Posted on

Содержание

Как проверить индуктивный датчик — проверка индукционного датчика

Индуктивный датчик – специальное семейство бесконтактных датчиков, предназначенных в автомобиле для того, чтобы следить, в частности, за положением коленвала. Особенностью датчика является высокая надежность и отсутствие необходимости в дополнительных усилителях сигнала. Принцип работы индукционного датчика заключается в том, что при прохождении металла мимо катушки индуктивности в последней вырабатывается электрическое напряжение, которое может достигать 1,5 вольта.

Зачем в автомобиле индукционный датчик коленвала

Схема устройства

Из всех датчиков автомобиля наиболее важным считается датчик положения коленчатого вала двигателя. Он отвечает за впрыск топлива во впускной цилиндр двигателя и, в зависимости от датчика положения коленвала и показаний лямбда-зонда, выставляется угол опережения зажигания для максимального сгорания воздушно-бензиновой смеси.

Признаки неисправности индукционного датчика

Датчик углового положения коленчатого вала

Как устроен датчикВ автомобиле индукционные датчики используются давно поэтому степень их интеграции в конструкцию автомобиля высока. Правда, в последнее время используются более современные датчики Холла или пьезоэлектрические. Но индукционные датчики по-прежнему часто встречаются в системах контроля положения коленвала. Рассмотрим чем грозит автолюбителю выход из строя такого датчика.

  1. Значительное снижение мощности двигателя из-за неправильной подачи топлива во впускной коллектор;
  2. Автомобиль перестает удерживать обороты на одном уровне. Схожая неисправность наблюдается при неисправности клапана холостого хода или засоренной дроссельной заслонке.
  3. При обрыве индуктивного датчика двигатель автомобиля не запустится в работу.

Как проверить индукционный датчик на исправность

Установка индуктора коленчатого вала

Способов проверки существует довольно много, все зависит от навыков автомобилиста и наличия необходимых приборов.

  • Наиболее примитивным способом проверки исправности индуктивного датчика является его визуальный осмотр. В процессе осмотра определяется наличие механических повреждений и нарушение изоляции и целостности проводов.
  • Второй не менее простой способ заключается в банальной замене тестируемого датчика. Но скажем сразу – способ не лучший и, мало того, что он требует наличия нескольких резервных датчиков, он еще и крайне неточен.
  • Если под рукой имеется тестер, то можно проверить датчик и с большой вероятностью сказать, неисправен ли он. Для этого необходимо достать индукционный датчик из посадочного гнезда, соблюдая полярность, подключить к питающим клеммам напряжение от аккумулятора автомобиля. Если длины штатных проводов достаточно, то можно использовать их и не отключать датчик от бортовой сети. Затем отключается сигнальный провод (он обычно имеет маркировку «В») и между ним и корпусом автомобиля подключается вольтметр. Далее, к датчику необходимо несколько раз поднести и убрать металлический предмет, при этом показания вольтметра должны замеряться. Если показания вольтметра не изменились, то датчик необходимо заменить на исправный.

Осциллограф

  • Более сложный способ проверки индукционного датчика при помощи измерительных приборов потребует от автолюбителя хорошего навыка обращения с осциллографом. Для того чтобы определить исправен датчик или нет, необходимо снять его характеристики в процессе работы и сравнить с эталонными. Образцовые характеристики можно найти на сайте производителя датчика. Для съема характеристик осциллограф подключается как и вольтметр, только датчик остается на штатном месте. Потом двигатель автомобиля заводится, и на экране осциллографа появляется искомая характеристика. Если эталонная и измеренная характеристики значительно не совпадают, то датчик необходимо заменить. 

Видео

В следующем видеоролике подробно рассказывается о принципах работы индуктивных датчиков:

Проверка индуктивного датчика (иногда ошибочно принимаемого за датчик Хола)

Доставка по Москве бесплатно от 10т.р. Заказы принимаются только через сайт или по email.
Обработка, отправка заказов и справки по телефону ПН-ПТ с 10:00 до 18:00, СБ ВС вых.дни.

Артикул:  proverka_datchika

Проверяем индукционный датчик
Для проверки индукционного датчика, следует воспользоваться обыкновенным тестером (мультиметром) выставленным в режим замера постоянного напряжения (вольтметра) в пределах от 0 до 20 вольт. Можно использовать не тестер, а любой вольтметр, рассчитанный на замер постоянного напряжения от 0 до 20 вольт.
Шаг 1
Подключаем вольтметр (или щупы тестера) к контактам (датчика). (Фото 1)
Шаг 2
К датчику необходимо несколько раз поднести и убрать металлический предмет, при этом показания вольтметра должны изменяться.
(Фото 2, Фото 3)
Если показания вольтметра не изменились (Фото 4), то датчик необходимо заменить на исправный.
Вот и вся проверка!
Индуктивный датчик (иногда ошибочно называемый датчик Холла) – бесконтактный датчик, предназначенных для того, чтобы синхронизировать подачу искры с положением коленвала, по метке на роторе магнето.

Особенностью датчика является высокая надежность и отсутствие необходимости в дополнительных усилителях сигнала. Принцип работы индукционного датчика заключается в том, что при прохождении металла мимо катушки индуктивности в последней вырабатывается электрическое напряжение, которое может достигать 1,5 вольта.

Чувствителен к статическому электричеству и особенно высоковольтному разряду, могущему попасть в него при отключенной свече.

Специальные предложения по запчастям для ATV

Наш сайт носит только информационный характер и не является публичной офертой, определяемой положениями Статьи 437 (2) ГК РФ. Для получения точной информации о наличии и стоимости любого товара, пожалуйста, обращайтесь к продавцу магазина по электронной почте. Просьба производить оплату, только после подтверждения наличия. При заказе запчастей будьте внимательны, электронные компоненты и детали имеющие признаки установки, обмену и возврату не подлежат, также при ошибке с вашей стороны стоимость услуг по доставке не возвращается. В соответствии ФЗ РФ «О персональных данных», N 152-ФЗ ст 6, нажимая кнопку «Купить» или выбирая пункт сайта «Личный кабинет», «Регистрация» или «Оформить покупку» вы выражаете согласие с тем что ваши персональные данные получены только для исполнения конкретного договора купли-продажи с конкретным человеком и больше никак не будут использоваться и тем более — распространяться. Кассовый чек будет предоставлен не позднее конца следующего рабочего дня, в электронном виде на e-mail или отправлен вместе с заказом. Любое использование информации с нашего сайта допускается, только при обязательном наличии обратной активной гиперссылки на www.moto7.ru

Индуктивные датчики уровня воды стиральных машин

Бытовая техника

Главная  Ремонт электроники  Бытовая техника



Как известно, во всех стиральных машинах (СМ) используются датчики уровня воды (прессостаты). На самом деле они измеряют давление воздуха в трубке, которая подключена к воздушной камере бака СМ, поэтому показания подобных датчиков пропорциональны уровню воды в баке. Такой простой способ измерения уровня воды используется еще и потому, что высокая точность при измерении не требуется. Сигналы с датчиков уровня в дальнейшем используются системой управления СМ при выполнении различных программ (в процессе стирки, отжима), а также для обработки нештатных режимов (перелив воды в баке и др.).

В СМ используются два типа датчиков — электромеханические и электронные.

В электромеханическом датчике давление воздуха воздействует на диафрагму датчика, которая, в свою очередь, меняет положение электрического переключателя, что соответствует различным уровням воды в баке.

Рис. 1. Внешний вид датчиков давления серии MPX5010xxxxx

Что же касается электронных датчиков, они имеют несколько разновидностей. Неизменной во всех типах подобных датчиков остается только диафрагма. Но, в отличие от электромеханических датчиков, она уже воздействует на встроенные в датчик электронные элементы (катушка, конденсатор, потенциометр и др.), вследствие чего на выходе схемы формируются соответственно напряжение, частота (после преобразования в электронной схеме) или меняются параметры пассивных элементов (индуктивность, сопротивление).

В качестве примера датчиков-преобразователей «давление/напряжение» можно привести приборы семейства MPX5010xxxxx компании FREESCALE SEMICONDUCTOR. Они имеют малые габариты, достаточно высокую точность измерения и работают в диапазоне давлений 0…10 кПа. Диапазон напряжений на выходе подобных датчиков составляет 0,2…4,7 В. Внешний вид этих датчиков показан на рис 1.

Подобные датчики пока широкого распространения не получили, они только начинают применяться в составе новых моделей стиральных машин.

Наиболее широкое распространение в настоящее время получили индуктивные датчики. Из их названия ясен тип датчика — это преобразователь «давление/индуктивность». Подключение индуктивного датчика уровня и его конструкцию поясняет рис. 2, а его внешний вид показан на рис. 3.

Рис. 2. Подключение индуктивного датчика уровня и его конструкция

Рис. 3. Внешний вид индуктивного датчика уровня

Конструктивно индуктивный датчик уровня состоит из катушки и подпружиненного магнитного сердечника, который может перемещаться вдоль оси катушки при деформации диафрагмы, воспринимающей изменение давления. Изменение положения сердечника приводит к изменению индуктивности L катушки датчика.

Исходя из того, что данные датчики включены во времязадающую цепь LC-генератора, его собственная частота f определяется формулой:

где С — емкость конденсатора (в составе датчика),

L — индуктивность катушки датчика.

Зависимость частоты генератора от уровня воды в баке условно показана на рис. 4: малому уровню воды соответствует высокая частота f, и наоборот. В зависимости от типа датчика уровня, а также параметров схемы генератора, верхнему уровню воды может соответствовать частота 15.21 кГц, нижнему уровню — 25.30 кГц. Относительно большая индуктивность датчика (соответственно, низкая частота генератора) выбрана не случайно. Это связано с тем,чтобы длин

ные соединительные провода датчика имели минимальное влияние на частоту генератора (электронные компоненты генератора обычно размещены на плате электронного модуля).

Принципиальная электрическая схема генератора с индуктивным датчиком уровня на примере СМ «LG WD-1020W» показана на рис. 5. Схема представляет собой простейший генератор с обратной связью (ОС). В цепи ОС включены катушка L, конденсаторы C1, C2 (все входят в состав датчика уровня) и резисторы R1, R2, R4 (входят в состав электронного модуля).

Рис. 4. Характер зависимости частоты генератора от уровня воды в баке

Частота f этого генератора выражается формулой:

где С1, С2 — емкости конденсаторов (в составе датчика), L — индуктивность катушки датчика.

Эта схема не требует подробного описания. Перечислим назначение основных элементов схемы (рис. 5):

IC1.1, IC1.2, L, C1, C2 — элементы контура LC-генератора;

IC1.3 — буферный усилитель;

С3, С4 — фильтрующие конденсаторы;

D1-D4 — ограничительные диоды.

На рис. 6 показаны принципиальные схемы генераторов на основе индуктивных датчиков, используемых в бытовой технике Electrolux (Zanussi, AEG), а также графики зависимости частоты генерации от уровня воды в баке.

Следует отметить особенность одного из генераторов(справа на рис. 6) для аппаратной платформы СМ EWM2000 — в его выходную цепь включен делитель частоты на основе последовательного счетчика 74HC4040. В отличие от общепринятых решений, на вход системы управления СМ (после счетчика) поступают импульсы с частотой почти в 1000 раз ниже (частотный диапазон 36,128.45 Гц).

Рис. 5. Принципиальная электрическая схема генератора на основе индуктивного датчика уровня (на примере СМ LG WD-1020W)

Принципиальная электрическая схема генератора на основе индуктивного датчика, которая применяется в СМ «LG WD-80160», приведена рис. 7.

Примечание. Контакты соединителя NA6 электронного модуля LG (ELAN PJT6870EC9090A-1 2002.10.21), к которым подключен индуктивный датчик уровня, в технической документации на данный тип СМ имеют другую цоколевку.

Рис. 6. Принципиальная электрическая схема генераторов на основе индуктивных датчиков уровня (Electrolux, Zanussi, AEG). Графики зависимости частоты генерации от уровня воды в баке

Проверка индуктивных датчиков уровня

Проверку работоспособности данного типа датчиков можно выполнить следующими способами:

1. При выполнении сервисного теста СМ

В некоторых СМ с дисплеем (LG) при выполнении одного из шагов сервисного теста (на этапе залива воды) на дисплее отображается условный цифровой код, соответствующий уровню воды в баке в данный момент времени. Если значения этого кода выйдут за рамки допустимых, необходима проверка (замена) датчика уровня и связанных с ним цепей.

2. Индикация соответствующих кодов ошибок СМ При отображении на передней панели СМ различных

кодов ошибок, связанных с процессами, которые контролирует датчик уровня (залив/слив воды, рассогласованность показаний датчиков уровня) не всегда ошибки указывают на неисправность именно этого датчика.

В большинстве случаев приходится проверять работоспособность клапанов залива воды, помпы и их цепей.

3. Непосредственный контроль частоты генерации на выводах датчика или в соответствующих контрольных точках на электронном модуле СМ

Подобную проверку можно выполнить с помощью

частотомера. Уровни воды в баке (или изменение давления воздуха на диафрагму датчика) можно сымитировать различными способами.

4. Внешний осмотр

В первую очередь проверяют надежность соединения датчика с пластиковой трубкой, а также целостность самой трубки. Также необходимо проверить электрический соединитель датчика.

Рис. 7. Принципиальная электрическая схема генератора на основе индуктивного датчика уровня (на примере СМ LG WD-80160, электронный модуль ELAN PJT6870EC9090A-1 2002.10.21)

Рис. 8

5. Измерение индуктивности датчика при разных величинах давления на его диафрагме

Эту проверку можно выполнить, например, с помощью измерителя иммитанса. Уровни воды в баке (или изменение давления воздуха на диафрагму датчика) можно также сымитировать различными способами.

Отметим, что при неправильной работе данного типа датчиков в первую очередь необходимо убедиться в том, что причиной ошибки (дефекта) является именно он, а не другие конструктивные или электронные элементы СМ (например, нарушение герметизации пластиковой трубки, отсутствие контакта в соединителях датчика, неисправность электронного модуля).

На индуктивных датчиках имеется регулировочный винт, который залит фиксирующей краской — см. рис. 8 (показан стрелкой). Этим винтом регулируется начальное положение диафрагмы датчика, а, следовательно, и положение сердечника катушки, которое определяет значение L0 катушки. Положение винта калибруется в заводских условиях и в дальнейшем регулировки не требует.

При отказе работоспособности датчика регулировать этот винт нежелательно, так как чаще всего нештатное изменение индуктивности его катушки связано с повреждением диафрагмы. В подобных случаях лучше всего заменить сам датчик.

Автор: Максим Новоселов (п. Усть-Абакан, Республика Хакасия)

Источник: Ремонт и сервис

Дата публикации: 03.01.2014

Мнения читателей
  • Андрей / 08.10.2019 — 16:34
    Спасибо Вам за эту статью. Очень помогли.
  • Андрей / 12.06.2019 — 06:16
    Максим Новосёлов большое спасибо.
  • Артур / 30.05.2019 — 21:33
    Олег ! это не картинки а схемы , большое спасибо автору
  • Артур / 29.05.2019 — 19:30
    машинка самсунг , ошибка 1Е постоянно сливает воду при этом больше не каких операций не делает , в самом датчике уровня воды плата на которой два конденсатора С1 и С2 и все это подсоеденяется к катушке как показано выше только без микросборки , начал прозваневать цепь и был удивлен кондюки замкнуты тупа звенят, на контакте 1 2.5 вольта . Вопрос ! разве такое может быть ?
  • Владимир / 04.04.2019 — 04:36
    Электронный прессостат сма haier модель hw50-12866me постонно сигналит модулю о пустом баке и солиноидное убл открывает люк-стирка не возможна…Вопрос:неисправен прессостат или другой узел? Как ведёт себя такой прессостат в работе? [email protected]
  • Олег / 23.09.2018 — 16:56
    Статья ни о чем.картинки можно самому нарисовать, а больше информации полезной и нет
  • Жан / 29.01.2018 — 12:33
    Можно проверить с помощью осциллографа если знать где какие выводы у датчика

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


Как проверить датчик коленвала 3 лучших способа

Статьи на похожую тематику

Содержание статьи

Устройство датчика коленвала

Коленчатый вал
это металлическая деталь сложной формы, имеющая шейки для крепления шатунов. Является неотъемлемой частью кривошипно-шатунного механизма (КШМ). Основная функция детали заключается в преобразовании усилий полученных от шатунов в крутящий момент.
Датчик положения коленвала (ДПКВ)
это датчик считывающий электромагнитные импульсы со шкива коленвала и отдающий их бортовому компьютеру. От дпкв зависит синхронизация работы системы зажигания и топливных форсунок.

В самом конце статьи вас ждет подборка видео проверок!

На сегодняшний день в автомобильной промышленности существует 3 типа ДПКВ: оптические, индукционные и на основе эффекта Холла. В данной статье расскажем вам как проверить датчик коленвала, на примере самого популярного индукционного типа.

  • Индукционный — состоит из намагниченного сердечника поверх которого намотана медная проволока. Конец катушки располагается максимально близко к коленвалу, для замера скорости его вращения и изменений напряжения;
  • Оптический — в основе лежит светодиод излучающий света и приемник который фиксирует момент исчезновения и появления света. Когда луч света прерывается, во время попадания на контрольный зуб, приемник это фиксирует и передает данные в ЭБУ;
  • Датчик Холла — на коленчатом валу находится магнит, при прохождении мимо датчика в последнем возникает постоянный ток, данные фиксируются и отправляются в ЭБУ.

Вне зависимости от типа, любой датчик ДПКВ предназначен для передачи в ЭБУ 2 параметров.

  • момент прохождения поршней через верхнюю мертвую точку и нижнюю мертвую точку;
  • замер положения коленвала.

Полученные данные отправляются в ЭБУ, после чего происходит корректировка следующих показателей.

  • Угол поворота распредвала;
  • угол опережения зажигания;
  • объем подачи топливной смеси;
  • Работа клапана адсорбера.

В зависимости от технической сложности двигателя задачи для ЭБУ могут кардинально разниться, однако ни один из существующих в данный момент блоков управления не способен работать без датчика коленвала!

Если датчик коленчатого вала неисправен, в работе ДВС могут быть сбои в виде: запоздания искрообразования, опережения угла зажигания, обедненной топливовоздушной смеси, все это ведет к нестабильной работе двигателя или вовсе его отказу запускаться.

Признаки неисправности датчика коленвала

В зависимости от года выпуска автомобиля, технической сложности двигателя и электроники

симптомы одной неисправности могут проявляться по разному. Бывают ситуации, когда все признаки указывают на определенную поломку, в итоге замене подлежит совершенно другой узел. Мы постарались максимально подробно описать все признаки неисправности датчика коленвала, что бы вы могли максимально точно определить поломку.

  • Симптом №1 Снижение динамических характеристик;
  • Симптом №2 Провалы при интенсивном ускорении;
  • Симптом №3 Детонация при интенсивном ускорении «из за топливовоздушной смеси»;
  • Симптом №4 Во время движения обороты могут самопроизвольно меняться;
  • Симптом №5 Нестабильный холостой ход;
  • Симптом №6 Появление ошибки на приборной панели «например ошибка №53»;
  • Симптом №7 Все пункты прогрессируют;
  • Симптом №8 Датчик коленвала полностью выходит из строя, двигатель завести не получится.

Как правило признаки неисправности не единичны, они комбинируются и быстро прогрессируют. Пункты №1, №2 и №3 как правило возникают в один момент с появлением ошибки, в дальнейшем появляются нестабильные обороты как на холостом ходу так и во время движения.

Способы проверки датчика

Мы расскажем о 3 способах проверки индуктивного датчика, так как он является наиболее распространенным. Снятие сопровождается обязательным визуальным осмотром!

Перед снятием датчика, обязательно нанесите метки его первоначального положения!

Проверка осциллографом

осциллографосциллограф

Данный метод является наиболее точным, однако далеко не у каждого автовладельца имеется опыт работы с осциллографом и сам прибор имеется под рукой далеко не у каждого. Если в вашем распоряжении нет опыта и самого прибора, можете сразу перейти к следующей инструкции.

В чем преимущество использования осциллографа? Он позволяет увидеть и зафиксировать сам процесс формирования сигналов и увидеть процесс их формирования!

Алгоритм проверки:

  • 1. контактные щупы необходимо подсоединить к контактам датчика, сама полярность значения не имеет;
  • 2. запустить программу для диагностики;
  • 3. используя любой металлический предмет, необходимо пару раз провести им в непосредственной близости от датчика;
  • 4. если ваш датчик ДПКВ исправен, то каждое движение предмета будет фиксироваться на осциллограмме, если неисправен, то осциллограмма останется без изменений.

Формирование сигналов может быть разным! С 100% уверенностью о исправности датчика может сказать только опытный мастер.

Проверка значения индуктивности

мультиметр цифровоймультиметр цифровой

Для теста индуктивности катушки ДПКВ потребуется следующее оборудование:

  • 1. мультиметр имеющий функцию измерения индуктивности;
  • 2. если ваш мультимет не поддерживает эту функцию, то понадобится измеритель индуктивности;
  • 3. мегаомметр;
  • 4. сетевой трансформатор.

Для получения максимально корректных данных, проверку следует выполнять в помещении имеющем температуру воздуха 21-23 градуса цельсия!

Шаг №1

Вам следует ориентироваться на результаты индуктивности в пределах 200 — 400 мГн.

Мультииметр поддерживает функцию, нужно соединить 2 щупа мультиметра с 2 выводами катушки, полярность не имеет значения.

Мультииметр не поддерживает необходимую функцию, для проверки используем измеритель индуктивности.

Шаг №2

Потребуется мегаомметр установленный на выдаваемое напряжение 500 В. Проверяем сопротивление изоляции между проводами катушки минимум 2 раза! Значение сопротивления изоляции не должно быть ниже 0,5 МОм.

Шаг №3

На шаге №2 может проявится намагничивание катушки «межвитковое короткое замыкание», в следствии чего данные будут некорректны. Необходимо воспользоваться сетевым трансформатором, после повторить шаг №2.

Проверка омметром

омметромметр

Данный метод является наиболее распространенным, из всех перечисленных. Несмотря на простоту, у него есть один существенный недостаток, он имеет серьезные погрешности и не способен дать 100% гарантий выявления неисправности.

Метод подразумевает измерение сопротивления катушки индуктивности, для это вам понадобится обычный мультиметр, имеющий функцию измерения сопротивления «оммометр». Необходимо соединить 2 щупа мультиметра с выводами катушки, полярность не имеет значения.

Исправный датчик должен иметь сопротивление в пределах 530 — 730 Ом. В самом начале необходимо заглянуть в документацию вашего датчика или поискать в интернете, какое сопротивление считается нормальным.

Подборка видео


Применение датчиков в промышленном оборудовании. Часть II

В статье рассмотрен такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании встречаются повсеместно. Кроме того, описаны реальные датчики приближения — неотъемлемая часть работы инженера-электронщика, их плюсы, минусы и примеры применения. Часть первая опубликована в предыдущем номере (№5-6, 2017) журнала.

Применение датчиков в промышленном оборудовании

Индуктивные датчики

В первой части статьи были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным не все так просто. Нужно учитывать много нюансов: полярность, логика работы, напряжение.

Для примера показаны упрощенные схемы подключения датчиков с транзисторным выходом (рис. 1). Нагрузка, как правило, это вход контроллера.

Упрощенные схемы подключения датчиков

Рис. 1, а — датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае — отрицательный провод источника питания. Нагрузка (Load) постоянно подключена к «плюсу» (+V). Здесь активный уровень (дискретный «1») на выходе датчика — низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Рис. 1, б — случай с транзистором PNP на выходе. Нагрузка (Load) постоянно подключена к «минусу» (0V), подача дискретной «1» (+V) коммутируется транзистором. Этот случай — наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим (нулевым), а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Напряжение на транзисторном выходе, как правило, определяется напряжением питания, обычно ограниченным узкими пределами. Например, от 18 до 30 В. На это можно посмотреть с другой стороны — сейчас большинство устройств стандартизовано по напряжениям.

Далее от теории перейдем к практическим вопросам.

Взаимозаменяемость датчиков

Как я уже писал в предыдущей части статьи, есть четыре вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения: PNP NO; PNP NC; NPN NO; NPN NC.

Бывает, что нужного типа датчика нет под рукой, а оборудование должно работать без простоя! Хорошая новость — перечисленные типы датчиков можно заменить друг на друга.

Это реализуется следующими способами:

  • Переделка устройства инициации — механически меняется конструкция. Например, если NO датчик реагировал на наличие металла, то NC будет реагировать на его отсутствие. Если выход той же полярности, то не изменится ни программа, ни алгоритм работы.
  • Изменение имеющейся схемы включения датчика (рассмотрим подробнее ниже).
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы контроллера (изменение активного уровня входа, изменение алгоритма программы).

Естественно, производители умалчивают о таких возможностях, чтобы продавать большое количество и номенклатуру изделий. Ниже приведен пример, как можно заменить датчик PNP на NPN, изменив схему подключения (рис. 2).

Пример схемы, как можно заменить датчик PNP на NPN

Понять работу этих схем поможет осознание того факта, что транзистор — это ключевой элемент, который можно представить обычными контактами реле.

На рис. 2, а показана схема датчика с нормально открытым выходом типа PNP. Когда датчик не активен, его выходные «контакты» разомкнуты, и ток через них не протекает. И наоборот, если контакты замкнуты, то протекающий ток создает падение напряжения на нагрузке.

При активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Смотрим на изменения в схеме на рис. 2, б. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 4,7–10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется.

Когда датчик активен, на входе контроллера дискретный «0», поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

Как отремонтировать и проверить индуктивный датчик?

Ремонту датчики приближения практически не подлежат, поскольку имеют цельный корпус, залитый компаундом. К тому же, большинство поломок связано с механическими повреждениями из-за неаккуратного персонала или сдвига активатора.

Чтобы проверить датчик электрически, нужно подать на него питание, то есть подключить его в схему, а затем активировать (инициировать). При активации должен загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку и измерить напряжение на ней, чтобы быть уверенным на 100%.

Условное обозначение датчика приближения

На принципиальных схемах индуктивные датчики (датчики приближения) обозначают квадратом с двумя линиями в нем, повернутым на 45°. Пример на рис. 3.

Обозначение датчиков приближения

На верхней схеме нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема — нормально закрытый, и третья схема — оба контакта в одном корпусе.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются ее.

  • Синий (Blue) — минус питания.
  • Коричневый (Brown) — плюс питания.
  • Черный (Black) — выход.
  • Белый (White) — второй выход, или вход управления.

Однако непосредственно перед монтажом нелишним будет убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Конкретный производители

Ниже — мое субъективное мнение по датчикам, с которыми приходилось иметь дело.

«ТЕКО». Для тех, кто выбирает отечественного производителя. Эта челябинская компания существует с советских времен и в настоящее время выпускает большое разнообразие датчиков. К сожалению, по моему опыту, на их долю приходится большое количество электрических отказов. Также у них слабая механическая прочность. Надеюсь, в настоящее время фирма улучшила качество продукции. Несомненное преимущество этой компании — цена, которая может быть в 2–3 раза ниже импортных аналогов (исключение Китай). Пример применения индуктивного датчика «Теко» — рис. 4.

Пример применения индуктивного датчика «ТЕКО»

Рис. 4 — Пример применения индуктивного датчика «TEKO»

В данном случае активатор, который проезжает мимо датчика, сместился и поломал оригинальный датчик. Выход — был установлен датчик «Теко» с большой зоной срабатывания.

AUTONICS. Оптимальный выбор по соотношению цена/качество. Эта корейская фирма выпускает большое количество датчиков с неплохим качеством. Благодаря скромным вложениям в раскрутку бренда, цены остаются весьма приемлемыми.

На рис. 5 показан пример модернизации спаивающей головки упаковочной линии.

Пример модернизации спаивающей головки упаковочной линии.

Рис. 5 — Пример модернизации спаивающей головки упаковочной линии

В верхней части — датчик Autonics. Ранее установили электрический концевой выключатель, как на нижней части фото. Чтобы исключить проблемы с контактами, было решено установить индуктивный датчик, с чем Autonics прекрасно справился и сбои прекратились. Завершением стала прокладка дополнительного провода питания и изготовление крепежной пластины.

OMRON. Это старый раскрученный бренд, поэтому цена на эти датчики довольно высока. Однако и качество на уровне.

На рис. 6 — датчики показывают положение механизма редуктора.

Рис. 6 — датчик показывает положение механического редуктора

Рис. 6 — Датчик показывает положение механического редуктора.

В большинстве случаев установка датчиков раскрученных брендов нецелесообразна, поэтому они устанавливаются в оборудовании высокой ценовой категории.

ALLEN BRADLEY. Этот американский бренд, как Rolls-Royce в мире моторов. Цена весьма высока, а вот качество в конкретно взятом случае подкачало: датчик, установленный на крышке бункера сыпучего вещества, перестал работать (рис. 7).

Датчик Allen Bradley

Рис. 7 — Дитчик Allen Bradley

Оказалось, проблема в контактах разъема. Их подогнули и почистили. В данном случае при грамотной установке датчик «Теко» прекрасно бы справился. Кстати, разница в цене этих датчиков — примерно в 10 раз!

Следует сказать, что в настоящее время более 90% от общего числа индуктивных датчиков имеют замену на датчики других производителей. Редко бывают случаи, когда нужен какой-то определенный тип. Как правило, это связано с габаритами и особенностями монтажа. В пределах одного предприятия целесообразно остановить выбор на одном производителе.

Александр ЯРОШЕНКО,
автор блога SamElectric.ru

Индукционный датчик. Подключение. Начало.

Crea Идет загрузка
Загрузка

05.03.2017

4504

печатает на RepRap Вопросы и ответы Всем привет.

Датчик: ВБ2.12М.55.4.2.1.К

При подключения датчика по схеме ниже, когда нет металла- горит индикатор, когда есть тоже горит. Как быть??

Идет загрузка Ответы на вопросы

Популярные вопросы

traindriver Идет загрузка
Загрузка

24.12.2019

648

Здравствуйте, товарищи. На магнитном коврике принтер печатает, но он в центре вогнут и там  пластик отлипает или не прилипает сразу. Положил зерк…

Читать дальше mc00h Идет загрузка
Загрузка

25.12.2019

310

Друзья!

При попытке пошевелить ШД 17HS4401 с драйверами A4988 и платой MKS GEN V1.4, двигатели сначала делают движение в одну сторону…

Читать дальше ZhenyaKa Идет загрузка
Загрузка

01.12.2016

7289

slic3r перед тем, как выкладывать верхние слои, кладет мосты, а прекрасный Simpli3D этого не делает 🙁

То есть вот это зелено…

Читать дальше

Датчик вторичной цепи системы зажигания для осциллографа

Данным обзором я продолжаю цикл обзоров о датчиках, щупах и прочих прибамбасах для осциллографа hantek 2c42 (и не только), необходимых для диагностики автомобиля.

Что такое датчик вторички? Это емкостной датчик, пластина которого вместе с высоковольтным проводом образует конденсатор, и при прохождения испульса по проводу на выходе датчика имеем сигнал, который и нужно смотреть осциллографом. Как правило, конструкция датчика предусматривает компенсирующий конденсатор, без которого форма искры на экране получается не совсем корректной из-за относительно низкого входного сопротивления входа осциллографа. Чем выше емкость корректирующего конденсатора (в определенных пределах, конечно), тем корректнее сигнал, но тем меньше его амплитуда. «Классической» конструкцией емкостного датчика является пластина двухстороннего стеклотекстолита размерами примерно 2х3см, затянутая в термоусадку, емкость корректирующего конденсатора — от 4.7 до 10нФ. Теорию можно почитать тут. Практику изготовления — например у меня в ЖЖ тут и тут. Забегая вперед, скажу, что сейчас я применяю для быстрой диагностики системы зажигания два датчика: емкостную прищепку и индуктивно-емкостную линейку.

Ну да перейдём к герою обзора. Изготовлено всё качественно, в руки взять приятно, смотрится авторитетно

В комплекте мануал

Сам датчик примерно 10см в длину

и 25мм в ширину

минимальный зажимаемый диаметр провода — 7.65мм

Длина кабеля — порядка 2.5м (для портативного осцилла это избыточно, но кабель универсальный, в том числе и для приставок), длина провода до заземляющего крокодила — порядка полуметра

BNC красивый

Крокодил тоже неплох

Провод направленный

Сразу же вскроем.



Как видим — ничего нового, но конденсатор — аж 47нФ

Сравним в работе с моими датчиками. Сравнивать буду на стенде, поэтому не обращайте внимания на шумную осциллку.

Для начала емкостная прищепка

Обозреваемый датчик вверху, эталонный самопал — внизу. Как видим — сигнал с хантека поаккуратнее, но меньше по амплитуде, как и предполагалось.

Теперь сравним с индуктивно-емкостной линейкой в емкостном режиме

В принципе — всё аналогично.

Кстати, вам этот датчик ничего не напоминает? Мне — дык зажим для бумаги

Резюме: датчик понятное дело работает. Но лично я бы покупать для работы его не стал. Купил — честное слово! — чисто ради посмотреть. Работает он не лучше самопала, при этом длинный провод при использовании портативного осцилла — скорее минус, равно как и неизолированная конструкция самого датчика. При этом сам датчик изготовлен вполне качественно, и, пожалуй стоит этих денег. Но тут как например с дорогой шариковой ручкой. Стоит ли она своих денег? Ну скорее всего что да — материалы там, производство… Стоит ли её покупать, если нужно просто рецепты в записную книжку иногда записывать? да скорее всего нет, потому что она пишет точно как любая другая ручка, а в руке дешевая может лежать и получше 😉

Хотите повторить? Возьмите прищепку и кусочек стеклотекстолита 2х3см. Конденсатор — по вкусу. Можно взять зажим для бумаги, припаять к нему кусочек стеклотекстолита, на котором распаять экранированный сигнальный провод и конденсатор же, и затянуть в термоусадку — как еще один вариант конструкции, которым нет числа на самом деле 😉 И особенно актуально повторение становится в случае, когда нужно подключить к машине не один датчик, а, скажем 4+1, или 6+1. Это сразу сильно ударит по карману, хоть и отобьётся довольно быстро.

если интересует конструкция моих датчиков — могу сделать отдельный обзорчик для diy

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *