0,3249 8,252 3,08 1,21 106 53,5 0,3224 0,09827
1 0,2893 7.348 3,46 1,36 83,7 42,4 0,4066 0,1239
2 0,2576 6.544 3,88 1,53 66,4 33,6 0,5127 0,1563
3 0,2294 5,827 4.36 1,72 52,6 26,7 0,6465 0,1970
4 0,2043 5,189 4,89 1,93 41,7 21,2 0,8152 0,2485
5 0,1819 4,621 5,50 2.16 33,1 16,8 1,028 0,3133
6 0,1620 4,115 6,17 2,43 26,3 13,3 1,296 0,3951
7 0,1443 3,665 6,93 2,73 20.8 10,5 1,634 0,4982
8 0,1285 3,264 7,78 3,06 16,5 8,37 2,061 0,6282
9 0,1144 2,906 8,74 3,44 13,1 6.63 2,599 0,7921
10 0,1019 2,588 9,81 3,86 10,4 5,26 3,277 0,9989
11 0,0907 2.305 11,0 4,34 8,23 4,17 4.132 1,260
12 0,0808 2,053 12,4 4,87 6,53 3,31 5,211 1,588
13 0,0720 1,828 13,9 5,47 5,18 2,62 6,571 2.003
14 0,0641 1,628 15,6 6,14 4,11 2,08 8,286 2,525
15 0,0571 1,450 17,5 6,90 3,26 1,65 10,45 3,184
16 0.0508 1,291 19,7 7,75 2,58 1,31 13,17 4,016
17 0,0453 1,150 22,1 8,70 2,05 1,04 16,61 5,064
18 0,0403 1.024 24,8 9,77 1,62 0,823 20,95 6.385
19 0,0359 0,912 27,9 11,0 1,29 0,653 26,42 8,051
20 0,0320 0,812 31.3 12,3 1,02 0,518 33,31 10,15
21 0,0285 0,723 35,1 13,8 0,810 0,410 42,00 12,80
22 0,0253 0,644 39,5 15.5 0,642 0,326 52,96 16,14
23 0,0226 0,573 44,3 17,4 0,509 0,258 66,79 20,36
24 0,0201 0,511 49,7 19,6 0.404 0,205 84,22 25,67
25 0,0179 0,455 55,9 22,0 0,320 0,162 106,2 32,37
26 0,0159 0,405 62,7 24,7 0,254 0.129 133,9 40,81
27 0,0142 0,361 70,4 27,7 0,202 0,102 168,9 51,47
28 0,0126 0,321 79,1 31,1 0,160 0,0810 212.9 64,90
29 0,0113 0,286 88,8 35,0 0,127 0,0642 268,5 81,84
30 0,0100 0,255 99,7 39,3 0,101 0,0509 338,6 103.2
31 0,00893 0,227 112 44,1 0,0797 0,0404 426,9 130,1
32 0,00795 0,202 126 49,5 0,0632 0,0320 538,3 164,1
33 0.00708 0,180 141 55,6 0,0501 0,0254 678,8 206,9
34 0,00630 0,160 159 62,4 0,0398 0,0201 856,0 260,9
35 0,00561 0.143 178 70,1 0,0315 0,0160 1079 329,0
36 0,00500 0,127 200 78,7 0,0250 0,0127 1361 414,8
37 0,00445 0,113 225 88.4 0,0198 0,0100 1716 523,1
38 0,00397 0,101 252 99,3 0,0157 0,00797 2164 659,6
39 0,00353 0,0897 283 111 0.0125 0,00632 2729 831,8
40 0,00314 0,0799 318 125 0,00989 0,00501 3441 1049

Майк Холт Расчет падения напряжения

Часть ПЕРВАЯ

Целью Национального электротехнического кодекса является практическая защита людей и имущества от опасностей, связанных с использованием электричества.NEC обычно не считает падение напряжения проблемой безопасности. В результате NEC содержит шесть рекомендаций (примечания к мелкому шрифту), которые проводники цепи должны быть достаточно большими по размеру, чтобы может быть обеспечена эффективность работы оборудования. Кроме того, NEC имеет пять правил, по которым проводники должны иметь размер, соответствующий напряжению. падение проводов цепи.

Примечания мелким шрифтом в NEC предназначены только для информационных целей и не подлежит исполнению инспекционным органом [90-5 (c)].Однако раздел 110-3 (b) требует, чтобы оборудование было установлено в соответствии с оборудованием. инструкции. Поэтому электрооборудование необходимо устанавливать так, чтобы он работает в пределах своего номинального напряжения, указанного производителем. Рисунок 1.

Комментарий автора: Рисунки не размещаются в Интернете.

Из-за падения напряжения в проводниках цепи рабочее напряжение у электрооборудования будет меньше выходного напряжения силовой поставлять.Индуктивные нагрузки (например, двигатели, балласты и т. Д.), Которые работают при напряжение ниже номинального может привести к перегреву, что приведет к сокращению времени работы оборудования. срок службы и повышенная стоимость, а также неудобства для заказчика. Пониженное напряжение для чувствительного электронного оборудования, такого как компьютеры, лазерные принтеры, копировальные машины и т. д. могут вызвать блокировку оборудования или внезапное отключение питания. вниз, что приведет к потере данных, увеличению затрат и возможному отказу оборудования. Резистивные нагрузки (нагреватели, лампы накаливания), работающие при пониженном напряжении. просто не обеспечит ожидаемую номинальную выходную мощность, рисунок 1.

Комментарий автора: Падение напряжения на проводниках может вызвать накаливание. освещение мигать, когда другие приборы, оргтехника или отопление и системы охлаждения включаются. Хотя некоторых это может раздражать, это не опасно и не нарушает NEC.

РЕКОМЕНДАЦИИ NEC

Национальный электротехнический кодекс содержит шесть примечаний, напечатанных мелким шрифтом, для предупреждения Укажите пользователю, что оборудование может повысить эффективность работы, если учитывается падение напряжения на проводнике.

1. Ответвительные цепи. Настоящая FPN рекомендует, чтобы проводники ответвлений быть такого размера, чтобы предотвратить максимальное падение напряжения до 3%. Максимальное общее напряжение падение для комбинации ответвления и фидера не должно превышать 5%. [210-19 (а) ФПН № 4], рис. 2.

2. Фидеры. В данной FPN рекомендуется выбирать размеры фидеров. для предотвращения максимального падения напряжения на 3%. Максимальное общее падение напряжения для комбинации ответвления и фидера не должно превышать 5%.[215-2 (d) ФПН № 2], рис. 2.

Пример: Какое минимальное рабочее напряжение, рекомендованное NEC для Нагрузка 120 В, подключенная к источнику 120/240 В, рисунок 3 (8-11).

(а) 120 вольт (b) 115 вольт (c) 114 вольт (г) 116 вольт

Ответ: (c) 114 В Максимальное рекомендуемое падение напряжения на проводе как для фидера, так и для ответвленной цепи составляет 5 процентов от источника напряжения; 120 вольт x 5% = 6 вольт.Рабочее напряжение на нагрузке определяется путем вычитания падения напряжения на проводнике из источника напряжения, 120 вольт — падение 6 вольт = 114 вольт.

3. Услуги — Интересно, что нет рекомендуемого падения напряжения. для сервисных проводников, но эта FPN напоминает пользователю Кодекса о необходимости учитывать падение напряжения на служебных проводниках [230-31 (c) FPN].

Комментарий автора: Падение напряжения на проводах с длительным сроком службы может вызвать лампы накаливания в здании мигают при включении бытовой техники, отопления или включаются системы охлаждения.Для получения информации о том, как решить или уменьшить мерцание ламп накаливания, перейдите по адресу: www.mikeholt.com/Newsletters.

4. Максимально допустимая нагрузка проводника — Эта FPN определяет тот факт, что перечисленные в таблице 310-16, не учитывают падение напряжения [310-15 ФПН №1].

5. Фазовые преобразователи — Фазовые преобразователи имеют свои собственные рекомендации. падение напряжения от источника питания к фазовому преобразователю должно не превышает 3% [455-6 (a) FPN].

6. Парковки для транспортных средств для отдыха — для транспортных средств для отдыха есть рекомендации. чтобы максимальное падение напряжения на проводниках параллельной цепи не превышало 3% и комбинация ответвления и фидера не более 5% [210-19 (а) ФПН № 4 и 551-73 (г) ФПН].

ТРЕБОВАНИЯ NEC

Национальный электротехнический кодекс также содержит пять правил, требующих проводники должны быть увеличены в размере, чтобы компенсировать падение напряжения.

Заземляющие проводники — это правило гласит, что проводники цепи увеличены в размерах для компенсации падения напряжения, заземление оборудования проводники также должны быть увеличены в размерах [250-122 (b)].

Комментарий автора: Если, однако, провода цепи не увеличивать по размеру, чтобы учесть падение напряжения, то заземляющий провод оборудования не требуется, чтобы он был больше, чем указано в Таблице 250-122.

Кино / Телестудия — Проводник ответвления для Системы 60/120 вольт, используемые для снижения шума при производстве аудио / видео или другая подобная чувствительная электроника для киностудий и телестудий не должно превышать 1.5%, а суммарное падение напряжения фидера и проводники параллельной цепи не должны превышать 2,5% [530-71 (d)]. Кроме того, FPN № 1 в соответствии с разделом 530-72 (b) напоминает пользователю Кодекса об увеличении размера заземляющего проводника в соответствии с Разделом 250-122 (b).

Пожарные насосы — Рабочее напряжение на выводах пожарного насоса. Контроллер не должен быть менее 15% от номинального напряжения контроллера. при запуске двигателя (ток заторможенного ротора).Кроме того, действующие напряжение на выводах электродвигателя пожарного насоса должно быть не менее 5% от номинального напряжения двигателя, когда двигатель работает на 115 процентов от номинального тока полной нагрузки [695-7].

Комментарий автора: в следующем месяце в этой статье я приведу примеры и графики, демонстрирующие применение правил NEC по падению напряжения.

ОПРЕДЕЛЕНИЕ ПЕРЕПАДА НАПРЯЖЕНИЯ В ЦЕПИ

Когда проводники цепи уже установлены, напряжение падение на проводниках может быть определено одним из двух методов: Ом закон или формула ВД.

Метод закона Ома — только однофазный

Падение напряжения на проводниках цепи можно определить умножением ток цепи по общему сопротивлению проводов цепи: VD = I x R. «I» равно нагрузке в амперах, а «R» равно сопротивлению проводника, указанному в главе 9, таблица. 8 для цепи постоянного тока или в главе 9, таблице 9 для переменного тока. токовые цепи.Метод закона Ома нельзя использовать для трехфазного схемы.

120 вольт Пример: каково падение напряжения на двух проводниках № 12, которые подайте нагрузку 16 ампер, 120 вольт, которая находится в 100 футах от источника питания питания (200 футов провода), рис. 4.

(а) 3,2 вольт (б) 6,4 вольт (c) 9,6 вольт (г) 12,8 В

Ответ: (б) 6,4 вольт

Падение напряжения = I x R

«I» равно 16 ампер

«R» равно 0.4 Ом (Глава 9, Таблица 9: (2 Ом / 1000 футов) x 200 футов

Падение напряжения = 16 ампер x 0,4 Ом

Падение напряжения = 6,4 В, (6,4 В / 120 В = падение на 5,3%)

Рабочее напряжение = 120 В — 6,4 В

Рабочее напряжение = 113,6 В

Комментарий автора: Падение напряжения на 5,3% для указанной выше параллельной цепи. превышает рекомендации NEC на 3%, но не нарушает NEC, если нагрузка 16 А не рассчитана ниже 113.6 вольт [110-3 (б)].

, однофазный, 240 вольт Пример: какое рабочее напряжение у 44 ампер, 240 вольт, однофазная нагрузка, расположенная в 160 футах от щитка, если он соединен проводниками № 6, рисунок 5?

(а) 233,1 вольт (b) 230,8 вольт (c) 228,4 вольт (г) 233,4 В

Ответ: (а) 233,1 вольт

Падение напряжения = I x R

«I» равно 44 амперам

«R» равно 0.157 Ом (Глава 9, Таблица 9: (0,49 Ом / 1000 футов) x 320 футов

Падение напряжения = 44 ампера x 0,157 Ом

Падение напряжения = 6,9 В, (6,9 В / 240 В = падение на 2,9%)

Рабочее напряжение = 240 В — 6,9 В

Рабочее напряжение = 233,1 В

Падение напряжения по методу формул

Когда проводники цепи уже установлены, напряжение падение проводов можно определить с помощью одного из следующих формулы:

VD = 2 x K x Q x I x D / CM — однофазный

VD = 1.732 x K x Q x I x D / CM — трехфазный

«VD» = падение напряжения: падение напряжения на проводниках цепи. как выражено в вольтах.

«K» = постоянная постоянного тока: это постоянная, которая представляет сопротивление постоянному току для проводника в тысячу круглых мил длиной в тысячу футов, при рабочей температуре 75 ° C. C. Постоянное значение постоянного тока, используемое для меди, составляет 12,9 Ом. и 21.Для алюминиевых проводов используется 2 Ом. Константа «К» подходит для цепей переменного тока, где жилы не превышает № 1/0.

«Q» = Коэффициент регулировки переменного тока: Переменный ток цепи № 2/0 и выше должны быть отрегулированы с учетом эффектов самоиндукции. (скин-эффект). Коэффициент корректировки «Q» определяется путем деления сопротивление переменному току, как указано в таблице 9 главы 9 NEC, на сопротивление постоянному току, как указано в главе 9, таблица 8.

«I» = Амперы: нагрузка в амперах при 100 процентах, а не 125 процентов для двигателей или постоянных нагрузок.

«D» = Расстояние: расстояние, на котором нагрузка находится от источника питания. питания, а не общую длину проводников цепи.

«CM» = Circular-Mils: Круговые милы проводника цепи. как указано в главе 9, таблица 8.

Однофазный пример: каково падение напряжения на проводе № 6 который обеспечивает однофазную нагрузку 44 А, 240 В, расположенную на расстоянии 160 футов из щитка, рисунок 6?

(а) 4.25 вольт (b) 6,9 вольт (c) 3 процента (г) 5 процентов

Ответ: (б) 6,9 вольт

VD = 2 x K x I x D / CM

K = 12,9 Ом, медь

I = 44 ампера

D = 160 футов

CM = No. 6, 26 240 круговых милов, Глава 9, Таблица 8

VD = 2 провода x 12,9 Ом x 44 А x 160 футов / 26240 круглых мил

VD = 6.9 В (6,9 В / 240 В = падение на 2,9%)

Рабочее напряжение = 240 В — 6,9 В

Рабочее напряжение = 233,1 В

Трехфазный Пример: Трехфазная нагрузка 208 В, 36 кВА расположена 80 футов от щитка и соединен алюминиевыми проводниками №1. Какое падение напряжения в проводниках до отключения оборудования, Рисунок 7?

(а) 3,5 вольт (б) 7 вольт (c) 3 процента (г) 5 процентов

Ответ: (а) 3.5 вольт

VD = 1,732 x K x I x D / CM

K = 21,2 Ом, алюминий

I = 100 ампер

D = 80 футов

CM = № 1, 83690 круговых милов, глава 9, таблица 8

VD = 1,732 x 21,2 Ом x 100 ампер x 80 футов / 83690 круглых мил

VD = 3,5 В (3,5 В / 208 В = 1,7%)

Рабочее напряжение = 208 В — 3,5 В

Рабочее напряжение = 204,5 В

Надеюсь, это краткое резюме было полезным.Если вы хотите узнать больше о по этой теме, посетите наш семинар или закажите видео для домашнего обучения программа сегодня.

Цепи простой серии

| Последовательные и параллельные схемы

На этой странице мы изложим три принципа, которые вы должны понимать в отношении последовательных цепей:

  1. Ток : величина тока одинакова для любого компонента в последовательной цепи.
  2. Сопротивление : Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.
  3. Напряжение : Напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.

Давайте взглянем на несколько примеров последовательных цепей, демонстрирующих эти принципы.

Начнем с последовательной схемы, состоящей из трех резисторов и одной батареи:

Первый принцип, который нужно понять о последовательных схемах, заключается в следующем:

Величина тока в последовательной цепи одинакова для любого компонента в цепи.

Это потому, что в последовательной цепи есть только один путь для прохождения тока. Поскольку электрический заряд проходит через проводники, как шарики в трубке, скорость потока (скорость мрамора) в любой точке цепи (трубки) в любой конкретный момент времени должна быть одинаковой.

Использование закона Ома в последовательных цепях

По расположению 9-вольтовой батареи мы можем сказать, что ток в этой цепи будет течь по часовой стрелке от точки 1 к 2, к 3 к 4 и обратно к 1.Однако у нас есть один источник напряжения и три сопротивления. Как мы можем использовать здесь закон Ома?

Важная оговорка к закону Ома заключается в том, что все величины (напряжение, ток, сопротивление и мощность) должны относиться друг к другу в терминах одних и тех же двух точек в цепи. Мы можем увидеть эту концепцию в действии на примере схемы с одним резистором ниже.

Использование закона Ома в простой цепи с одним резистором

В схеме с одной батареей и одним резистором мы можем легко вычислить любое количество, потому что все они относятся к одним и тем же двум точкам в цепи:

Поскольку точки 1 и 2 соединены вместе проводом с незначительным сопротивлением, как и точки 3 и 4, мы можем сказать, что точка 1 электрически является общей с точкой 2, а точка 3 электрически общей с точкой 4.Поскольку мы знаем, что у нас есть 9 вольт электродвижущей силы между точками 1 и 4 (непосредственно через батарею), и поскольку точка 2 является общей для точки 1, а точка 3 — общей для точки 4, мы также должны иметь 9 вольт между точками 2 и 3. (прямо через резистор).

Следовательно, мы можем применить закон Ома (I = E / R) к току через резистор, потому что мы знаем напряжение (E) на резисторе и сопротивление (R) этого резистора. Все термины (E, I, R) относятся к одним и тем же двум точкам в цепи, к одному и тому же резистору, поэтому мы можем безоговорочно использовать формулу закона Ома.

Использование закона Ома в схемах с несколькими резисторами

В схемах, содержащих более одного резистора, мы должны соблюдать осторожность при применении закона Ома. В приведенном ниже примере схемы с тремя резисторами мы знаем, что у нас есть 9 вольт между точками 1 и 4, что является величиной электродвижущей силы, управляющей током через последовательную комбинацию R 1 , R 2 и R . 3 . Однако мы не можем взять значение 9 вольт и разделить его на 3 кОм, 10 кОм или 5 кОм, чтобы попытаться найти значение тока, потому что мы не знаем, какое напряжение есть на любом из этих резисторов по отдельности.

Значение 9 вольт составляет всего величины для всей цепи, тогда как цифры 3 кОм, 10 кОм и 5 кОм представляют собой отдельных величин для отдельных резисторов. Если бы мы включили цифру для общего напряжения в уравнение закона Ома с цифрой для отдельного сопротивления, результат не будет точно соответствовать какой-либо величине в реальной цепи.

Для R 1 закон Ома будет связывать величину напряжения на R 1 с током через R 1 , учитывая сопротивление R 1 , 3 кОм:

Но, поскольку нам неизвестно напряжение на R 1 (только полное напряжение, подаваемое батареей на комбинацию из трех последовательных резисторов), и мы не знаем ток через R 1 , мы можем ‘ t делать какие-либо расчеты по любой из формул.То же самое касается R 2 и R 3 : мы можем применять уравнения закона Ома тогда и только тогда, когда все члены представляют свои соответствующие величины между одними и теми же двумя точками в цепи.

Итак, что мы можем сделать? Нам известно напряжение источника (9 вольт), приложенное к последовательной комбинации R 1 , R 2 и R 3 , и мы знаем сопротивление каждого резистора, но поскольку эти величины не указаны в В том же контексте мы не можем использовать закон Ома для определения тока в цепи.Если бы мы только знали, что такое общее сопротивление для цепи: тогда мы могли бы вычислить общий ток с нашей цифрой для общего напряжения (I = E / R).

Объединение нескольких резисторов в эквивалентный общий резистор

Это подводит нас ко второму принципу последовательной схемы:

Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.

Это должно иметь интуитивный смысл: чем больше последовательно подключенных резисторов, через которые должен протекать ток, тем труднее будет протекать ток.

В примере задачи у нас были последовательно подключены резисторы 3 кОм, 10 кОм и 5 кОм, что дало нам общее сопротивление 18 кОм:

По сути, мы вычислили эквивалентное сопротивление для R 1 , R 2 и R 3 вместе взятых. Зная это, мы могли бы перерисовать схему с одним эквивалентным резистором, представляющим последовательную комбинацию R 1 , R 2 и R 3 :

.

Расчет тока цепи с использованием закона Ома

Теперь у нас есть вся необходимая информация для расчета тока цепи, потому что у нас есть напряжение между точками 1 и 4 (9 вольт) и сопротивление между точками 1 и 4 (18 кОм):

Расчет напряжений компонентов по закону Ома

Зная, что ток одинаков во всех компонентах последовательной цепи (и мы только что определили ток через батарею), мы можем вернуться к нашей исходной принципиальной схеме и отметить ток через каждый компонент:

Теперь, когда мы знаем величину тока, протекающего через каждый резистор, мы можем использовать закон Ома для определения падения напряжения на каждом из них (применяя закон Ома в его надлежащем контексте):

Обратите внимание на падение напряжения на каждом резисторе и на то, как падает сумма напряжений (1.5 + 5 + 2,5) равно напряжению аккумулятора (питания): 9 вольт.

Это третий принцип последовательных цепей:

Напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.

Анализ простых последовательных цепей с помощью «табличного метода» и закона Ома

Однако метод, который мы только что использовали для анализа этой простой последовательной схемы, можно упростить для лучшего понимания. Используя таблицу для перечисления всех напряжений, токов и сопротивлений в цепи, становится очень легко увидеть, какие из этих величин могут быть правильно связаны в любом уравнении закона Ома:

Правило с такой таблицей — применять закон Ома только к значениям в каждом вертикальном столбце.Например, E R1 только с I R1 и R 1 ; E R2 только с I R2 и R 2 ; и т.д. Вы начинаете свой анализ с заполнения тех элементов таблицы, которые даны вам с самого начала:

Как вы можете видеть из расположения данных, мы не можем подать 9 вольт ET (полное напряжение) ни на одно из сопротивлений (R 1 , R 2 или R 3 ) ни при каких условиях. Формула закона Ома, потому что они находятся в разных столбцах.Напряжение батареи 9 В составляет , а не , приложенное непосредственно к R 1 , 2 или 3 рэнд. Однако мы можем использовать наши «правила» для последовательных цепей, чтобы заполнить пустые места в горизонтальном ряду. В этом случае мы можем использовать правило ряда сопротивлений для определения общего сопротивления из суммы отдельных сопротивлений:

Теперь, когда значение общего сопротивления вставлено в крайний правый столбец («Всего»), мы можем применить закон Ома I = E / R к общему напряжению и общему сопротивлению, чтобы получить общий ток 500 мкА:

Затем, зная, что ток распределяется поровну между всеми компонентами последовательной цепи (еще одно «правило» для последовательных цепей), мы можем ввести токи для каждого резистора из только что рассчитанного значения тока:

Наконец, мы можем использовать закон Ома для определения падения напряжения на каждом резисторе, по столбцу за раз:

Проверка расчетов с помощью компьютерного анализа (SPICE)

Ради удовольствия, мы можем использовать компьютер для автоматического анализа этой самой схемы.Это будет хороший способ проверить наши расчеты, а также познакомиться с компьютерным анализом. Во-первых, мы должны описать схему компьютеру в формате, распознаваемом программным обеспечением.

Программа SPICE, которую мы будем использовать, требует, чтобы все электрически уникальные точки в цепи были пронумерованы, а размещение компонентов понималось по тому, какие из этих пронумерованных точек или «узлов» они разделяют. Для ясности я пронумеровал четыре угла схемы в нашем примере с 1 по 4. SPICE, однако, требует, чтобы где-то в схеме был нулевой узел, поэтому я перерисую схему, немного изменив схему нумерации:

Все, что я здесь сделал, это перенумеровал нижний левый угол цепи 0 вместо 4.Теперь я могу ввести несколько строк текста в компьютерный файл, описывающий схему в терминах, понятных SPICE, вместе с парой дополнительных строк кода, предписывающих программе отображать данные о напряжении и токе для нашего удовольствия от просмотра. Этот компьютерный файл известен как список цепей в терминологии SPICE:

последовательная цепь
v1 1 0
г1 1 2 3к
r2 2 3 10к
r3 3 0 5k
.dc v1 9 9 1
.print dc v (1,2) v (2,3) v (3,0)
.конец
 

Теперь все, что мне нужно сделать, это запустить программу SPICE для обработки списка соединений и вывода результатов:

версия 1 в (1,2) в (2,3) в (3) я (v1)
9.000E + 00 1.500E + 00 5.000E + 00 2.500E + 00 -5.000E-04

Эта распечатка сообщает нам, что напряжение аккумулятора составляет 9 вольт, а падение напряжения на R 1 , R 2 и R 3 составляет 1,5 В, 5 В и 2,5 В соответственно. Падения напряжения на любом компоненте в SPICE обозначаются номерами узлов, между которыми находится компонент, поэтому v (1,2) относится к напряжению между узлами 1 и 2 в цепи, которые являются точками, между которыми находится R 1 . .

Порядок номеров узлов важен: когда SPICE выводит число для v (1,2), он учитывает полярность так же, как если бы мы держали вольтметр с красным измерительным проводом на узле 1 и черным измерительным проводом на узел 2. У нас также есть дисплей, показывающий ток (хотя и с отрицательным значением) на уровне 0,5 мА или 500 мкА. Итак, наш математический анализ подтвержден компьютером. Эта цифра отображается как отрицательное число в анализе SPICE из-за необычного способа обработки текущих вычислений SPICE.

Таким образом, последовательная цепь определяется как имеющая только один путь, по которому может течь ток. Из этого определения следуют три правила последовательных цепей: все компоненты имеют одинаковый ток; сопротивления складываются, чтобы равняться большему общему сопротивлению; а падение напряжения в сумме равняется большему общему напряжению. Все эти правила находят корень в определении последовательной цепи. Если вы полностью понимаете это определение, то правила — не что иное, как сноски к определению.

ОБЗОР:

  • Компоненты в последовательной цепи имеют одинаковый ток: I Всего = I 1 = I 2 =.. . Я n
  • Общее сопротивление в последовательной цепи равно сумме отдельных сопротивлений: RTotal = R 1 + R 2 +. . . R n
  • Общее напряжение в последовательной цепи равно сумме отдельных падений напряжения E Всего = E 1 + E 2 +. . . En

Попробуйте наш Калькулятор закона Ома в разделе Инструменты .

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Расчет падения напряжения

Общеизвестно, что потребители электроэнергии должны платить за общее количество киловатт-часов, поставленных электроэнергетической компанией, измеренное соответствующим счетчиком мощности. Однако, поскольку ни один электрический проводник не является идеальным и даже самая качественная проводка имеет сопротивление, часть этого электричества теряется между измерителем мощности и точкой использования.

Что такое падение напряжения?

Одним из основных принципов электротехники является закон Ома, который гласит, что падение напряжения на проводнике или нагрузке эквивалентно произведению тока и сопротивления (V = I x R).Электрический ток определяется нагрузкой на цепь, а сопротивление определяется физическими свойствами проводника.


Получите профессиональный электротехнический проект для своего здания и избежите проблем с напряжением.


Понятие падения напряжения используется для описания разницы между напряжением, подаваемым на источник, и напряжением, измеренным на нагрузке. Факторы, определяющие падение напряжения, приведены в следующей таблице:

КОЭФФИЦИЕНТЫ ПАДЕНИЯ НАПРЯЖЕНИЯ

ОПИСАНИЕ

А.Материал проводника

Некоторые материалы являются лучшими электрическими проводниками, чем другие. Например, медь более проводящая, чем алюминий.

B. Диаметр жилы

Более широкий проводник имеет лучшую проводимость, потому что больше материала для переноса электрического тока.

C. Длина проводника

Более длинные проводники имеют более высокое сопротивление, потому что ток должен проходить большее расстояние между источником и нагрузкой.

D. Температура проводника

Температура влияет на проводимость материалов. В зависимости от материала и фактической температуры проводимость может увеличиваться или уменьшаться при дальнейшем повышении температуры.

E. Ток, переносимый проводником

Ток прямо пропорционален падению напряжения. Если ток удваивается, а сопротивление остается неизменным, падение напряжения также удваивается.

F. Соединения в цепи

Соединение представляет собой разрыв материала проводника, и с этим связано контактное сопротивление. Неудовлетворительные соединения связаны с повышенным падением напряжения.

Как можно контролировать падение напряжения?

Поскольку идеального проводника не существует и все материалы обладают электрическим сопротивлением, полностью устранить падение напряжения невозможно.Однако есть много способов минимизировать его:

  1. Повышение эффективности системы
    При неизменной нагрузке повышение эффективности электрического оборудования снижает потребление энергии. Поскольку напряжение питания постоянно, повышенная эффективность приводит к меньшему току и снижению падения напряжения.
  2. Поиск и устранение неисправностей
    Некоторые электрические проблемы вызывают ненужное увеличение тока или сопротивления, что приводит к более высокому падению напряжения. Как только эти проблемы будут решены, падение напряжения вернется в норму.
  3. Корректировка сечения проводников
    Если проводники в цепи были выбраны неправильно, на них может наблюдаться значительное падение напряжения. При выборе проводов важно учитывать такие факторы, как ток полной нагрузки, температура окружающей среды и количество проводников в кабелепроводе.
  4. Централизованное электрическое распределение
    Если главный электрический вал и распределительные щиты расположены близко к центру здания, проводка должна проходить меньшие расстояния, чтобы охватить различные нагрузки.Такой тип компоновки сводит к минимуму падение напряжения. С другой стороны, когда электрический вал и панели расположены на одном конце здания, цепи должны пересекать всю конструкцию, чтобы достичь нагрузок на противоположной стороне.
  5. Сбалансированное распределение нагрузки
    В крупных коммерческих зданиях обычно используются трехфазные цепи с тремя токоведущими проводниками, как следует из их названия. Если одна фаза слишком нагружена, она также будет испытывать больший ток и большее падение напряжения по сравнению с другими фазами.

Это особые меры, которые могут быть применены для уменьшения падения напряжения. В общем, любая мера, которая обеспечивает любой из следующих эффектов, является жизнеспособной, если это разрешено Электрическим кодексом Нью-Йорка:

  • Уменьшение тока нагрузки
  • Увеличение диаметра жилы
  • Увеличение количества параллельных проводов
  • Уменьшение длины проводника
  • Понижение температуры проводника

Допустимое падение напряжения в соответствии с NEC, издание

2011 г.

Национальный электротехнический кодекс NFPA (NEC), который является основой Электротехнического кодекса Нью-Йорка, устанавливает два условия для допустимого падения напряжения в электрических установках:

  • Максимально допустимое напряжение в ответвленной цепи составляет 3 процента, измеренное между соответствующей электрической панелью и самой дальней розеткой, обеспечивающей питание, обогрев, освещение или любую комбинацию таких нагрузок.
  • Максимальное суммарное падение напряжения на главных фидерах и ответвленных цепях составляет 5 процентов, измеренное от служебного подключения до самой дальней розетки.

Считается, что эти уровни падения напряжения обеспечивают разумную эффективность работы. Важно отметить, что при увеличении размеров проводников цепи для компенсации падения напряжения необходимо соответственно увеличить провод заземления оборудования.

Как рассчитать падение напряжения

Важно отметить, что формула падения напряжения меняется в зависимости от количества фаз в цепи (однофазные или трехфазные).В следующих уравнениях используются следующие переменные:

  • Z = полное сопротивление проводника (Ом на 1000 футов или Ом / км)
  • I = ток нагрузки (амперы)
  • L = длина (фут)
ТИП УСТАНОВКИ ФОРМУЛА ПАДЕНИЯ НАПРЯЖЕНИЯ

Однофазная система

Трехфазная система

В падение = 2 x Z x I x L / 1000

Падение В = 1,73 x Z x I X L / 1000

Формулы делятся на 1000, поскольку стандартные значения импеданса предоставляются для каждых 1000 футов.Таким образом, они преобразуются в Ом на фут. В главе 9 NEC приведены свойства проводников, рассчитанные на номинальную температуру 75 ° C.

Для демонстрации процедуры предположим, что однофазная цепь на 120 В пропускает ток 22 А, где полное сопротивление проводника составляет 1,29 Ом на 1000 футов, а длина цепи составляет 50 футов. Падение напряжения будет:

  • Падение напряжения = (2 x 1,29 Ом / kft x 22A x 50 футов) / 1000 = 2,84 В
  • Падение напряжения в процентах = 2,84 В / 120 В = 0.0237 = 2,37%

Если на каждую фазу приходится более одного проводника, приведенный выше расчет необходимо разделить на количество проводов на фазу, поскольку сопротивление уменьшается. Например, если в приведенном выше примере на каждую фазу приходится два проводника, сопротивление уменьшается вдвое, и падение напряжения будет 1,42 В (1,18%).

Как выбрать размер провода?

Процедура, описанная выше, может быть изменена для выбора сечения проводника в зависимости от допустимого падения напряжения. Предположим, что цепь соответствует следующим условиям:

  • Рабочее напряжение = 120 В
  • Конфигурация: однофазный
  • Ток = 25 А
  • Длина = 100 футов

Формула падения напряжения может быть скорректирована следующим образом для расчета необходимого импеданса.

  • Падение напряжения = 2 x Z x I x L / 1000
  • Z = (1000 x падение напряжения) / (2 x I x L)

Подставляя указанные выше значения в формулу, получаем следующий результат:

  • Допустимое падение напряжения = 120 В x 3% = 3,6 В
  • Z = (1000 x 3,6 В) / (2 x 25 A x 100 футов) = 0,72 Ом / тыс. Фут

В соответствии с требованиями NEC, приведенными в таблице 8 главы 9, для удержания падения напряжения ниже 3% требуется сечение проводника AWG №6 (0,510 Ом / kft). Следующий размер — AWG # 8, но его сопротивление слишком велико (0.809 Ом / kft), а падение напряжения превысит 3%.

Прокладка нескольких проводников в кабелепроводах, кабелях или кабельных каналах

Таблицы NEC с 310.16 по 310.19 предоставляют допустимые значения силы тока максимум для трех проводов в кабелепроводе, кабеле или кабелепроводе. Когда количество проводников равно четырем или более, допустимая допустимая нагрузка снижается, как показано в следующей таблице:

КОЛИЧЕСТВО ТОКОПРОВОДНИКОВ

ЗНАЧЕНИЕ ПРОЦЕНТНОЙ МОЩНОСТИ

4-6

7-9

10-20

21-30

31-40

41 или более

80%

70%

50%

45%

40%

35%

Проводники должны иметь достаточную допустимую силу тока для нагрузки в соответствии с таблицами 310.От 16 до 310,19, при этом также имеет падение напряжения ниже максимально допустимого значения 3%. Также обратите внимание, что номинальная допустимая нагрузка снижается, когда несколько проводов проложены вместе. Чтобы электрическая установка соответствовала нормам, необходимо проверить все три фактора.

Сводка

NEC рекомендует максимальное падение напряжения 5% на фидерах и ответвленных цепях и 3% только на ответвленных цепях. Считается, что такой уровень падения напряжения обеспечивает правильные условия для оптимальной работы оборудования.Обратите внимание, что максимально допустимый уровень падения напряжения — это не мера безопасности, а мера производительности.

Формула падения напряжения и пример расчета

Что такое падение напряжения?

Падение напряжения — это уменьшение электрического потенциала на пути тока, протекающего в электрической цепи. Или, проще говоря, «падение напряжения». Падения напряжения возникают из-за внутреннего сопротивления источника, пассивные элементы, через проводники, через контакты и через разъемы нежелательны, потому что часть подаваемой энергии рассеивается.

Падение напряжения на электрической нагрузке пропорционально мощности, доступной для преобразования этой нагрузки в другую полезную форму энергии. Падение напряжения рассчитывается по закону Ома.

Падение напряжения в цепях постоянного тока

В цепях постоянного тока причиной падения напряжения является сопротивление. Чтобы понять падение напряжения в цепи постоянного тока, давайте рассмотрим пример. Предположим, что схема состоит из источника постоянного тока, двух последовательно соединенных резисторов и нагрузки.

Здесь каждый элемент схемы будет иметь определенное сопротивление. Они получают и теряют энергию до некоторой степени. Но решающим фактором ценности энергии являются физические характеристики элементов. Когда мы измеряем напряжение между источником постоянного тока и первым резистором, мы видим, что оно будет меньше напряжения питания.

Мы можем рассчитать энергию, потребляемую каждым сопротивлением, измеряя напряжение на отдельных резисторах. В то время как ток течет по проводу, начиная от источника постоянного тока к первому резистору, некоторая энергия, отдаваемая источником, рассеивается из-за сопротивления проводника.

Для проверки падения напряжения используются , закон Ома и закон Кирхгофа, которые кратко описаны ниже.
Закон Ома представлен как

В → Падение напряжения (В)
R → Электрическое сопротивление (Ом)
I → Электрический ток (А)

Для замкнутых цепей постоянного тока мы также используем закон Кирхгофа для расчета падения напряжения . Он выглядит следующим образом:
Напряжение питания = сумма падений напряжения на каждом компоненте цепи.

Расчет падения напряжения в линии электропередачи постоянного тока

Здесь мы берем пример 100-футовой линии электропередачи.Итак, для 2 линий 2 × 100 футов. Пусть электрическое сопротивление составляет 1,02 Ом / 1000 футов, а ток — 10 А.

Падение напряжения в цепях переменного тока

В цепях переменного тока в дополнение к сопротивлению (R), будет второе противодействие протеканию тока — реактивное сопротивление (X), которое включает X C и X L . И X, и R также будут противодействовать текущему потоку. Сумма этих двух называется импедансом (Z).
X C → Емкостное реактивное сопротивление
X L → Индуктивное реактивное сопротивление

Величина Z зависит от таких факторов, как магнитная проницаемость, электрические изолирующие элементы и частота переменного тока.
Подобно закону Ома в цепях постоянного тока, здесь он задается как

E → Падение напряжения (В)
Z → Электрический импеданс (Ом)
I → Электрический ток (A)

I B → Ток полной нагрузки ( A)
R → Сопротивление жилы кабеля (Ом / 1000 футов)
L → Длина кабеля (с одной стороны) (Kft)
X → Индуктивное реактивное сопротивление (Ом / 1000f)
В n → Напряжение между фазой и нейтралью
U n → Междуфазное напряжение
Φ → Фазовый угол нагрузки

Круговые милы и расчет падения напряжения

Круглый мил — это действительно единица площади.Он используется для обозначения площади круглого поперечного сечения провода или проводника. Падение напряжения с использованием милов определяется следующим образом:

L → Длина провода (фут)
K → Удельное сопротивление (Ом-круговые милы / фут).
P → Фазовая постоянная = 2 для однофазной = 1,732 для трехфазной
I → Площадь провода (круглые милы)

Расчет падения напряжения на медном проводнике по таблице

Падение напряжения на медном проводе ( проводник) можно узнать следующим образом:

f — коэффициент, который мы получаем из стандартной таблицы ниже.

90.125
РАЗМЕР МЕДНОГО ПРОВОДНИКА КОЭФФИЦИЕНТ, f
AWG мм 2 ОДНОФАЗНЫЙ ТРЕХФАЗНЫЙ
12 3,31 0,313 0,26
10 5,26 0,196 0,17
8 8,37 0,11
6 13,3 0,0833 0,071
4 21,2 0,0538 0,046
0,046
33,6 0,0323 0,028
1 42,4 0,0323 0,028
1/0 53,5 0.0269 0,023
2/0 67,4 0,0222 0,020
3/0 85,0 0,019 0,016
9011 9011 9011 0,014
250 0,0147 0,013
300 0,0131 0,011
3500121 0,011
400 0,0115 0,009
500 0,0101 0,009
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *