Posted on

Содержание

Схемы амперметров с линейной шкалой для измерения переменного тока

Применив синхронное выпрямление переменного тока, автор линеаризовал шкалу шунтового амперметра магнитоэлектрического типа без какого-либо усилителя В статье предлагаются варианты схем с однополупериодным и кольцевым синхронным выпрямителем, применяемым обычно в кольцевых модуляторах.

Шкала амперметра переменного тока, построенного с использованием магнитоэлектрического стрелочного прибора с шунтом и простого выпрямителя, обычно нелинейна. Это связано с тем что при уменьшении напряжения ниже некоторого порога (0,2…0,6 В) выпрямительные свойства германиевых и кремниевых диодов резко ухудшаются.

В результате требуется увеличивать падение напряжения на шунте либо применять линейные выпрямители на основе усилителей переменного напряжения. Однако повышение падения напряжения на шунте неизбежно приводит к потерям мощности и росту выходного сопротивления источника питания. К тому же этот способ лишь уменьшает нелинейность, но не устраняет ее полностью.

Правда, применение усилителей позволяет практически полностью устранить нелинейность, но сильно усложняет измеритель.

Между тем линейность простых из мерительных выпрямителей на полупроводниковых диодах можно значительно улучшить без особого усложнения, если использовать синхронное выпрямление.

Однополупериодный синхронный выпрямитель для амперметра

На рис 1 приведена схема однополупериодного синхронного выпрямителя для амперметра с линеаризованной шкалой. В положительный полупериод переменного напряжения (плюс на верхних концах обмоток II и III) открываются диоды VD1 и VD2 подключая микроамперметр к шунту Rш. В отрицательный полупериод диоды закрыты.

В открытом состоянии диоды имеют малое дифференциальное сопротивление, и нелинейность этого сопротивления невелика, поэтому шкала получается практически линейной.

Схема амперметра с трасформатором

Рис. 1. Схема амперметра с трасформатором.

При использовании микроампер метров со шкалой 50 .200 мкА с максимальным падением напряжения на рамке не более 150 мВ минимальное напряжение на обмотке III может составлять 1,5…2 В для германиевых и 2…2,5 В для кремниевых диодов (при меньшем напряжении его нестабильность заметно сказывается на показаниях амперметра).

Максимальное напряжение ограничивается максимально допустимым обратным напряжением используемых диодов Минимальный ток диодов должен в 10.. 20 раз превышать максимальный ток микроамперметра. Дополнительную обмотку можно изготовить самостоятельно, намотав несколько витков тонкого изолированного про вода на катушку трансформатора, если его конструкция позволяет это сделать.

Резисторы R3 и R4 служат для подстройки нуля амперметра, сдвиг которого возникает за счет тока диода VD2, протекающего через шунт, и разброса параметров диодов.

Синфазность подключения обмоток II и III важна при сравнительно низком напряжении обмотки III (менее 2 В), так как при противофазном включении этих обмоток (в этом случае полярность подключения микроамперметра нужно изменить) в приборе появляется нелинейность шкалы (цена деления в конце шкалы плавно увеличивается), что, кстати, иногда может оказаться полезным. Однако при напряжении на обмотке III выше 4 ..5 В эта нелинейность практически не заметна и на фазу включения обмоток можно не обращать внимания

Для защиты микроамперметра от случайных перегрузок параллельно его выводам полезно включить кремниевый диод Д220 КД522 или КД521 в прямом направлении, предварительно убедившись, что он не влияет на показания микроамперметра в конце шкалы.

Двухполупериодный выпрямитель для амперметра

Добавлением еще двух диодов и одного резистора синхронный выпрямитель можно преобразовать в двухполупериодный (рис 2). В качестве источника, открывающего диоды, здесь использована рабочая обмотка трансформатора

Преимущество двухполупериодной схемы выпрямления перед однополупериодной состоит в том, что требуемое падение напряжения на Вш примерно в два раза меньше при одинаковом токе полного отклонения микроамперметра.

Схема двухполупериодного выпрямителя для амперметра

Рис. 2. Схема двухполупериодного выпрямителя для амперметра.

 Так, если в однополупериодном выпрямителе с диодами Д220 для полного отклонения стрелки микроамперметра на 200 мкА (с сопротивлением рамки около 670 Ом) требовалось падение напряжения на Rш, около 0,4 В, то в двухполупериодном это напряжение не превышало 0,2 В.

Приведенная схема является модификацией обычного кольцевого модулятора При увеличении напряжения на R„, до 0,4 В (амплитудное значение) для германиевых и 1,2 В для кремниевых диодов через диоды VD1 VD3 и VD2, VD4 начинает протекать сквозной ток нагрузки. Поэтому резисторы R3-R5 служат не только для балансировки моста Они ограничивают ток через диоды при перегрузке.

Исходя из этих соображений, в двухполупериодном выпрямителе лучше использовать кремниевые диоды и рассчитывать амперметр на максимальное падение напряжения на Rш, не более 0,5….0,6 В.

На случаи перегрузки или КЗ можно принять дополнительные меры по ограничению тока через диоды. Это может быть увеличение сопротивления резисторов R3- R5, гасящего резистора и шунтирующих диодов или стабилитронов.

Получение открывающего напряжения непосредственно от сети 220 В

Для открывания диодов измерительного моста амперметра с линейной шкалой не обязательно использовать трансформатор. На рисунке 3 показан способ получения открывающего напряжения непосредственно от сети 220 В, стабилитрон VD1 ограничивает и стабилизирует это напряжение. Диод VD2 уменьшает нагрев гасящего резистора R5.

Схема - способ получения открывающего напряжения непосредственно от сети 220 В

Рис. 3. Схема — способ получения открывающего напряжения непосредственно от сети 220 В.

Такую схему питания целесообразно использовать и в случае питания от трансформатора, если его выходное напряжение превышает несколько десятков вольт При использовании в подобном случае двухполупериодного выпрямителя диод VD2 необходимо исключить, а последовательно со стабилитроном VD1 включить встречно еще один (того же типа) или использовать двуханодный стабилитрон

При расчете элементов однополупериодного выпрямителя и проведении измерений нужно помнить об особенностях измерения несинусоидального тока или напряжения, учитывая коэффициент формы.

При изготовлении многопредельного амперметра с пределами измеряемого тока менее 0 2 0 4 А необходимо учитывать следующую особенность этих мостовых схем. Ток, открывающий диод VD1 на рис 1 (или VD1, VD2 на рис 2), замыкается непосредственно на источник питания, а ток диода VD2 (или VD3 VD4 на рис. 2) проходит через резистор Rш, и создает на нем падение напряжения, которое, как указывалось выше, компенсируется подстройкой резистора R4

Когда сопротивление резистора Rш не более 0,1…0 20м, падение напряжения на нем от тока диода VD2 (1 …2 мА) не превышает 0,1 .0,4 мВ. При максимальном падении напряжения на шунте 100 ..200 мВ его можно не учитывать. Если же на минимальном пределе измерения сопротивление имеет большее значение, то необходимо принимать меры по поддержанию нуля при переключении пределов измерения.

Если питание моста производится от дополнительной обмотки то на минимальном пределе можно составить шунт из двух половин и подключить вывод обмотки питания моста к средней точке шунта Возможно также использовать дополнительную секцию безразрывного переключателя, чтобы при переключении пределов ток в цепи питания отдельных плеч измерительного моста не прерывался.

При изготовлении амперметров по приведенным схемам необходимо принять меры к повышению температурной стабильности показаний прибора, которая в основном определяется равенством температур диодов измерительного моста.

Для этого целесообразно использовать диодные сборки в одном корпусе либо разместить диоды рядом друг с другом и обеспечить хороший тепловой контакт, залив их компаундом.

В. Андреев, г. Тольятти, Самарская обл. Р2001, 1.

Измерение силы тока при помощи амперметра

Прибор амперметр служит для измерения силы пока в цепях с переменным и постоянным напряжением. Подключение происходит последовательно. Идеальный амперметр не оказывает влияния на цепь, но создать его в реальной жизни невозможно, так как любой проводник имеет внутреннее сопротивление. Такой прибор существует лишь в теории, где влияние устройства не учитывается в связи с допустимой погрешностью расчетов. Для повышения точности производимых измерений сопротивление амперметра стремятся сделать минимальным.

Внешний вид амперметра

Внешний вид амперметра

Отличия амперметров различных конструкций

Амперметр постоянного тока, предназначенный для измерения малых значений, может иметь в основании магнитоэлектрическую систему. Его принцип действия основан на взаимодействии катушки, через которую протекает ток и постоянного магнита. Преимуществом такой конструкции является высокая чувствительность и равномерная шкала.  Недостатками магнитоэлектрической системы является невозможность работы с переменным током и сложность конструкции. Высокая цена на магниты также снижает конкурентную способность приборов такого типа. Наиболее точная фиксация показаний начинается после 2/3 шкалы. Данная система применяется и на вольтметрах.

Магнитоэлектрическая система

Магнитоэлектрическая система

В отличие от предыдущего прибора амперметр переменного тока в своей основе имеет электромагнитную систему. Наиболее часто такие устройства используются в сетях на 50-60 Герц. Устройство амперметра  предполагает наличие одного либо двух сердечников, соединенных с стрелочным механизмом. Преимуществом конструкции является универсальность, позволяющая помимо переменного измерять и постоянный ток. Сопротивление амперметра электромагнитного типа выше, чем у других моделей, что отражается в худшую сторону на точность результата. Шкала нелинейная, поэтому  показания амперметра считать затруднительно. В некоторых случаях в первой половине шкалы ставится точка, говорящая о невозможности измерить ток в данном диапазоне, сохраняя в норме погрешность.

Электромагнитный измеритель

Электромагнитный измеритель

Для уменьшения воздействия влияния внешних магнитных полей используются амперметры ферродинамического типа. Устройство характеризуется высокой точностью измерений. Это позволяет отказаться от установки в приборе дополнительных защитных экранов. В основе конструкции лежит замкнутый ферримагнитный провод. Стрелки амперметра показывает измеряемую величину на нелинейной шкале. Показания амперметра можно снять с требуемой погрешностью не во всем диапазоне измерений, а лишь начиная со значения, обозначенного точкой.

Ферродинамический высокоточный прибор

Ферродинамический высокоточный прибор

Среди стрелочных амперметров существует электродинамический тип. Особую популярность он не получил из-за высокой чувствительности к окружающим магнитным полям. Перед тем как подключить амперметр важно обеспечить защиту от внешнего воздействия. Преимуществом прибора является его универсальность. Также при хорошем магнитном экранировании прибор покажет высокую точность, поэтому электродинамические устройства используются для поверки других амперметров.

Цифровой амперметр

Цифровой амперметр

Цифровой измеритель силы тока наиболее удобен в пользовании, так как сразу показывает требуемое значение без необходимости получения данных с помощью стрелок амперметра.  Часто он входит в состав мультиметра или электронного вольтамперметра. Наиболее современные приборы имеют возможность автоматически выбирать предел измерений. Прибор не чувствителен к горизонтальному либо вертикальному положению. Точность измерений зависит от дискретизации и алгоритма, заложенного для  осуществления снятия показаний.

Мультиметр с функцией цифрового амперметра

Мультиметр с функцией цифрового амперметра

Схемы подключения

Независимо от конструкции подсоединение прибора в сеть производится исключительно последовательно, что показывает схема подключения амперметра изображенная ниже. Подключение параллельно равносильно короткому замыканию, так как внутреннее сопротивление прибора очень мало. Правильность подключения прибора обеспечивает его сохранность и отсутствие повреждений в электросхеме.

Прибор для лабораторных измерений Э537

Прибор для лабораторных измерений Э537

Перед тем как подключить амперметр важно учесть:

  • постоянный или переменный ток в сети;
  • соблюдается ли полярность прибора;
  • стрелка амперметра должна находиться за серединой шкалы;
  • предел измерения больше максимально возможного скачка тока в электросхеме;
  • окружающая среда соответствует рекомендуемым параметрам;
  • измерительное место находится без воздействия вибрации.
Стандартное подключение амперметра для измерения силы тока в цепи

Стандартное подключение амперметра для измерения силы тока в цепи

Для измерения больших токов используются шунты. Амперметр подключается к выводам резистора параллельно. Результаты измерений подлежат дальнейшей обработке для вычисления силы тока протекающей в цепи.

Измерение силы тока в цепи с помощью шунта

Измерение силы тока в цепи с помощью шунта

Для гальванического разделения силовой и контрольной цепи используют измерительные трансформаторы тока. Амперметр подключается к специальным выводам. Используется такая схема для измерения токов, превышающих предел измерений прибора.

Создание гальванической развязки с помощью измерительного трансформатора

Создание гальванической развязки с помощью измерительного трансформатора

Производить измерения на цифровом амперметре гораздо проще. на него не воздействуют вибрация, правильное положение и магнитные поля. Не столь критично отреагирует прибор и на неправильно выбранную полярность. Превышать предел измерений не рекомендуется, так  как можно повредить устройство. Большинство высокотоковых выходов мультиметров не имеют защиты плавким предохранителем.

Выбор положения, требуемого для измерения тока с помощью цифрового мультиметра

Выбор положения, требуемого для измерения тока с помощью цифрового мультиметра

Бесконтактное измерение тока

Для осуществления измерения силы тока без разрыва схемы существует специальный вид электрических амперметров под названием токовые клещи. Принцип действия основан на измерении магнитного поля, образующегося вокруг проводника с током. Данный эффект проявляется на переменном напряжении.

Измерение тока без разрыва цепи

Измерение тока без разрыва цепи

Показания амперметра имеют меньшую точность по сравнению с приборами, подключаемыми последовательно.  При лабораторных измерения данный способ не используется, но в бытовых целях такой вид измерений достаточно удобен. Безопасность и простота работы с токовыми клещами намного выше, чем при использовании аналоговых приборов.

Контроль тока заряда аккумуляторной батареи автомобиля

При использовании зарядного устройства существует необходимость замерять силу тока амперметром. Это позволяет контролировать процесс накопления энергии аккумулятором и избегать перезаряда с недозарядом.  В результате срок службы АКБ значительно увеличивается.

После включения цепи амперметр покажет ток заряда. Точность измерений и прочие характеристики амперметра не столь важны для контроля передачи энергии. Погрешность измерения тоже не столь важна, так как следить необходимо за уменьшением показаний стрелки амперметра. Прибор, показывающий через несколько часов одно и тоже значение, говорит об полном заряде аккумулятора.

При работе множества аппаратуры возникает необходимость контроля силы тока. Стрелки амперметров или цифры на экране дискретного прибора показывают пользователю эту физическую величину. Производимые измерения необходимы как для поддержания рабочего состояния так и для сигнализации об возникновении аварийной ситуации.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Электронные вольтметры переменного тока, структурные схемы, разновидности.

«+» Может иметь высокий частотный диапазон

«-» Невысокая чувствительность

«+» Хорошая чувствительность

«-» Частотный диапазон узкий (ограничение усилителя переменного тока)

Детектор:

  1. Амплитуд. знач/амплит детектор

  1. Среднего значения

  2. Действующего значения

Кa — коэффициент амплитуды

Кф — коэффициент формы

Кас = 1,41 — это коэффициент амплитуды синусоиды

Хотя в приборах могут использоваться детекторы разных видов, их шкалы, как правило, градуируются в действительных значениях напряжения синусоидальной формы.

Детекторы амплитудного значения.

Открытый вход:

Закрытый вход:

Вольтметры среднего значения:

(ср.в. — средне-выпрямленное)

Вольтметры действующего значения:

Кa=1

Кф=1

Амплитудного значения:

Um = 1,41Uпр (1,41= Кac)

Среднего значения:

  1. Особенности измерения напряжений переменных сигналов различной формы электронными аналоговыми вольтметрами. (ответы не нравятся)

2.6. Электронные аналоговые вольтметры.

Схема прибора. Принцип работы. Детекторы.

Принцип действия. В электронных вольтметрах конструктивно объединены электронный преобразователь и измерительный механизм. Электрон­ный преобразователь может быть ламповым или полупроводнико­вым. Измерительный механизм обычно магнитоэлектрический. Элект­ронные аналоговые вольтметры позволяют производить измерения в широком диапазоне напряжений и частот.

Электронные вольтметры постоянного тока выполняются по схеме, представленной на рис. 2.28.

Измеряемое напряжение U, подается на входное устройство, представляющее собой многопредельный высокоомный делитель на резисторах. С делителя напряжение поступает на уси­литель постоянного тока и далее — на измерительный механизм. Де­литель и усилитель постоянного тока ослабляют или усиливают напряжение до значений, необходимых для нормальной работы измерительного механизма. Одновременно усилитель обеспечивает согласование высо­кого сопротивления входной цепи прибора с низким сопротивлением катушки измерительного механизма. Входное сопротивление электрон­ного вольтметра составляет обычно несколько десятков мегаом. Это позволяет производить измерения в высокоомных цепях без заметного потребления мощности от объекта измерения. Диапазон, измеряемых напряжений постоянного тока — от десятков милливольт до несколь­ких киловольт.

Электронные вольтметры переменного тока выполняются по двум структурным схемам, представленным на рис. 2.29.

В первой из этих схем измеряемое переменное напряжение сначала преобразуется в по­стоянное при помощи детектора, а затем усиливается усилителем по­стоянного тока и воздействует на измерительный механизм. Во второй схеме усиление производится на переменном токе (для этого служит усилитель переменного тока) и лишь затем предварительно усиленный сигнал выпрямляется детектором и отклоняет стрелку измерительного механизма. Эти схемы дополняют друг друга. Каждая из них обладает своими преимуществами и недостатками. По первой схеме могут строиться вольтметры, обладающие широким частотным диапазоном (10 Гц — 1000 МГц), но обычно не способные измерять напряжения меньше нескольких десятых долей вольта: детектор выпрямляет только достаточно большие напряжения.

Вторая схема позволяет строить чувствительные вольтметры, нижний предел измерения которых составляет всего лишь единицы микровольт. Однако эти приборы имеют меньший частотный диапазон, поскольку частотный диапазон усилителя переменного тока трудно сделать до­статочно большим.

//—————————————

Измерение переменного напряжения

Мы уже рассматривали, что переменное напряжение характеризуется мгновенным, средним, средневыпрямленным и среднеквадратическим значениями.

Градуировку большинства шкал вольтметров , кроме импульсных, производят в среднеквадратических (действующих) значениях, которые равны 0,707 от амплитудного значения. Если известны коэффициенты формы, то по одному из параметров можно определить другие. При измерении синусоидальных напряжений мгновенное значение (амплитуда) определяется как U=Uизм*1,41, гдеUизм – действующее значение илиU=1,1*Uсв (если измеряется средневыпрямленное значение). При измерении несинусоидальных сигналов в показания также должны быть введены поправки.

Для измерения переменного напряжения применяют электромеханические, термоэлектрические и электронные приборы. Выбор прибора определяется предельными значениями напряжения, условиями измерений, требуемой точностью.

Из электромеханических приборов применяются в основном приборы электромагнитной, электродинамической и электростатической систем.

Вольтметры переменного напряжения классифицируются по различным признакам:

  • по назначению: импульсные , переменного тока, фазочувствительные, селективные, универсальные;

  • по методу измерения: непосредственной оценки и сравнения с мерой;

  • по измеряемому параметру напряжения: амплитудные, среднеквадратические и средневыпрямленные;

  • по типу индикатора: стрелочные и цифровые.

Большинство вольтметров электромагнитной системы применяются на частотах 50 Гц. Класс точности – 2,5 – 0,5.Электродинамические вольтметры имеют тот же частотный диапазон, но более высокий класс точности (0,1). Уравнение шкалы носит квадратичный характер. Достоинства – простота конструкции, возможность непосредственного применения в цепях переменного напряжения, надежность. Недостатки – низкая чувствительность, большое потребление от измерительной цепи, неравномерность шкалы.

Электростатические вольтметры применяют для измерения высоких (до 100 кВ) напряжений. Класс точности 1.

Измерение напряжения высокой частоты имеет свои особенности. Чтобы прибор не влиял на измерительную цепь, необходимо, чтобы его входное сопротивление было большим, а входная емкость как можно меньше.

В практике радиоэлектронных измерений наибольшее распространение получили электронные и выпрямительные вольтметры. Это объясняется тем, что электронные вольтметры имеют высокое входное сопротивление как на высоких, так и на низких частотах, высокую чувствительность при использовании усилителя, малое потребление из измерительной цепи.

Измерение переменного напряжения методом непосредственной оценки.

Электронные вольтметры.

Структурные схемы электронных вольтметров строятся в основном по двум схемам, милливольтметры и вольтметры для измерений больших напряжений. Они представлены на рисунке М2-8.

Рисунок М2-8. Электронные вольтметры для измерений переменных напряжений.

Вольтметры для измерения больших напряжений состоят из входного устройства, преобразователя переменного напряжения в постоянное (детектора), усилителя постоянного тока и измерителя магнитоэлектрической системы. Милливольтметры отличаются наличием усилителя переменного напряжения до детектора, служащего для повышения чувствительности.

Вольтметры средних значений строятся по структурной схеме первого типа с преобразователей переменного напряжения в в постоянное по среднему значению. Простейшими вольтметрами средних значений являются выпрямительные вольтметры с преобразователями, выполненными на диодах.

Селективные вольтметры.

Селективные, т.е. избирательные микровольтметры широко применяются для исследования спектра непериодических сигналов. Это высокочувствительные приемники гетеродинного типа с настройкой на определенную частоту или узкий интервал частот. Упрощенная схема селективного вольтметра приведена на рисунке М2-9.

Рисунок М2-9. Схема селективного вольтметра

Измеряемый сигнал частоты Fc подается через входное устройство на смеситель, куда поступает и сигнал от гетеродина. В смесителе измеряемый сигнал преобразуется на промежуточную частоту и усиливается УПЧ. На выходе усилителя имеется вольтметр с цифровым или стрелочным индикатором.

Импульсные вольтметры. Импульсные напряжений измеряют с помощью импульсных вольтметров, которые строятся по схеме аналогового электронного вольтметра с амплитудным детектором. В этих схемах импульсное напряжение преобразуется в напряжение постоянного тока и измеряется его значение. В этой схеме возможно измерение амплитуды только положительных импульсов, для отрицательных необходимо обратное включение диода. Специальные импульсные вольтметры градуируются в амплитудных значениях. Очень часто используют осциллографические методы измерений, которые позволяют не только измерять амплитуду импульсов, но и наблюдать их форму.

Устройство и принцип работы амперметра переменного тока

Если взять амперметр переменного тока, можно с легкостью измерить силу тока. Учитываются типы приборов, назначение, маркировка. Важно рассмотреть устройство и схему амперметра.

Амперметр переменного тока

Амперметром постоянного тока называют прибор, который показывает силу тока в цепи. Показатель измеряется в амперах. Из этих данных можно узнать о магнитодвижущей силе, понять электрический потенциал. Изобретателем устройства является И. Швейгер, университетский профессор из Галле. Произошло это еще в XIX веке. И тогда прибор носил название «токовый гальванометр».

Амперметр переменного тока

Что измеряют амперметром

Физическая величина амперметра демонстрирует силу тока в цепи. Ампер привязан к международной системе единиц. Начиная с 1948 года, определена его формула. В ней учитывается магнитодвижущая сила плюс проводимость проводников.

Интересная информация! Есть разделение на кратные и дольные единицы. Опираясь на международное бюро мер и весов, амперметр способен показывать значения в декаамперах, гектоамперах, килоамперах и так далее.

Дольные единицы

Сфера применения широка, и электрики обязательно держат прибор под рукой. Цифровые, а также аналоговые модификации востребованы в промышленности. Еще встречаются модификации для потребности народного хозяйства. В энергетической области устройства позволяют определить силу тока на выходе у электротехники.

Строители используют приборы на площадках, чтобы провести проводку в домах и сооружениях. Автотранспорт, как известно, также функционирует на электронике. Устанавливая бортовой компьютер, важно знать силу тока. Отдельное направление – научные институты. Работая с радиоэлектроникой, важно подключать электрооборудование. Блоки питания подлежат тестированию, и чтобы проверить регулятор, важно использовать амперметр.

Принципы работы

Принцип работы зависит от типа модификации, а для этого стоит рассмотреть устройство амперметра постоянного тока.

Работа прибора

Основные элементы механической модели:

  • рамка;
  • наконечники;
  • центральная катушка;
  • подключенный сердечник;
  • магнит;
  • пружина.

Если рассматривать магнитоэлектрические модели, они включают следующие элементы:

  • проводник;
  • подпятник;
  • винт;
  • грузики.

Принцип работы механических модификаций построен на полярности подключения к цепи. На стрелку оказывается воздействие магнитного поля. Направление грузика зависит от амплитуды импульсов. При возрастании электричества стрелка отклоняется в левую сторону.

Амперметр – типы

В зависимости от конструкции различают следующие амперметры:

  • электродинамические;
  • ферродинамические;
  • электромагнитные;
  • электрические.

Ферродинамический измеритель

Классификация по способу вывода информации:

  • аналоговые;
  • цифровые.

Если оценивать рынок, предлагается большое количество электродинамических амперметров. Измерители изготавливаются с катушками, имеется ряд особенностей:

  • широкий диапазон работы;
  • подходит для цепи переменного тока;
  • неподвижная катушка;
  • точный контрольный прибор.

Устройства востребованы в лабораториях, частных предприятиях. Они функционируют при частоте максимум до 200 Гц. К слабым сторонам стоит отнести повышенную чувствительность к перегрузкам. Если взглянуть на схему электродинамического амперметра, учитывается использование проводных конденсаторов.

Проводные конденсаторы

Преобладают рабочие резисторы повышенной проводимости. Если есть потребность в приобретении, стоит обратить внимание на измеряемые величины. Также в расчет берется показатель сопротивления. При подключении амперметра в цепи определяется воздействие силы тока от 1 ампера. Эксперты полагают, что электродинамические приборы обеспечивают наиболее высокую точность.

Класс оборудования должен указываться производителем. Также встречаются модели с экранированным, статическим построением компонентов. Если взглянуть на панель, может встречаться различное разделение по амперам.

Важно! Ферродинамический прибор поставляется с подвижными и неподвижными катушками. 

Особенности:

  • частотная погрешность;
  • четкая позиция сердечника;
  • широкий температурный диапазон;
  • проблема с намагничиванием;
  • подходит для щитовых установок.

Электрики выбирают их за счет высокого класса надежности. Амперметры данного типа являются компактными. Они способны использоваться на плоской поверхности или монтироваться на рейку. Конфигурация предоставляется с поворотными механизмами либо рядом подшипников. За основу используется пластик, есть варианты с металлической защитой.

Сердечники с дополнительной обмоткой

Сердечники поставляются с дополнительной обмоткой, крепление осуществляется на винтах. Серийные щитовые приборы производятся с замкнутыми магнитопроводами. Сердечник у таких конструкций выполнен в виде сплошного цилиндра, на котором надето кольцо. Подвижная рамка служит в качестве измерительной обмотки.

Сердечник зафиксирован в горизонтальном положении. Также у амперметров используется подшипник качения, который крепится рядом с фланцем. Электромагнитный тип имеет ряд преимуществ:

  • компактность;
  • высокая точность;
  • подвижный сердечник;
  • учет изменения магнитного поля;
  • простота устройств.

Интересно! Амперметры поставляются с ферримагнитными сердечниками, которые установлены по центру.

Катушка может иметь выпуклую либо плоскую форму. В виде обмотки представлена толстая проволока, которая крепится на каркасе. Между элементами предусмотрен небольшой зазор. Под каркасом используется ферромагнитная пластина, расположенная в вертикальном положении. Пружина закреплена в корпусе и служит противодействующей силой стрелки. К числу особенностей стоит приписать такое:

  • нет проблем с перемагничиванием;
  • минимальный угол отклонения;
  • различные измеряемые величины;
  • дешевизна продукции;
  • подходит для щитовых приборов.

Аналоговый амперметр считается устаревшим, однако такое заявление еще преждевременно. Большинство модификаций работают в широком диапазоне, отличаются повышенной точностью.

Аналоговый измеритель

Параметры:

  • масса от 0.2 кг;
  • класс точности 1.5;
  • средний размер 80 на 80 мм.

Аналоговые модели просты в монтаже, используются в пластиковом корпусе. Особенности цифровых амперметров:

  • разнообразие типов;
  • интересный дизайн;
  • различные способы монтажа;
  • высокая точность.

В цепи переменного тока модели демонстрируют стабильную работу. Модули устанавливаются в источниках питания, используются платы на 4–5 выводов.

Характеристики:

  • напряжения от 3.5 вольт;
  • максимальный ток до 20 а;
  • вес от 20 грамм;
  • средний размер 40 на 30 мм;
  • минимальная температура – 15 градусов;
  • точность измерения от 0.5 процента;
  • частота обновления 150 мс за один раз;
  • максимальная температура + 70 градусов.

Цифровые амперметры Emas, Feron, GTM, Hager могут характеризоваться, как профессиональные. Некоторые подходят для лабораторий, другие – востребованы в промышленности.

Амперметры Ам-2 DigiTOP

Прибор данной серии работает в сети переменного тока с частотой не более 50 Гц.

Ам-2 DigiTOP

Характеристики:

  • максимальный ток – 50 ампер;
  • электроцепь – однофазная;
  • погрешность не более 1%;
  • максимальная температура эксплуатации 55 градусов;
  • производитель – Украина;
  • минимальная температура – 35 градусов;
  • нижний предел – 1 амперметр.

Установка относится к электронным, есть цифровое табло. Она используется на промышленных предприятиях, где установлено электрооборудование. Прибор может быть монтироваться на рейку шириной в 35 мм. Подключение осуществляется согласно схеме. Для питания конструкции не требуется отдельный аккумулятор, источником энергии выступает сеть.

Амперметр лабораторный Э537

В лабораториях остаются востребованными товары представленной серии. Они служат для измерения силы тока в цепи переменного тока.

Лабораторный измеритель Э537

Характеристики:

  • класс точности – 0.5;
  • масса – 1.2 кг;
  • минимальная частота – 45 Гц;
  • длина, ширина –140 на 195 мм.

Прибор выделяется высокой точностью и качеством элементов. В лабораториях его можно подключать к электрооборудованию, значение показывается в миллиамперметрах.

Амперметр СА3020

В среде цифровых приборов выгодно смотрится представленный щитовой вариант. Работает в цепи переменного тока.

Измеритель СА3020

Характеристики:

  • минимальная частота – 47 Гц;
  • постоянное напряжение – 120 вольт;
  • потребляемая мощность – 4 В;
  • масса – 0.5 кг;
  • максимальная частота – 65 Гц;
  • напряжение сети – от 85 вольт.

Прибор имеет высокую степень защиты от замыканий, плюс к этому – устройство очень простое в подключении.

Устройство прибора

Цифровой прибор включает в себя плату, дисплей, а также контакт. Если детальнее рассматривать блок управления, предусмотрены следующие компоненты:

  • компаратор;
  • операционный усилитель;
  • регулятор;
  • конденсаторы;
  • резисторная сборка;
  • резонатор.

Шкала и схема амперметра переменного тока

На схеме видны элементы, отвечающие за уровень напряжения. Распространенными считаются варианты с последовательным подключением резисторов. Максимальное падение напряжения происходит на обмотке.

Схема элемента

Интересно! Диоды используются кремниевого типа, они отвечают за стабильность показаний.

Также на схеме показана дополнительная обмотка изоляции. За катушкой трансформатора идут конденсаторы. Кремниевый диод служит для защиты показаний. В сложных схемах амперметр используется с выпрямителями.

Выше описано понятие прибора переменного тока. Рассказана сфера применения, особенности устройств. Показан принцип работы и преимущества конкретных приборов.

Тема 5.1 Измерение напряжения и силы тока Общие сведения

Измерение напряжения и силы тока – самый распространенный вид измерений. Эти измерения производятся в широком диапазоне частот – от постоянного тока до сверхвысоких частот

Измерения постоянных напряжения и тока заключается в нахождении их значений и полярности. Целью измерения переменных напряжений и токов является нахождение их параметров: амплитудного мгновенного значения, среднеквадратического значения и т.д. Переменное напряжение (переменный ток) промышленной частоты имеет синусоидальную форму

U=Umsin(wt+), а его значения характеризуются амплитудой, частотой и фазой. Кроме того напряжение может иметь прямоугольную и треугольную форму, а также форму несинусоидальную.

Уровень переменного напряжения (тока) можно определить по амплитудному, среднеквадратическому (действующему, эффективному), среднему (постоянной составляющей) и средневыпрямленному значениям.

Мгновенные значения напряжений наблюдают на экране осциллографа или дисплея.

Амплитуда (высота, пиковое значение) Um– наибольшее мгновенное значение напряжения (тока) за интервал наблюдения. При разнополярных несимметричных формах сигналов различают два амплитудных значения: положительное и отрицательное.

Среднеквадратическое (действующее значение) напряжения равно корню квадратному из среднего квадрата его мгновенного значения за период . Если периодический сигнал несинусоидален, то квадрат среднеквадратического значения равен сумме квадратов постоянной составляющей и среднеквадратическим значениям гармоник

Среднее значение (постоянная составляющая) напряжения или тока равна среднему арифметическому всех мгновенных значений за период .

Средневыпрямленное значение определяется как среднее арифметическое абсолютных мгновенных значений за период

. Для напряжения одной полярности среднее и средневыпрямленное значения равны, для разнополярных напряжений они отличаются. В таблице М2-1 приведены эти параметры для различных форм сигналов

Таблица М2-1. Количественные соотношения для распространенных форм сигналов

Форма сигнала

амплитуда

Средневыпрямленное

значение

Среднеквадратическое

Значение

синусоидальный

Um

0,637 Um

0,707 Um

прямоугольный

Um

Um

Um

треугольный

Um

0,5 Um

0,577 Um

Чаще всего измеряют напряжение, так как для него прибор подключается параллельно. Для измерения тока прибор необходимо подключать в разрыв цепи.

Для измерения напряжения или тока применяют следующие основные методы измерений:

  • непосредственной оценки, при котором числовое значение измеряемой величины определяется по отсчетному устройству, отградуированному в единицах этой величины;

  • сравнения, при котором значение измеряемой величины определяется на основе сравнения воздействия измеряемой величины на какую-либо систему с воздействием на эту же систему образцовой меры. Этот метод имеет три разновидности: нулевой, дифференциальный и замещения.

Приборы для измерения напряжения или тока делятся на два класса: непосредственной оценки, когда значение измеряемой величины определяется по отсчетному устройству, и сравнения , состоящие из цепи сравнения и измерителя разности измеряемой величины и меры.

Оба класса приборов делятся в свою очередь на аналоговые и цифровые.

К аналоговым приборам относятся стрелочные приборы, приборы со световым указателем, приборы с ручным или автоматическим уравновешиванием и самопишущие. На рисунке М2-4 показана общая структурная схема аналогового измерительного прибора непосредственной оценки. Входное устройство и измерительный преобразователь преобразуют измеряемую величину х(t) в некоторую промежуточную величинуy(t), находящуюся в определенной зависимости от измеряемой величины. Измерительный механизм преобразует подводимую электрическую энергию в механическую энергию перемещения подвижной части механизма. При этом между перемещениями подвижной части механизма и измеряемой величиной должна существовать однозначная зависимость. Отсчетное устройство показывает величину измеряемого напряжения или тока.

Рисунок М2-4.Структурная схема аналогового измерительного прибора непосредственной оценки

К цифровым приборам относятся цифровые приборы.

Все приборы могут быть разделены на электромеханические, электротепловые, электронные и электронно-лучевые.

Электромеханические приборы. Они относятся к приборам непосредственной оценки аналогового типа. В них для перемещения подвижной части прибора используются различные электромагнитные процессы. В зависимости от физического явления, используемого для преобразования подводимой электромагнитной энергии в механическую энергию перемещения подвижной части они делятся на магнитоэлектрические, электромагнитные, электродинамические, индукционные, электростатические..

Принцип работы электромеханических приборов показан в таблице М2-2

Магнитоэлектрическая система – измерительный механизм состоит из проволочной рамки с протекающим в ней током. Рамка помещена в поле постоянного магнита. Под воздействием тока рамка вращается в магнитном поле и отклоняет стрелку. На основе магнитоэлектрического механизма строятся вольтметры, амперметры. Они имеют высокую точность и высокую чувствительность, но работают только на постоянном токе.

Электромагнитная система – измерительный механизм состоит из воздушной катушки, которая втягивается в ферромагнитный сердечник при любой полярности тока. Прибор может работать на переменном токе, но является низкочастотным. (до 5 кГц). С ростом частоты индуктивное сопротивление катушки возрастает и она не может втянуть сердечник. Класс точности невысок. Часто по этому принципу делают щитовые амперметры и вольтметры на определенную частоту.

Электродинамическая система – измерительный механизм содержит две измерительные катушки (подвижную и неподвижную), электромагнитные поля которых взаимодействуют, а вращающий момент пропорционален протекающему току. Достоинством таких приборов является высокая точность на переменном токе, но частота также невысока. Приборы этого типа используются как образцовые лабораторные.

Электростатические приборы основаны на взаимодействии электрически заряженных проводников. Подвижная алюминиевая пластина, закрепленная вместе со стрелкой, перемещается за счет воздействия тока в неподвижной пластине. По принципу действия эти приборы являются вольтметрами. Достоинства – широкий диапазон частот и малая мощность, потребляемая из электрической цепи. Все указанные приборы измеряют действующее значение напряжения.

Таблица М2-2

Описанные выше приборы не решают многих проблем: магнитоэлектрические точны, но работают на постоянном токе, электромагнитный и электродинамический принцип работает на низкой частоте, электростатический обладает низкой чувствительностью. Поэтому расширяют возможности измерений на переменном токе за счет сочетания магнитоэлектрического механизма и преобразователя из переменного тока в постоянный. Таким образом можно получить точный прибор на переменном токе. Преобразователи в данных приборах применяются выпрямительные и термоэлектрические. В выпрямительных приборах основным узлом является преобразователь переменного тока в постоянный, выполненный на диодах.. Основные операции в вольтметре – переменное напряжение преобразуется в постоянное с помощью диода, выделяется постоянная составляющая и измеряется. Т.к. магнитоэлектрический измеритель реагирует на постоянный (средневыпрямленный ток), то прибор градуируется в действующих значениях синусоидального тока, т.е. на шкале показывается не то значение, которое измеряется , а умноженное на коэффициент формы синусоиды Кф=1,11 (Кф=U/Uс.в.). Поэтому при измерении негармонических сигналов возникают методические погрешности. Из-за применения диодов класс точности уменьшается и становится 1,5 – 2,5 %. По этому принципу строятся переносные амперметры и вольтметры на постоянном и переменном токе, тестер,например.

При термоэлектрическом преобразовании переменного тока в постоянный, преобразователь включает в себя нагреватель, по которому протекает измеряемый ток, и термопару, на концах которой возникает термоЭДС. В цепь термопары включен микроамперметр, измеряющий термоток.. Поскольку переменный ток преобразуется в постоянный путем превращения электрической энергии в тепло, прибор будет показывать действующее значение тока. Достоинство этих приборов – широкий диапазон часто – до 10 МГц, недостаток – невысокая чувствительность и низкий класс точности. Применяются в качестве амперметров на повышенную частоту.

Электронные приборы. Эти приборы широко используются для измерения тока и напряжения. Они представляют собой сочетание электронного преобразователя, выполненного на электронных лампах или транзисторах или интегральных микросхемах и магнитоэлектрического ( для аналоговых) или цифрового измерителя (отсчетного устройства). Цифровые электронные вольтметры в отличие от аналоговых содержат аналого-цифровой преобразователь (АЦП) и устройство цифрового отсчета

Измерение силы тока

Измерение постоянного тока

Измерение тока возможно методом непосредственной оценки аналоговыми и цифровыми амперметрами, а также косвенно. Диапазон измеряемых токов от тысячных долей ампер до сотен тысяч ампер.

Метод непосредственной оценки.

Амперметр включается последовательно в разрыв цепи. Такое включение увеличивает общее сопротивление и уменьшает протекающий ток. Поэтому необходимо, чтобы внутренне сопротивление амперметра было как можно меньше.

Относительная погрешность измерения тока .

Для измерения постоянного тока могут быть использованы приборы всех электроизмерительных систем (кроме электростатической): магнитоэлектрические, электродинамические, аналоговые и цифровые электронные амперметры. Измерение малых токов осуществляется магнитоэлектрическим измерителем совместно с усилителем постоянного тока (УПТ), высокочувствительными магнитоэлектрическими зеркальными гальванометрами и гальванометрическими компенсаторами.

Магнитоэлектрические приборы просты и высокоточны и непосредственно измеряют токи от 0,1 до 300 мА. Для расширения пределов измерения применяются специальные резисторы – шунты, позволяющие в сотни раз расширить пределы измерений. На рис. М2-5. приведена схема включения миллиамперметра с шунтом и без него.

Рисунок М2-5. Схема включения миллиамперметра

Шунты – это сопротивления, включаемые параллельно измеряемому устройству и служащие для расширения пределов по измеряемому току. Ток, протекающий через прибор , гдеnкоэффициент шунтирования. Сопротивление шунта выбирается так, чтобы большая часть тока протекала через шунт, а остальная часть не превышала бы допустимого значения для данного прибора. Конструкции шунтов определяются пределами измерений. Шунты для измерения сравнительно небольших токов (до 30 А) монтируются в корпусе прибора. Токи большего значения измеряются с помощью наружных шунтов. Достоинства магнитоэлектрических приборов – высокая точность ( до класса 0,05), малое потребление мощности, отсутствие влияния внешних цепей вследствие сильного собственного магнитного поля. Недостаток – малая перегрузочная способность и зависимость от температуры окружающей среды.

Гальванометры постоянного тока применяют для измерения малых значений токов и напряжений. Они могут строиться на принципе любой электроизмерительной системы. Чаще всего применяются гальванометры магнитоэлектрической системы, обеспечивающие высокую чувствительность (до ).

Косвенное измерение тока.

Косвенное измерение тока осуществляется с помощью образцового резистора, включаемого в разрыв цепи, и высокочувствительного измерителя напряжения, измеряющего падение напряжения на образцовом резисторе. Измеряемый ток определяется Ix=U/R.Для получения минимальной погрешности сопротивление образцового резистора должно быть меньше сопротивления цепи, в которой измеряется ток.

что измеряет, виды, характеристики, устройство вольтметра, строение, принцип работы

Для того, чтобы измерить величину «сила тока» используется прибор амперметр. Графически, на принципиальных схемах, устройство имеет обозначение в виде буквы «А». Измерения проводятся в таких единицах как ампер, миллиампер или микроампер. Подключение осуществляется в разрыв цепи последовательным образом.

История создания

Впервые о создании прибора заговорили в 19 веке. Измерять силу тока было принято по отклонению магнитной стрелки на компасе. На протяжении десятилетий конструкция прибора была усовершенствована. К концу 19 века были утверждены официальные величины измерения, тогда же и получил свое окончательное название прибор «амперметр». В начале 20 века амперметры стали использоваться в промышленности. В современном мире их внедрили в сферы услуг, в частности в ателье по ремонту радиоаппаратуры. Тем не менее, название устройство получило в честь известного ученого и изобретателя Ампера.

Изобретатель Андре-Мари Ампер

Многоканальный амперметр был применим достаточно широко в первой половине 20 века. Его применяли в различных отраслях промышленности, особенно в электротехнической сфере.

Что измеряет

Изобрести идеальный амперметр, который влияет на показатели в цепи, нереально. Это происходит из-за внутреннего сопротивления. В теории он, конечно, существует, но в реальности стараются минимизировать потери на сопротивление.

Амперметр применяется для измерения силы постоянного или переменного тока. Относится к электроизмерительным приборам. Соединяется строго последовательно, там, где нужно определить искомую силу тока.

Ток, измеряемый прибором, зависит от величины сопротивления участков электроцепи. Именно поэтому сопротивления самого прибора должно быть минимальным. Это позволяет максимально точно измерить искомую величину, благодаря низкой погрешности.

Обратите внимание! Шкала амперметра может быть представлена маркировкой мкА, мА, А и кА. Прибор выбирают исходя из необходимой точности и пределов измерений. Предельную для измерений прибором силу можно повысить добавлением шунтов, магнитных усилителей и трансформаторов.

Схема подключения амперметра постоянного тока

Характеристики

Рассмотрим технические характеристики некоторых видов амперметров:

Ам-2 DigiTop

Технические данные:

  1. Отрезок измеряемого переменного тока 1-50 А
  2. Шаг деления — 0,1А
  3. Погрешность 1%
  4. Количество входов — 1
  5. Напряжение в сети от 100 до 400 В, 50Гц.

Долговечность работы бытовой техники часто зависит от качества энергии в электроцепи. Поэтому нужно следить за повышением напряжения в сети, которое нередко становится причиной выхода из строя приборов.

Важно! Длительное повышение напряжения может привести не только к неполадкам в блоке питания прибора, но и к его возгоранию!

Амперметр Э537

Лабораторный вариант амперметра Э537 предназначен для точных измерений величины силы постоянного и переменного тока в сети.

Технические данные:

  1. Диапазон измеряемой величины 0,5-1 А
  2. Класс точности — 0,5
  3. Диапазон нормальных частот от 45 до 100 Гц
  4. Диапазон рабочих частот от 100 до 1500Гц

Амперметр СА3020

Существует несколько модификаций этого амперметра в зависимости от параметров измеряемой силы тока. Когда заказывают данную модель, предварительно указывают базовую величину  — 1, 2 или 5 А.

Технические данные:

  1. Диапазон измеряемой силы тока — от 0,01 до 1,5А
  2. Диапазон частот по замеряемым токам от 45 до 850 Герц;
  3. Погрешность 0,2%
  4. Напряжение по питанию сети для переменного — от 85 до 260В, для постоянного — от 120 до 300В.
  5. Мощность, потребляемая прибором, не более 4 ВА.

Конструкция

В самом начале использования амперметры были чисто механическими. Спустя время стали применяться цифровые измерительные приборы. Однако даже сейчас механические амперметры не менее популярны. Это происходит благодаря стойкости к помехам и более наглядному представлению измерений силы тока. Механизм конструкции не подвергся сильным изменениям по сравнению с первыми экземплярами.

Стрелочный тип прибора использует магнитоэлектрический принцип. Внутри находится неподвижно закрепленный постоянный магнит. Между выраженными полюсами магнита расположен сердечник таким образом, что между ним и полюсами образуется постоянное магнитное поле.

Типы

По типу и принципу работы устройства имеют следующую классификацию:

  1. Магнитоэлектрические. Основой является подвижная катушка, которую закрепляют на оси. Ставится она между магнитными полюсами. Если взять электромагнитный амперметр, то вместо катушки используют сердечник, который находится от магнитных полюсов на расстоянии, пропорциональном величине силы тока.
  2. Термоэлектрические. Основой является термопара, которую припаивают к проводке. От того, как происходит нагрев по мере подачи тока разной силы, величина выводится на экран.
  3. Электродинамические. Очень мало применяются в бытовых условиях из-за чувствительности к магнитному полю. В основном их применяют для точных измерений или демонстрационных целей.
  4. Ферродинамические. Самые дорогие, но и самые точные измерительные приборы. Не реагируют на внешние поля.
  5. Цифровой. Основывается на использовании интегратора, который преобразует величину силы тока в показания на экране.

Цифровой амперметр

Как работает

Далее приведен разбор принципа работы амперметра и вольтметра, так как они схожи между собой.

Если рассматривать упрощенную классическую схему амперметра, можно выделить следующий принцип, по которому он работает. Стальной якорь со стрелкой устанавливается параллельно с постоянным магнитом, тем самым якорь получается магнитные свойства. Якорь расположен вдоль силовых линий. Это положение соответствует нулевой отметке на шкале определение прибора.

Когда ток проходит по шине, возникает магнитный поток. Силовые линии потока перпендикулярны силам в постоянном магните. Магнитный поток, действует на якорь, стремящийся повернуться на 90 градусов, однако повороту мешает поток постоянного магнита. Разница в магнитных потоках формирует отклонение стрелки на величину силы тока.

Физическая величина

Амперметр является прибором для измерения силы тока. Подключение приходится последовательно, и сопротивление должно быть меньше общего сопротивления электричества в цепи. Если это не так, значение сопротивления сильно увеличится, а данные приборы будут искажены.

Схема амперметра переменного тока

Если сравнивать амперметр постоянного и переменного тока, то последний основан на электромагнитной системе. Приборы используются чаще в сети частотой 50-60 Герц.

Амперметр переменного тока имеет один или два сердечника, которые соединены со стрелкой. Основное преимущество — универсальность прибора, которая позволяет измерять силу не только переменного, но и постоянного тока в электроцепи.

Однако сопротивление таких амперметров больше, чем у других моделей, поэтому погрешность измерений будет высокой. Измеритель столкнется с проблемой снятия показаний с прибора, так как шкала не линейная.

Если нужно измерить переменный ток немалой силы, часто применяют токовый трансформатор. Как и токовые клещи с бесконтактным замером, это делается для того, чтобы на порядок снизить ток в обмотках. К примеру, если в сети величина 1000 А, то во вторичной обмотке проводника будет не более 0,5А.

Токовый трансформатор

Важно! Прибор не включается при разомкнутой вторичной обмотке трансформатора. Если это произойдет, то есть риск сжечь амперметр. Это может быть опасно и для персонала.

Корпус устройства часто заземляют, также как и вторичную обмотку трансформатора, чтобы в экстренном случае, люди были в безопасности.

Магнитное поле катушки с током взаимодействует с полем магнита. При этом стрелка отклоняется на ту или иную величину, которая показывает разницу этих значений.

Устройство, включенное в цепь с переменным током, не будет показывать правильную величину, а также прибор может сгореть.

Обычно такая проблема решается выпрямительными схемами. Она позволит измерить любой переменный ток с частотами до 10 килогерц. Происходит это только в случае синусоидальной формы тока.

Правила безопасной работы

При пользовании прибором нужно соблюдать следующие меры безопасности:

  1. Прибор нельзя трясти и ронять.
  2. В случае, когда стрелка прибора зашкаливает, необходимо немедленно разомкнуть цепь.

Схема правильного подключения прибора

Правила подключения:

  1. Плюсовую клемму прибора соединить с плюсовой клеммой источника тока. Если цепь состоит только из источника тока, устройство в него включать нельзя!
  2. Амперметр соединяется последовательно. Подключение происходит с тем элементом, силу тока которого нужно измерить.
  3. Устройство должно быть в горизонтальном положении.

Зная правила подключения и разновидности приборов, можно подобрать наиболее подходящий амперметр для измерения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *