Posted on

Индукционный счетчик электроэнергии — принцип работы и разновидности

индукционный прибор учета

В последние годы индукционный счетчик электроэнергии активно вытесняется с рынка приборов учёта более современными и совершенными, элекртонными моделями.

Тем не менее, именно такие счётчики имеют достаточно большое количество преимуществ, благодаря которым до сих пор эксплуатируются отечественными потребителями во многих регионах нашей страны.

Плюсы и минусы

Механические приборы учёта относятся к категории надежных в эксплуатации электросчётчиков и выгодно отличаются продолжительным сроком службы.

Немаловажным преимуществом является также устойчивость к перепадам напряжения в электрической сети.

Стоимость индукционного прибора учёта на порядок ниже цены новомодных электронных счётчиков, поэтому такое устройство по-прежнему считается самым доступным для широкого круга отечественных потребителей.

Тем не менее, класс точнoсти у таких приборов достаточно низкий, и варьируется в пределах 2.0-2.5 единиц, а также практически полностью отсутствует защита от хищений электроэнергии.

Кроме всего прочего, к недостаткам можно отнести высокое энергопотребление самим прибором и значительный рост погрешности измерений в условиях малых нагрузок. Определенное неудобство в процессе эксплуатации создают и внушительные габариты самого механического электросчётчика.

Важно помнить, что при необходимости выполнять одновременный учет реактивной и активной электрической энергии, потребуется устанавливать сразу несколько электросчётчиков индукционного типа.

Принцип работы индукционного счетчика электроэнергии

Стандартное счетное устройство механического прибора учёта – вращающийся алюминиевый диск и специальные цифровые барабаны, которые отражают расход электрической энергии в режиме реального времени.

Принцип работы достаточно прост, и заключается во взаимодействии электромагнитного поля с диском, представляющим собой подвижный токовый проводник.

Сохранение стабильной работоспособности индукционного электросчетчика возможно только в условия фазового сдвига, который должен быть равен девяносто градусам.

как устроен счетчик

Устройство индукционного счетчика электроэнергии

Индукционные приборы имеют катушку напряжения и тока. При этом подключение токовой катушки производится только последовательно, а катушка на напряжение запитывается параллельно. В процессе работы обе катушки формируют электромагнитный поток, который у токовой катушки является неизменно пропорциональным силе тока, а у катушки напряжения – пропорционален напряжению в сети.

Закономерностью принципа работы электрического счётчика индукционного типа является наличие прямой пропорциональности потребляемой мощностью и скорости вращения счётного устройства в виде алюминиевого диска.

Установка

однофазный многофункциональный электронный счётчик электрической энергии DDS28UТрехфазные приборы заметно отличаются от однофазных электрических счётчиков, и способны функционировать в условиях значительной мощности электросети.

Однофазный прибор может эксплуатироваться при номинальной мощности не выше 10 кВт.

Трехфазные приборы учёта пригодны для использования в условиях номинальной мощности в 15 кВт и более.

Такие приборы учёта относятся к категории многофункциональных, поэтому применяются не только в бытовой сети, но и при выполнении контроля трехфазных двигателей.

пломбаОпломбировка счетчика – обязательное мероприятие для каждого потребителя электроэнергии. Как опломбировать счетчик электроэнергии – порядок действий описан в статье.

Инструкция по снятию показаний с электросчетчика приведена тут.

Несмотря на то что счетчик может работать многие годы, существуют нормативы, согласно которым через определенный промежуток времени после установки прибор нужно заменить. Каков срок эксплуатации электросчетчика, расскажем далее.

Однофазные

Самым простым вариантом является однофазное подключение, выполняемое посредством кабелей и нагрузки. Провода «заземление», «фаза» и «ноль» должны подключаться на вход электросчётчика и выход из прибора учёта. Перед электросчётчиком требуется установить устройство автоматического выключения, что сделает эксплуатацию максимально безопасной и удобной.

Конструкцией стандартного электросчетчика предусмотрено наличие шины, представленной обычной медной планкой. Фиксация планки осуществляется диэлектрическими зажимами. По всей длине проделаны отверстия, позволяющие легко подводить и надежно крепить все электрические кабели.

монтаж прибора учета

Схема подключения однофазного счетчика

Стандартная пошаговая схема самостоятельного подключения однофазного индукционного счётчика электроэнергии:

  • установка и фиксация прибора учёта в щиток;
  • установка выключателей на DIN-рейке и фиксация при помощи подпружиненной защелки;
  • установка шин заземляющего и защитного типа на DIN-рейке или изоляторах щитка;
  • подключение нагрузки на выключатели и последующее соединение автомата со счетчиком;
  • подключение электросчётчика;
  • подключение «фазы» на нижние зажимы выключателя, соединение нулевой шины с кабелем «ноль» и проводов заземления с заземляющей шиной;
  • установка перемычек на зажимы;
  • подключение электрического счетчика на нагрузку;
  • отключение подачи электричества, соединение провода «ноль» с третьей клеммой прибора учёта и подключение кабеля «фаза» на первую клемму.

На заключительном этапе проверяется работоспособность установленного оборудования на минимальной и максимальной нагрузке.

Обязательно нужно обратиться в организацию энергосбыта для того, чтобы установленный самостоятельно прибор учёта электрической энергии был проверен, а затем опломбирован специалистами.

Трехфазные

Трехфазный прибор учёта расходуемой электроэнергии принято относить к категории более безопасных счётчиков, что обусловлено разделением потребителей на отдельные группы. Такой тип электросчетчика способен измерять не только активную, но и реактивную энергию с учётом потокового направления.

трехфазный счетчик - подключение

Схема подключения трехфазного счетчика через трансформаторы тока

Стандартная трёхфазная модель имеет восемь клемм, поэтому подключение осуществляется в следующем порядке:

  • подключение общесетевых кабелей с одинаковой цветовой маркировкой на первую, третью, пятую и седьмую клеммы;
  • подключение квартирных кабелей с одинаковой цветовой маркировкой на вторую, четвертую, шестую и восьмую клеммы.

В процессе самостоятельной установки в обязательном порядке должна соблюдаться схема, учитывающая подключение входных кабелей посредством четырёхполюсника от вводного автомата.

После выполнения установки, прибор учёта обязательно должен пломбироваться и ставиться на учет специалистами энергоснабжающей компании, которые фиксируют стартовые показания счетчика и выдают разрешение на эксплуатацию.

Тарифная система учета

Дифференцированный вариант системы учёта базируется на расходе электроэнергии в зависимости от временного интервала, что позволяет осуществлять оплату потребленного электричества по разным тарифам: дневному и ночному.

Следует отметить, что приборы учёта электроэнергии индукционного типа относятся к категории однотарифных, и не имеют системы дистанционного снятия показаний. Соответственно, оплата потребленного электричества при использовании такого прибора будет на порядок выше, чем расходы электроэнергии в условиях эксплуатации более современных многотарифных моделей.

Снятие показаний

Общие показатели расхода электрической энергии определяются на шкале значений всеми цифрами, расположенными до запятой. Последнее число, которое выделяется рамкой красного цвета, отображает десятые доли одного киловатта, и при выполнении расчётов не учитывается.

Чтобы самостоятельно опередить расход электроэнергии за один месяц, необходимо вычислить разницу между цифровыми данными текущего месяца и показаниями прибора учёта в предыдущем месяце.

Оплата счёта за израсходованное количество кВт осуществляется в соответствии с тарифами, которые устанавливаются в каждом регионе индивидуально.

Безусловно, индукционные счетчики имеют большой ресурс эксплуатации и на их работоспособность не оказывают влияния как скачки напряжения в сети, так и качество передаваемого тока, но сэкономить на оплате электроэнергии за счёт многотарифной системы расчёта, увы, не получится.

Видео на тему

11 4.4. Индукционные приборы. Однофазный индукционный счётчик электрической энергии

Принцип действия индукционных приборов основан на взаимодействии переменного магнитного поля с вихревыми токами, индуцируемыми этим же полем в проводящем подвижном диске или цилиндре. Индукционные приборы пригодны лишь для переменных токов, так как ток в диске или цилиндре может индуцироваться лишь действием переменного магнитного потока. В настоящее время промышленность выпускает только индукционные счетчики электрической энергии.

Рис. 11.6. Схема навивки токовой катушки индукционного прибора

Индукционный счетчик имеет две катушки с сердечниками: токовую катушку и катушку напряжения. Поэтому переменное магнитное поле создается двумя магнитными потоками Ф1 и Ф2 сдвинутыми на некоторый угол по фазе и в пространстве. При этом осуществляется взаимодействие потоков с »чужими», (а не со «своими») индукционными токами.

Токовую катушку (рис. 11.6) навивают толстым проводом на стальной сердечник и включают последовательно с нагрузкой. Магнитный поток Ф1 в ней пропорционален току нагрузки. Катушку напряжения (рис. 11.7) навивают большим числом витков тонкого провода на стальной сердечник. Индуктивное сопротивление этого электромагнита несравненно больше активного, поэтому данную цепь можно считать чисто индуктивной (ток в катушке напряжения отстает по фазе на π/2).

Рис. 11.7. Схема навивки катанки напряжения

Таким образом, счетчик состоит из двух электромагнитов и подвижного алюминиевого диска.

Легкий алюминиевый диск укреплен на оси, которая связана с помощью червячной передачи со счетным механизмом, и вращается в зазоре электромагнитов. Магнитный поток Ф1 электромагнита U-образной формы (рис. 11.6) создается током приемника электрической энергии, так как его обмотка включена последовательно в цепь нагрузки. Можно считать, что Ф1 пропорционален току:

Ф1 ~ I .

На втором электромагните (рис. 11.7) расположена обмотка, включенная параллельно приемнику электрической энергии, и ток в ней пропорционален напряжению сети U. Обмотка состоит из большого числа витков тонкого провода и создает магнитный поток Ф2 значение которого пропорционально U: Ф2~U. Индуктивное сопротивление этого электромагнита несравненно больше активного, поэтому можно считать, что ток в его обмотке сдвинут по фазе от напряжения на π/2. Таким образом, магнитные потоки, сдвинутые по фазе и в пространстве, образуют «бегущее» магнитное поле, пересекающее диск.

Вихревые токи, индуцируемые в диске магнитными потоками, пропорциональны им: Iв11 и Iв22 . Среднее за период значение электромагнитной силы, возникающей при взаимодействии магнитного поля и вихревого тока и действующей на диск, определяется формулой

F = Ф I cosγ , где γ — угол сдвига по фазе между потоком Ф и током I . Из этой формулы видно, что взаимодействие между индуцированным током в диске и созданным им магнитным полем не создает электромагнитной силы, так как γ = 0. Электромагнитные силы появляются только в результате взаимодействия магнитного потока Ф1 с током Iв2 и потока Ф2 с током Iв1. Общий вращающий момент

Мвр == с1Ф2 I в1 cosγ1 + c2Ф1Iв2 cosγ2 ,

где c1 и с2 — постоянные величины. После несложных преобразований получаем

Мвр=сФ1Ф2sinψ ,

где ψ — угол между потоками Ф1 и Ф2 равный, практически, π/2, с — постоянная величина. Поэтому

Мвр=kUI=kP ,

где k — постоянный коэффициент, Р — мощность, потребляемая нагрузкой.

Под действием этого вращающего момента диск пришел бы в ускоренное вращение, и число оборотов не соответствовало бы израсходованной электрической энергии. Поэтому необходимо наличие противодействующего момента.

Противодействующий момент Мпр создается постоянным магнитом, в поле которого вращается диск, и является тормозным моментом, пропорциональным частоте вращения диска Мпр=k’. Когда моменты равны, т.е. Мпр = Мвр, частота вращения диска постоянна (установившийся режим). При этом

P = .

Проинтегрировав это выражение за период T, получим

= .

Левая часть этого равенства определяет количество электрической энергии использованной за период, поэтому после интегрирования получаем:

W = 2 π N,

где N — число оборотов диска за период T. Таким образом, число оборотов диска пропорционально расходу электроэнергии.

Индукционные счетчики обладают слабой чувствительностью к введшим магнитным полям и изменениям температуры окружающей среды и хорошо выдерживают перегрузки. Однако они очень чувствительны к изменению частоты переменного тока в сети, поэтому предназначаются для работы только на определенной частоте (обычно 50 Гц).

Устройство и принцип действия однофазного индукционного счетчика

Однофазный индукционный счетчик представляет собой измерительную ваттметровую систему. Он является интегрирующим (суммирующим) электроизмерительным прибором. Принцип действия индукционных приборов основан на взаимодействии переменных магнитных потоков с токами, индуктированными ими в подвижной части прибора (в диске). Блок-схема однофазного индукционного счетчика приведена рис.1.

Рис.1. Блок-схема однофазного индукционного счетчика

Электромеханические силы взаимодействия вызывают движение подвижной части. Алюминиевый диск может вращаться на оси 0, с которой через червячную и зубчатую передачи связан счетный механизм с цифрами, указывающими расход электроэнергии (рис.2).

Рис.2. Однофазный индукционный счетчик

Так как счетчик должен учитывать расход электроэнергии, а он пропорционален произведению тока нагрузки I напряжения U, подведенного к нагрузке, и времени t, в течение которого нагрузка включена, то конструкция счетчика должна иметь элементы, автоматически перемножающие I, U и t. В общих чертах это достигается следующим образом. Диск счетчика в конечном итоге вращается за счет электромагнитных сил, которые создаются катушками.

Первая катушка включается в сеть последовательно и создает силу, пропорциональную току I. Вторая включается параллельно и создает силу, пропорциональную напряжению U. Поэтому частота вращения алюминиевого диска, расположенного между катушками, пропорциональна произведению U x I.

Если нагрузка равна нулю, диск неподвижен и показания счетчика не изменяются. При нагрузке диск вращается, причем тем быстрее, чем больше нагрузка. Время t автоматически учитывается, потому что чем дольше вращается диск, тем больший путь совершается обоймами счетного механизма, а на них написаны цифры, которые видны в окошечке на крышке счетчика.

На обоймах написаны цифры 0, 1, 2, 3, 4, 5, 6, 7,8 , 9. Обоймы закрыты щитком, и мы в его окошечках видим только по одной цифре на каждой из них. Допустим, что алюминиевый диск счетчика начинает вращаться по стрелке, когда во всех окошечках видны нули. Наблюдая за счетчиком, мы увидим, как самый правый нуль поднимется и исчезнет, уступая место единице. Ее сменит двойка и т. д. А когда вместо девятки в окошечке снова появится нуль, то в соседнем окошечке слева окажется единица. Таким образом, полному обороту первого диска, считая справа, соответствует 1/10 оборота второго диска, полному обороту второго — 1/10 оборота третьего ит.д.

Число зубьев червячной и зубчатой передач подобрано таким образом, что счетчик отсчитывает, как правило, киловатт-часы (цифры в черных окошечках) и их доли (цифры в красном окошечке).

Источник: книга «Современная электросеть», автор Михайлов В.Е.

Возможно, вам это будет интересно:

Принцип работы электросчетчика | Заметки электрика

Здравствуйте, дорогие гости сайта «Заметки электрика».

Теме учета электроэнергии мы уже посвятили множество статей, а вот разобраться с устройством и принципом работы электросчетчика не хватало времени.

Поэтому сегодняшняя статья посвящается принципу работы однофазных и трехфазных счетчиков электрической энергии.

Как Вы уже знаете, электросчётчики по принципу работы делятся на 2 вида:

  • индукционные
  • электронные

Рассмотрим более подробно принцип работы каждого типа счетчиков.

Принцип работы индукционного электросчетчика

  • 1 — токовая или последовательная  обмотка (катушка)

  • 2 — параллельная катушка (обмотка) или катушка напряжения

  • 3 — счетный механизм в виде червячной передачи

  • 4 — постоянный магнит для создания торможения и плавности хода диска

  • 5 — алюминиевый диск

  • Фi — магнитный поток, который создается током нагрузки

  • Фu — магнитный поток, который создается током в катушке напряжения

Электросчетчик состоит из 2 катушек (обмоток): катушка напряжения и токовая катушка, электромагниты которых расположены под углом 90° относительно друг друга в пространстве. В зазоре между этими электромагнитами находится алюминиевый диск, который с нижней и верхней стороны крепится на подшипниках и подпятниках. На оси диска установлен червяк, который через зубчатые колеса передает вращение счетному механизму (барабану).

Токовая катушка включается в цепь последовательно и состоит из небольшого количества витков. Наматывается такая катушка толстым проводом, соответственно, прямому номинальному току электросчетчика.

Катушка напряжения включается в цепь параллельно и состоит из большого количества витков. Наматывается тонким проводом с диаметром примерно от 0,06 -до 0,12 (мм).

При подачи переменного напряжения на катушку напряжения и при протекании через токовую катушку тока нагрузки, в зазоре  наводятся переменные магнитные потоки Фi и Фu, которые наводят в алюминиевом диске вихревые токи. При взаимодействии этих потоков и вихревых токов в диске, возникает вращающий момент — диск начинает вращаться.

Количество оборотов алюминиевого диска за определенное время — это и будет наша потребляемая электроэнергия.

При увеличении тока нагрузки (например, мы включили в сеть дополнительную нагрузку) в токовой катушке будет возникать больший вращающий момент и диск будет вращаться быстрее.

Для учета электроэнергии в трехфазных сетях переменного тока используют трехфазные индукционные электросчетчики, принцип работы которых аналогичен однофазным.

Принцип работы электронного электросчетчика

На смену индукционным электросчетчикам пришли электронные электросчетчики, например ЦЭ6803В, СЕ 102, СОЭ-55 и другие. Они обладают рядом достоинств, о которых мы поговорим в этой статье.

В электронном электросчетчике преобразователь преобразует входные аналоговые сигналы с датчиков тока и напряжения в цифровой импульсный код. Этот код подается на микроконтроллер, где расшифровывается и рассчитывается, а далее выдает количество потребляемой электроэнергии на дисплей электросчетчика.

P.S. Спасибо за внимание. Автор сайта «Заметки электрика».

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *