Posted on

Содержание

Водородные электрогенераторы Panasonic

Panasonic, один из крупнейших производителей домашних водородных генераторов в Японии, выпустила две новые модели специально для европейских стран

Водородные генераторы электроэнергии для домашнего использования, которые преобразуют газ в электричество и тепло, появились в Японии в 2009 году. В конце прошлого года объем их рынка в этой стране составил около $1,7 млрд.

Теперь Panasonic, один из крупнейших производителей домашних водородных генераторов в Японии, готовится к расширению на европейский рынок: компания выпустила две новые модели специально для европейских стран и заключила договор о сотрудничестве с немецким производителем компонентов систем отопления Viessmann.

Panasonic выводит водородные электрогенераторы на европейский рынок

Водородные электрогенераторы преобразуют в электричество энергию, вырабатываемую в результате электрохимической реакции между кислородом и водородом, которые используются в качестве топлива. В результате реакции вырабатывается только вода и не происходит выбросов углекислого газа, которые считаются главной причиной глобального потепления, поясняется на сайте Panasonic.

Тем не менее, такой вид производства энергии нельзя назвать абсолютно чистым, так как углекислый газ вырабатывается еще на этапе выделения водорода. Домашние водородные генераторы Panasonic используют в качестве топлива газ, который поставляется в жилые дома через муниципальные сети энергоснабжения, а затем при помощи технологии парового реформинга выделяют из него водород и диоксид угледорода.

Panasonic выводит водородные электрогенераторы на европейский рынок

Домашний водородный генератор в стандартной комплектации обойдется в Германии примерно в €25 000, но некоторые федеральные земли выделяют субсидии на установку генераторов в размере до €12 500. После запуска новых моделей в Германии компании планируют расширение на рынки Швейцарии, Австрии и Великобритании.

Panasonic выводит водородные электрогенераторы на европейский рынок

Японское правительство активно поддерживает переход на водородное топливо: власти потратят около $400 млн на субсидирование водородного транспорта к летним Олимпийским играм, которые пройдут в Токио в 2020 году. В сфере домашних водородных генераторов правительство также поставило амбициозную цель — добиться 1,4 млн установок к 2020 году.

Ранее о том, что водород — это топливо будущего, заявляли Honda и GM. Компании вложили по $85 млн в строительство в Мичигане фабрики по производству водородных топливных элементов для автомобилей. опубликовано econet.ru 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

Электрогенератор на водороде. Водородно-кислородный генератор своими руками

Мы привыкли считать самым доступным видом топлива природный газ. Но оказывается, у него есть достойная альтернатива – водород, получаемый при расщеплении воды. Исходное вещество для выработки этого топлива мы получаем вообще бесплатно. А если еще и сделать водородный генератор своими руками, экономия будет просто потрясающей. Так ведь?

Желающим собственноручно соорудить генератор дешевого, но весьма продуктивного горючего мы предлагаем обстоятельно изложенную инструкцию. Приводим рекомендации по грамотной эксплуатации. В качестве информативных дополнений, наглядно объясняющих принцип действия, использованы фото-приложения и видео.

На уроках химии средней школы когда-то давались пояснения на тот счёт, как получить водород из обычной воды, вытекающей из под крана. Есть в химической сфере такое понятие – электролиз. Именно благодаря электролизу имеется возможность получать водород.

Простейшая водородная установка представляет собой некую ёмкость, заполненную водой. Под слоем воды размещаются два пластинчатых электрода. К ним подводится электрический ток. Так как вода является отличным проводником электрического тока, между пластинами устанавливается контакт с малым сопротивлением.

Проходящий сквозь малое водяное сопротивление ток способствует образованию химической реакции, в результате которой образуется водород.

Схема экспериментальной водородной установки, которая в прежние времена изучалась в программе средней школы на уроках химии. Как выясняется, для практики современных житейских потребностей уроки те не были лишними

Казалось бы, всё просто и остаётся совсем немного – собрать образовавшийся водород, чтобы применить его в качестве энергетика. Но в химии никогда не обходится без тонких деталей.

Так и здесь: если водород соединяется с кислородом, при определённой концентрации образуется взрывоопасная смесь. Этот момент является одним из критичных явлений, ограничивающих возможности построения достаточно мощных домашних станций.

Конструкция водородного генератора

Для постройки генераторов водорода своими руками обычно берут в качестве основы классическую схему установки Брауна. Такой электролизёр средней мощности состоит из группы ячеек, каждая из которых содержит группу пластинчатых электродов. Мощность установки определяется общей площадью поверхности пластинчатых электродов.

Ячейки помещаются внутрь ёмкости, хорошо изолированной от внешней среды. На корпус резервуара выводятся патрубки для подключения водяной магистрали, вывода водорода, а также контактная панель подключения электричества.

Также разрабатываются и производятся установки под эксплуатацию в составе кондоминиумов. Это уже более мощные конструкции (5-7 кВт), назначение которых не только энергетика отопительных систем, но также выработка электричества. Такой комбинированный вариант быстро набирает популярность в западных странах и в Японии.

Комбинированные водородные генераторы характеризуются как системы с высоким КПД и небольшим выбросом углекислого газа.

Пример реально действующей промышленно изготовленной станции мощностью до 5 кВт. Подобные установки в перспективе планируется делать под оснащение коттеджей и кондоминиумов

Российская промышленность тоже начала занима

Водородные генераторы — технические характеристики и изготовление своими руками

Науке известно всего одно абсолютно чистое топливо – это водород, которые используется в космической промышленности. В процессе горения водорода образуются соединения с кислородом, то есть вода. Запасы этого топлива неисчерпаемы, т. к. оно наравне с гелием является основным «стройматериалом» во Вселенной.

Сегодня мы расскажем про водородные генераторы, обретающие в последнее время все большую популярность благодаря доступной стоимости и экологичности.

Водородные генераторы своими руками

Водородные генераторы своими руками

Содержание статьи:

Отличительные особенности водородного отопления

Данный тип отопления основывается на выработке огромного количества тепловой энергии в результате контакта молекул кислорода и водорода. Что характерно, единственным побочным продуктом в этом случае является дистиллированная вода. И чтобы реализовать этот принцип на практике, проводилось множество разработок по созданию водородного отопительного котла (речь идет о промышленных моделях).

генератор в сборе

Такие приборы отличались габаритностью и, следовательно, для установки требовалось много места. Да и КПД таких котлов был не самым высоким – порядка 80 процентов. Но с тех пор прибор много раз усовершенствовался и в результате мы получили котел для домашнего отопления, работающий по этому принципу. Для нормальной его работы необходимо соблюдать всего несколько важных условий.

генератор в сборе

Парогенератор — как сделать самостоятельно

Советуем посмотреть нашу инструкцию о том как своими силами сделать парогенератор для бани. Все подробности тут

  • Наличие постоянного электропитания. В основе генераторов лежит реакция электролиза, которая, как известно, без электричества невозможна.
  • Постоянное подключение к источнику воды. Зачастую для этого используется водопровод, хотя конкретный расход прибора зависит, конечно же, от его мощности.
  • Катализатор нуждается в регулярной замене. Частота этой замены зависит, как и предыдущий показатель, от мощности, а также от особенностей конкретной модели.

И если сравнивать водородное оборудование, к примеру, с газовым, то оно менее требовательное в плане безопасности. А все дело в том, что реакции образуются и проистекают исключительно внутри генератора. От человека же, как от пользователя, нужен лишь визуальный контроль над основными показателями.

Устройство водородного генератора

А теперь ознакомимся более детально с водородным вариантом обогрева дома. И суть его, как уже отмечалось, в том, чтобы вырабатывать Н2О, этот вариант вполне заслуживает, чтобы его считали альтернативой природному газу. Что характерно, среднестатистическая температура горения в данном случае может достигать 3-х тысяч градусов, поэтому потребуется использование специальной водородной горелки в отопительной системе. Объясняется это тем, что лишь такая горелка способна выдерживать столь значительный нагрев.

Схема работы водородного генератора

Генератор водорода своими руками

Есть несколько компонентов, из которых состоит отопление водородного типа, ознакомимся с ними.

  • Упомянутая выше горелка. Она необходима для одной простой цели – создавать открытое пламя.
  • Водородный генератор – он будет обрабатывать смесь посредством разложения воды на молекулярные составляющие. И для того чтобы оптимизировать химическую реакцию, можно использовать в ее процессе катализаторы.
  • Собственно, котел. Здесь он служит в роли своего рода теплообменника. Саму горелку устанавливают в топочную камеру, благодаря чему носитель тепла в системе и прогревается до требуемой температуры.

Обратите внимание! Тем, кто запланировали изготовить водородные генераторы, напоминаем, что для этого им придется усовершенствовать уже наличествующее оборудование по схеме, указанной ранее. Но зато такое самодельное оборудование более экономично, чем его «магазинные аналоги», купленные за большие деньги.

Сильные стороны водородного отопления

Положительные качества, которыми обладает отопление с помощью водорода, многочисленны. Именно этим и объясняется столь значительная популярность системы.

  • Отличный КПД, коим она характеризуется, может достигать 96 процентов.
  • Экологичность. Объясняется это тем, что единственным побочным продуктом, отходами, если можно так выразиться, является чистая вода, производимая в газообразном состоянии. А водяной пар, как известно, не оказывает негативного влияния на окружающую среду.
  • Для функционирования в системе водорода никакое пламя не требуется. Тепловая энергия появляется вследствие каталитических химических реакций. Соединяясь с воздухом, водород образуется воду, что сопровождается появлением большого количества энергии. Поток тепла (а его температура достигает 40 градусов) подается в теплообменник. Вполне очевидно, что это наиболее оптимальный вариант для системы «теплого пола».

Особенности водородного генератора

Слабые стороны

Ознакомившись с достоинствами, приступаем к недостаткам водородного отопления.

  • Невзирая на то, что в более продвинутых странах такой способ отопления крайне популярен, в нашей стране ему пока что не уделяют нужного внимания. Именно поэтому приобретение и монтаж данного оборудования столь проблематичен и сопряжен с рядом трудностей.
  • Средняя комнатная температура приводит к тому, что водород приобретает газообразное состояние. Более того, это вещество взрывоопасно, в связи с чем транспортировать его, особенно на большие расстояния, очень сложно.
  • Баллоны, содержащие водород, должны сертифицироваться соответствующими специалистами, на обучение которых требуется достаточно много времени.
Особенности водородного генератора

Вихревой теплогенератор

Советуем вам посмотреть одну из наших статей, о том из чего состоит вихревой теплогенератор и как сделать его самостоятельно Все подробности тут

Как установить водородный котел?

На данный момент многие предпочитают самостоятельно производить водородные генераторы для своих отопительных систем. И в этом нет ничего удивительного, ведь «магазинные» аналоги не только очень дорого стоят, но и обладают не слишком высоким КПД. А вот если этот прибор сделать своими руками, то эффективность его будет на порядок выше.

Существует несколько вариантов того, как собрать генератор, работающий на водороде. Но в любом случае для его изготовления в домашних условиях потребуются следующие расходные материалы.

  • 12-вольтный источник энергии.
  • Несколько трубок, выполненных из нержавеющей стали и имеющих различный диаметр.
  • Резервуар, в котором будет расположена конструкция.
  • ШИМ-регулятор. Важно, чтобы его мощность составляла как минимум 30 ампер.

Это основные комплектующие, из которых обычно состоят самодельные водородные генераторы. Кроме того, не забывайте о резервуаре под дистиллированную воду – его наличие также обязательно. Воду необходимо подавать в герметичную конструкцию с находящимся внутри диалектиком. В этой же конструкции будет располагаться комплект, сделанный из пластин «нержавейки», примыкающих одна к другой посредством изоляционного материала. Важно, чтобы 12-вольтное напряжение подавалось именно на эти пластины. Если все будет сделано правильно, то при подаче напряжения вода распадется на 2 газообразные элемента.

Установка водородного котла

Обратите внимание! Более эффективной в этом плане является использование постоянного тока (он обязан иметь конкретную частоту), производимого генератором типа ШИМ. В таком случае импульсный ток (либо же переменный) будет заменен постоянным. В результате этого эффективность оборудования существенно повысится.

Какую воду использовать – дистиллированную или из-под крана?

Здесь ничего сложного нет. Водопроводная жидкость может использоваться, но лишь в том случае, если в ней нет примесей тяжелых металлов. Но чтобы оборудование работало более эффективно, лучше использовать все же дистиллированную воду, добавляя в нее небольшое количество гидроксида натрия. Соотношение в данном случае должно быть следующим: по столовой ложке гидроксида на каждые десять литров воды.

Вода для водородного генератора

Какой именно металл следует использовать?

Этот вопрос спорный. Так, во многих – в том числе весьма авторитетных – источниках говорится, что для водородного отопления необходимо использовать лишь редкие металлы. В действительности это не совсем верно, так как вполне можно использовать и нержавеющую сталь, о чем мы уже говорили выше. Хотя в идеале это должна быть ферримагнитная сталь. Отличается она тем, что не притягивает к себе частички не нужного мусора. Также отметим, что при выборе металла ориентироваться лучше все же на «нержавейку», которая не подвержена процессу окисления.

металл для водородног генератора

Как видим, соорудить водородный котел не так сложно, как кажется. Необходимо лишь правильно подобрать расходные материалы и тщательным образом изучить схему отопительной системы такого типа. Установив все необходимое оборудование, произведите проверку, дабы убедиться в том, что оно действительно качественное и достаточно эффективное.

Видео – Изготовление водородного генератора

О законе сохранения энергии

Этот закон гласит, что все в мире взаимосвязано: если где-то убыло, то куда-то обязательно прибудет. И чтобы посредством электролиза можно было получить газ, определенное количество электрической энергии затратить все же придется. А энергия, как известно, получается преимущественно в результате создания тепла при сгорании иных типов топлива. И пусть даже мы возьмем чистую энергию, необходимую для генерирования электричества, и ту, что дает водород после сгорания, то потери будут двукратными (как минимум!) даже на самом современном оборудовании. Выходит, 1/2 средств просто выбрасывается на ветер. Более того, это лишь расходы, связанные с эксплуатацией, а стоимость оборудования, которое, как отмечалось, недешевое, не учитывается. Вспомним хотя бы водородные генераторы.

Если верить исследованиям, проведенным в Америке, то цена одного килограмма водорода (вернее, расходы на его создание) равна:

  • 6,5 доллара при использовании промышленной электрической сети;
  • 9 долларов при эксплуатации ветряных генераторов;
  • 20 долларов в случае применения солярных приборов;
  • 2,2 доллара при использовании твердого топлива;
  • 5,5 доллара, если вещество производится из биомассы;
  • 2,3 доллара, если речь идет об электролизе при высокой температуре, осуществляемом на атомной станции (самый дешевый способ, но самый далекий от обычного бытового применения).

Обратите внимание! Даже самый продвинутый генератор бытового типа будет значительно уступать по всем параметрам аналогичному промышленному прибору. Поэтому, ввиду описанных цен, говорить о том, что водород может составить серьезную конкуренцию природному газу, нельзя. То же относится и к электроэнергии, дизелю и даже тепловым насосам.

Перспективы энергетики с использованием водорода

А теперь попытаемся выяснить, действительно ли существуют шансы снизить себестоимость чистого водорода. Сразу оговоримся, что все шансы для этого есть. Прежде всего, сюда относится технология получения не дорогостоящей электроэнергии с применением возобновляемых ее источников. Кроме того, в процессе катализации могут использоваться более дешевые химические катализаторы. К слову, такие уже давно существуют и используются в водородных ячейках для топлива (речь идет об автомобилях). Хотя здесь, опять же, мы натолкнулись на их чересчур высокую стоимость.

Перспективы водородной энергии

Но технологии все время совершенствуются, наука не стоит на месте. В один прекрасный момент нефть все же закончится, а людям придется переходить на какой-то другой, альтернативный энергетический источник. Но на данный момент и, пожалуй, на ближайшие десятилетия можно говорить с уверенностью: энергетика с использованием водорода сама по себе пока что убыточна. К исключениям относятся лишь те случаи, когда водород является побочным продуктом каких-либо других процессов технического плана. Конечно, возможны и различные программы по поддержке и развитию водородной энергетики, но для этого требуется помощь крупных корпораций и, разумеется, государства.

В качестве заключения

Трудно сказать, какая энергетика станет в будущем основной – водородная, ядерный синтез, применение гравитации и проч. Но специалисты уверяют, что первые электролизные реакторы, способные составить конкуренцию современным атомным, появятся как минимум через двадцать-тридцать лет. Некоторые вообще скептически настроены по этому поводу. Но реальные профессионалы верят, что водородные генераторы станут вскоре предметом высоких технологий, а не самоделкой из подручных средств, которую мы описали выше. На этом все, теплых вам зим!

Генератор водорода: принцип работы, преимущества водородного генератора

Главная / Статьи / Генератор водорода высокой чистоты


Водород используется в качестве газа-носителя при проведении хроматографических исследований. Для постоянного питания лабораторного оборудования необходимо либо подключать баллоны с H2 под давлением, либо генератор водорода. Второй вариант предпочтительнее по нескольким причинам, и все они будут рассмотрены в этой статье наряду с другими темами:

Преимущества генераторов водорода

Использование баллонного H2 приводит к повышению стоимости производственного цикла: компания вынуждена постоянно закупать и доставлять газ, из-за чего весь процесс работы ставится в зависимость от регулярности поставок. Кроме того, хранение баллонов под давлением — это всегда повышенный риск утечки, взрывов и пожаров.

Установка генератора водорода позволяет получать нужное количество вещества высокой степени очистки (до 99,999%). В результате предприятие оптимизирует структуру расходов, добиваясь при этом постоянного и равномерного проведения хроматографических исследований. Обеспечиваются и дополнительные преимущества:

  • Прибор генерирует газ только по мере необходимости: не нужно хранить водород, что исключает вероятность выброса газа в помещение.
  • Концентрация получаемого вещества ниже взрывоопасной: полностью соблюдается техника безопасности, минимизируются возможные травмы на производстве.
  • Оператор полностью контролирует качество получаемого газа, а в случае его снижения может предпринять меры по дополнительной очистке.

Принцип работы оборудования

Принцип работы оборудования

Генератор водорода, купить который может любая компания или лаборатория, получает газ из дистиллята. Причем его качество влияет на процентное содержание примесей в готовом продукте. Если в генератор чистого водорода поступает вода с высокой концентрацией посторонних ионов, она несколько раз проходит через деионизационный фильтр и только потом попадает в электролизер. Последующие этапы получения H2 выглядят следующим образом:

  • Дистиллят расщепляется на кислород и водород в процессе электролиза (в качестве электролита применяется ионообменная мембрана).
  • О2 попадает в питающий бак, а потом сбрасывается в атмосферу, как побочный продукт работы устройства.
  • H2 подается в сепаратор, отделяется от воды, которая затем снова поступает в питающий бак. Это обеспечивает непрерывность процесса получения нужного вещества.
  • Водород еще раз проходит через разделяющую мембрану, удаляющую из газа остаточные молекулы кислорода, и поступает в хроматографическое оборудование.

По этому принципу работает любой водородный генератор, купить который предлагают современные производители. Технические параметры зависят от модели.

Особенности и возможности генераторов водорода

Главное требование к прибору — качество получаемого вещества. Генератор водорода, купить который предлагает НПФ «Мета-хром», производит H2 высшей категории, соответствующий ГОСТу. То есть он может использоваться в качестве источника газа-носителя для питания высокоточного лабораторного оборудования. Это актуальное решение, если потребителю по каким-либо причинам недоступен гелий: например, в случаях работы прибора с детектором по теплопроводности.

Современное оборудование полностью автоматизировано за счет наличия большого количества датчиков, контролирующих все этапы получения газа. В свою очередь датчиками управляет микропроцессор. Он позволяет оператору задавать нужные режимы работы с помощью клавиатуры. Генератор водорода, цена которого является доступной, регулирует следующие параметры:

  • Давление полученного вещества, подаваемого на хроматографическую линию.
  • Уровень заливаемого в бак дистиллята и его расход.
  • Герметичность газовых магистралей: при обнаружении утечки сразу подается соответствующий сигнал, работа прекращается.
  • Параметры тока в электролизере.

Выбор прибора

Когда выбирается генератор водорода, цена модели обычно отражает ее возможности. Чем их больше, тем удобнее прибор в регулярном использовании. К наиболее важным параметрам относятся:

  • Микропроцессорное управление для точного задания рабочих параметров.
  • Качество очистки готового продукта: желательно, чтобы техника поддерживала многоступенчатую подготовку H2.
  • КПД электролизера: чем он выше, тем меньше энергии расходуется на поддержание расщепления воды.
  • Возможность дозаливки дистиллята без отключения устройства для обеспечения непрерывности процессов.
  • Продуманная защита от повышения тока в камере электролиза или в случае превышения давления в питающих трубах. Оптимально, если устройство сразу отключается или автоматически меняет рабочие параметры.
  • Регулируемая производительность H2. Наличие этой функции позволяет оператору контролировать объемы генерируемого газа. Сокращается нагрузка на электролизер, повышается срок его службы без необходимости замены.
  • Управление температурным режимом дожигателя кислорода. Чем больше параметров, которые позволяют регулировать генератор чистого водорода, тем проще отладить производственный процесс.
  • Индикация влажности вещества (исключает риск попадания влаги в питающие линии).

Существуют и другие параметры, на которые рекомендуется обратить внимание перед тем, как купить водородный генератор: цена устройства, производительность, степень очистки газа, стабильность давления, обводненность готового вещества, время выхода на режим, потребляемая мощность и габариты.

Обслуживание генераторов водорода

Современные устройства не требуют сложной пусконаладки или дорогостоящего обслуживания. Это универсальные приборы, которые удобно использовать на производствах в любой отрасли промышленности. Управление осуществляется через мини-клавиатуры, а результаты выводятся на ЖК-монитор.

Использование прибора позволяет полностью отказаться или существенно сократить объемы потребления баллонного H2 и повышает эффективность работы предприятий.

Водородные генераторы. Удивительная механика

Водородные генераторы

В романе Жюля Верна «Пять недель на воздушном шаре» и в некоторых других его произведениях упоминается идея получения энергии путем разложения воды электрическим током на водород и кислород, а затем соединения этих элементов снова в воду. Если бы это производилось с помощью не гальванических элементов, а какого-нибудь менее дорогого источника энергии, то метод вполне подошел бы для решения задачи накопления энергии. Во всяком случае, суть «водородного аккумулирования» именно такова.

Представим себе ветроэлектростанцию, которая вырабатывает энергию только тогда, когда есть ветер. Ветер может дуть всю ночь, но в это время электроэнергия практически не нужна, а днем при максимальной потребности в энергии он вдруг стихает. Ветру не прикажешь дуть или не дуть. Заманчиво, конечно, накапливать энергию ночью в электроаккумуляторах, однако их потребуется слишком много, да и долговечность их невелика.

А что если попробовать при избытке электроэнергии, например ночью, использовать ее для разложения воды на водород и кислород? Газы можно накапливать в специальных емкостях – газгольдерах, а потом, при прекращении ветра, сжигать в двигателях внутреннего сгорания или в паровых двигателях с целью последующей выработки электроэнергии. Достаточно вал двигателя, работающего на водородно-кислородной смеси, соединить с валом электрогенератора.

Схема работы топливного элемента

В таком примерно виде этот метод был разработан в прошлом веке известным изобретателем А. Г. Уфимцевым. Но, подсчитав все «за» и «против», сам же Уфимцев отказался от своей идеи. Дело в том, что КПД газового двигателя внутреннего сгорания не выше 25 %. К тому же для работы на чистом водороде и кислороде ни один из существующих двигателей не предназначен – столь опасная смесь просто взорвет его. КПД паровых двигателей еще ниже. И плюс ко всему – нужно крутить электрогенератор, в котором свои потери энергии. Выходит, что работа целого комплекса сложных машин не принесет желаемого результата, отдача энергии будет очень мала.

Может быть, сделать иначе? Получая из воды водород и кислород, мы пропускаем через нее ток по электродам. Вода, подкисленная или «подщелоченная», является здесь проводником тока, электролитом. А нельзя ли наоборот – подавая кислород и водород снова к электродам, получить взамен ток? Вернуть ту электроэнергию, которая была затрачена на разложение воды?

Оказывается, ученые работают над этим уже давно. Еще в позапрошлом веке было замечено, что если в горячий раствор едкого кали поместить платиновые электроды и к одному из них медленно направить водород, а к другому кислород, то на электродах появится разность потенциалов. Платина играла роль катализатора реакции окисления – восстановления водорода и кислорода. Стоило соединить электроды, как возникал электрический ток. Сразу получить большой ток не удалось, и вся последующая работа над прямым преобразованием энергии топлива в электричество заключалась как раз в том, чтобы увеличить мощность этого процесса.

Для преобразования энергии ныне существует множество типов установок, называемых топливными элементами или, если они работают на водороде, водородными генераторами. Есть высокотемпературные (как горячие аккумуляторы) топливные элементы, а есть работающие и при комнатной температуре. Применяются также элементы с промежуточными температурами: 100—200 °C. Электролитами могут служить и щелочь, и кислота, причем в твердом и жидком виде.

Водородно-кислородный топливный элемент

Разнообразно и топливо, которым питаются такие элементы. Это газы – водород и кислород; жидкости – спирт, гидразин; твердые вещества – уголь, металлы. В качестве окислителя используют кислород, воздух, перекись водорода. КПД топливных элементов очень высок, он достигает 70 %, что, по меньшей мере, вдвое выше, чем у двигателей. Как же все-таки работает современный топливный элемент? В водородно-кислородном элементе водород поступает на поверхность отрицательного электрода, а кислород – на поверхность положительного электрода. Газы эти доставляются к электродам по трубкам. Ионы водорода в процессе реакции окисления – восстановления соединяются с ионами кислорода, образуя обычную воду. Энергия химической реакции передается электродам в виде электрической энергии.

Получаемая в топливном элементе вода удаляется через особый фитиль. Она настолько чистая, что ее можно использовать для питья и приготовления пищи. Так поступают, например, космонавты в длительном полете – на космических станциях тоже установлены топливные элементы. Это еще одно достоинство прямого преобразования топлива в ток. Водородно-кислородные топливные элементы, если брать в расчет только массу топлива – водорода и кислорода, имеют громадную плотность энергии – около 1 МДж/кг. Но ведь надо учитывать и массу самого устройства – топливного элемента со вспомогательным оборудованием. А это уже снижает плотность энергии до уровня обычных электроаккумуляторов – топливные элементы очень тяжелые. Лишь после многочасовой работы, когда будет израсходовано значительное количество водорода и кислорода, топливные элементы окажутся легче электрохимических аккумуляторов с тем же запасом накопленной энергии.

Плотность мощности у топливных элементов совсем небольшая, около 60 Вт/кг, или втрое меньше, чем у горячих аккумуляторов. Для автомобилей это явно недостаточно.

Накопители энергии, принцип работы которых основан на аккумулировании водорода, имеют свои особенности в применении на транспорте, в частности на автомобилях. Об этом будет подробно сказано позже.

Интересно, что прямое преобразование химической энергии в электроэнергию свойственно и некоторым видам рыб, например электрическим скатам. Эта рыба, обитающая в теплых морях, переводит энергию, выделяющуюся при переработке пищи, в электроэнергию, совсем как электрохимические генераторы – топливные элементы. Трудно сказать наверняка, но, возможно, скат умеет и накапливать ее, как мы, например, отдыхая, накапливаем силы.

Электрический скат – «торпедо» (а) и схема его «электрических» органов (б)

Электрические органы ската, расположенные по бокам головы, весят около пуда. По своему строению они поразительно похожи на батарею гальванических элементов. Состоят эти органы из многочисленных пластинок, несущих положительные и отрицательные заряды, причем пластинки расположены столбиками (как бы соединены последовательно), а столбики связаны между собой. Каждый электрический орган покрыт «электроизолирующей» тканью.

Скат способен давать ток силой 8 А при напряжении 300 В, то есть развивать мощность почти 2,5 кВт, что больше 3 лошадиных сил. Это завидные показатели для электроаккумуляторов, во всяком случае для тех, которые мы используем при запуске автомобильных двигателей. Если подсчитать плотность мощности электрических органов ската, то получится свыше 150 Вт/кг! Как отмечают многие исследователи, создание аккумулятора с плотностью мощности 100—150 Вт/кг открыло бы широкие возможности для применения электрохимических источников тока на транспорте, в частности для привода электромобилей. Сегодняшним аккумуляторным батареям это пока не под силу. Браво, скат!

Но хотя скат и обогнал аккумуляторную технику, не разводить же его специально для накопления энергии. Нет, скат – не «капсула», он и не захочет быть ею, даже если попытаться «одомашнить» его для целей электроснабжения. Да и общество защиты животных будет против!

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

Водородный генератор для автомобиля

Водородный генератор-это вид оборудования, при правильной установке которого можно снизить расхода топлива мотоцикла, легкового или грузового автомобиля, а также сократить количество вредных выбросов в атмосферу. При помощи батареи питания и генератора постоянного тока вода разлагается на кислород и водородный газ (HHO), который попадает в двигатель и потом выделяется в атмосферу. HHO улучшает качество сгорания топлива в цилиндре двигателя, увеличивает мощность автомобиля, очищает старые двигатели от отложений кокса, снижает количество вредных выбросов и расход топлива от 25%. Такой водородный генератор не трудно сделать самому, и детали стоят не слишком дорого.

Работу генератора можно оценить положительно, если он производит от 1.7 до 2.0 литров HHO газа в минуту при соответствующей токовой нагрузке.
Предупреждение: Если Вы решили использовать водородный генератор, Вы полностью несете за это ответственность. Ни сайт, ни автор этой статьи не несут ответственность за причиненный при использовании водородного генератора ущерб. Относительную безопасность при работе с генератором данного образца можно гарантировать только при условии, что Вы будете следовать нашим инструкциям. Только Вы несёте ответственность при работе с генератором.
Обеспечение безопасности
Прежде чем мы опишем принцип сборки генератора, Вы должны точно представлять себе, в каких целях Вы собираетесь использовать генератор.Если Вы решили сделать себе просто очень экономный транспорт прочтите статьювнимательно. Во-первых, HHO газ взрывоопасен. Если бы газ не имел этого свойства, он не способствовал бы снижению количества топлива на единицу пробега Вашего транспортного средства. Обращение с HHO газом требует внимательности и осторожности. Нужно точно убедиться, что газ поступает именно в двигатель и никуда более. Для этого нужно помнить несколько основных моментов. Во – первых, генератор должен производить водород, только когда двигатель запущен. Чтобы предотвратить аварийные ситуации, следует отключать питание от генератора. Однако, наличие устройства ручной системы переключений «включить/выключить» недостаточно , когда речь идёт о безопасности- можно забыть выключить подачу газа в двигатель. В этот момент генератор будет производить газ, который будет поступать в заглушенный двигатель. Когда мотор выключен, вы должны быть уверены, что генератор тоже выключен. Вместо того, чтобы напрямую соединить генератор и замок зажигания рекомендуется соединить стандартное автомобильное реле и датчик давления масла , тогда всё напряжение пойдёт на реле. Электропитание топливного насоса отключается автоматически, когда ключ зажигания отключен, это позволяет отключить питание от генератора.

На данном рисунке показано соединение HHO генератора. Между аккумулятором и проводкой устанавливается плавкий предохранитель или выключатель.

Вы можете использовать выключатель и светодиодный индикатор в сочетании с токоограничивающим резистором номиналом 680 Ом, индикатор может быть подключён напрямую к выключателю. Индикатор должен быть установлен внутри машины на передней панели машины.
Т.к контакты нормально замкнуты , они шунтируют светодиод , и поэтому он не горит. Если выключатель выключен, тогда лампочка индикатора будет загораться, чтобы показать, что выключатель работает.
Вы может видеть, что в генераторе содержатся металлические пластины, и электричество, проходя между пластинами через воду внутри генератора, вызывает реакцию трансформации воды в газ HHO. Одним из самых важных предохранительных устройств является барбарер (водяной клапан).

Здесь представлена модель сборки барборера. В нём находится емкость для воды. ННО газ проходит через дно барборерра и выходит на поверхность, газ скапливается на поверхности воды и затем поступает в двигатель через выпускную трубу, находящуюся над поверхностью воды. Чтобы предотвратить возможность попадания газа в двигатель, когда он выключен или охлаждается, в трубку между генератором и барборером устанавливается проточный клапан. Если в двигателе возникло возгорание, барборер препятствует распространению огня обратно через трубку и возгоранию газа в генераторе. Если генератор сделан с плотно закрытой, а не закручивающейся крышкой, то когда произойдёт возгорание газа и огонь пойдёт обратно в генератор, тогда он только выбьет крышку барборера и пламя остановится.
Барборерр –это дешёвое, простое устройство, которое следует установить. Он также позволяет освободить газ от испарений электролита, перед тем, как газ попадёт в двигатель.
Вы должны заметить, что провода, идущие к пластинам внутри электролизёра, соединяются ниже ватерлинии (линии уровня воды)внутри генератора. Это сделано , для того чтобы снизить возможность саморазьединения соединений при работе устройства и появления искрового заряда в заполненном HHOгазом пространстве выше уровня воды, соединение должно находится ниже ватерлинии настолько , насколько это возможно, чтобы предотвратить опасную ситуацию.

Водородный генератор сделан из полихлорвиниловой (PVC )трубы диаметром 10 см, двух крышек, нескольких металлических пластин, лент и других частей. Почти каждый может справиться со сборкой такого водородного генератора. Пластиковая трубка присоединяется к внешней стороне генератора, чтобы показывать уровень воды внутри генератора. Другое приспособление –это вставка, которая просматривается через барборер , она присоединяется к генератору и показывает движение газа из генератора.

Сборка барборера
В генераторе используется крепление из нержавеющей электростали, которое вы можете приобрести в любом магазине бытовой техники, и полоски (лента) из нержавеющей стали. Вы можете нарезать полоски из листа металла, Вы также можете вырезать их из ручек столовых приборов.

Пластины обшивки скреплены в группу из 8 близко расположенных пар. Вам нужно просверлить отверстия до диаметра, который подойдёт к размеру нейлоновых болтов.
Активные поверхности пластин – поверхности, которые находятся на расстоянии 1.6 миллиметра друг от друга, следует отшлифовать наждачной бумагой. Для этого поверхности расчерчены по x-образцу (шаблону), используется крупнозернистая наждачная бумага 36 степени зернистости.
Благодаря шлифовке наждачной бумагой образуются маленькие выемки с острой кромкой, которые целиком покрывают сторону каждой из пластинок. Находясь на такой поверхности, пузырьки HHO газа легко отделяются от неё, после образования. Это повышает площадь используемой поверхности пластины примерно на 40%. Если на пластинах генератора останутся отпечатки пальцев, то тем самым Вы уменьшите рабочую поверхность пластины, и это значительно приостановит генерацию газа. При работе с пластинами вам следует надевать чистые резиновые перчатки или очищать пластины от жира и пыли. Для этого протрите их хорошим растворителем, а затем смойте его дистиллированной водой. Однако, лучше всего использовать перчатки, т.к. постоянное использование химических растворов при очитке нежелательно для поверхностей из нержавеющей стали.

Набор из нержавеющих пластин монтируется внутри трубы диаметром 100 мм. Труба превращается в подходящий контейнер благодаря использованию полихлорвинилового клея. Клей нужен, чтобы защитить концевую пробку и закручивающуюся пробку на другом конце. Затем в контейнер вставляется газоснабжающая трубка, которая соединяется с коленом, расположенным на верхней крышке. На крышке просверлены 2 отверстия, чтобы соединить пластины и закрепить их болтами, как показано на предыдущем рисунке.

Мы должны убедиться, что наборы пластин плотно соединены с электрическими проводами, оба крышечных болта из нержавеющей стали расположены на более толстой горизонтальной части крышки и надёжно закреплены. Резиновая шайба или силиконовый герметик могут быть использованы в качестве уплотняющего материала на внешней стороне крышки. Можно также использовать шайбы из нержавеющей стали, на одной стороне которых есть резиновая вставка.

Т.к лента из нержавеющей стали, соединяющая пластины генератора с отрицательным выводом аккумулятора, присоединяется к центральной части набора пластин, необходимо её немного согнуть. Угол изгиба не важен, но лента должна занимать вертикальное положение, когда она соприкоснётся с электрическими пластинами.

В крышке нужно высверлить 2 крепёжных отверстия диаметром 8мм, чтобы вставить пластиковые болты для крепления пластин.
После года постоянного использования эти пластины останутся сияющими и не будут разрушены коррозией благодаря правильному использованию частей из нержавеющей стали. Две ленты были сделаны, чтобы прикрепить набор из пластин к закручивающейся крышке генератора. Эти ленты были вырезаны из кухонных инструментов или листа стали, они присоединяются к трём пластинам. Внешняя лента идёт через нижний конец набора пластин, который является основой пластин, и соединяется с обеими наружными пластинами, как показано на рисунке.

 

Пластины закреплены двумя болтами, которые вставляются в крепёжные отверстия на пластинах. Расстояние между каждой из 8 пар должно быть 1.6 мм. Это расстояние получается в результате использования шайб между парами. Важно, чтобы расстояние между парами было именно 1.6 мм, т. к. оно считается оптимальным для образования водорода в электролизёре. Соединение батареи необычно, т.к при этом некоторые пластины остаётся несоединёнными. Эти пары пластин называются нейтральными, они будут способствовать образованию газа, даже, несмотря на то, что они не подключены с помощью электрического соединения. Стальные гайки между пластинами заменяют в некотором роде электрическое соединение между пластинами. Набор пластин, сделанный таким образом, не требует слишком больших затрат, он компактен и надёжен.
Вы также можете сделать набор пластин из плоских листов стали, гофрированного нержавеющего металла или купить пластины в магазине.

Пластины прикреплены к закручивающейся крышке на верхней части генератора болтами, такой способ крепления способствует возникновению электрического соединения с болтами на наружной части крышки и в то же самое время обеспечивает герметическую изоляцию отверстий.
Другой важный момент — ленты, соединяющие крышку и набор пластин, должны быть изолированы, так чтобы ток не шёл между ними через водяной раствор электролита. Ленты, находящиеся под пластинами, тоже должны быть изолированными. Для изоляции лучше всего подходят термоусадочная упаковка. Если ни один из этих вариантов Вам не подходит, то вы можете обмотать пластины изоляционной лентой. Если Вы используете изоляционную ленту, то должны плотно наматывать её на пластины, немного растягивая её по мере того как Вы наматываете её. Та часть, которая находится под крышками, должна быть изолирована перед тем, как пластины будут собраны.

На хлорвиниловом корпусе для генератора расположены два коленных соединения, прикреплённых к корпусу; между трубами прикреплена часть трубы из прозрачной пластмассы, чтобы уровень воды внутри можно было определить, не открывая крышку. Если пространство ограничено, вы можете установить барборер отдельно.

Резьба колен труб диаметром 13 миллиметров, которые согнуты под углом 90 градусов, и расположены на концах трубы бароборера диаметром 2,54 см, заполнена силиконом. Это позволяет им служить дополнительным устройством для снятия давления, если газ воспламениться. Эта дополнительная деталь генератора нужна для обеспечения вашей безопасности.

При работе с генератором используется гидроксид калия (KOH) или, как его ещё называют, едкий калий. Вы можете использовать пищевую соду, т.к её можно найти почти в каждом доме, однако действие гидроксида калия будет длиться дольше и вода будет прозрачнее.
Для того чтобы количество гидроксида калия в генераторе было достаточным, наполните генератор дистиллированной водой, а затем постепенно в небольших количествах добавляйте гидроксид калия или соду , пока ток через генератор не будет приблизительно на 4 А ниже , чем рабочий ток в 20 А. Это позволяет генератору подогреваться, когда он вырабатывает больший ток, т. к. электролитная вода горячая. Приблизительное количество гидроксида калия — две полные чайные ложки. Очень важно использовать именно дистиллированную воду, т.к. в водопроводной воде есть примеси, которые закупоривают генератор. Нужно быть очень осторожным при работе с гидроксидом калия, т.к. это едкое вещество. Если гидроксид попадёт на кожу, немедленно смойте его большим количеством воды. При необходимости используйте уксус, который является кислотой, он нейтрализует гидроксид. При использовании пищевой соды Вы не столкнётесь с такими неприятностями.
Завершённый генератор выглядит следующим образом:

 

Генератор может быть сделан и из других материалов, которые Вы сочтёте более приемлемыми.

Последний этап – это соединение водородного генератора с двигателем. Обычно генератор устанавливается рядом с карбюратором или корпусом дроссельных заслонок таким образом, что короткая часть трубы может быть использована для соединения генератора с впускным устройством двигателя. Вы можете присоединить генератор к воздушной камере, где находится воздушный фильтр, или установить генератор во впускном канале. Чем ближе к корпусу дроссельных заслонок вы его установите, тем лучше, мы хотим уменьшить объём HHO газа, который находится перед впускной системой. Это сделано из соображений безопасности. Чем короче длина трубы в воздухоприёмнике , тем лучше. Из соображений безопасности, мы хотим ограничить количество открытого (свободного) газа HHO.

Как подключить водородный генератор к электро питанию автомобиля
Используйте провода и электрический кабель, рассчитанный на 20 А постоянного тока, не меньше. В данном случае лучше взять провод, который проводит больший ток; рекомендуется использовать части, которые будут проводить ток в 30 А . Проведите питание через цепь зажигания, так чтобы оно включалось только тогда, когда двигатель заработает. Реле номиналом 30 А следует установить, чтобы предотвратить повреждение цепи зажигания и переключателя, который не рассчитан на ток, превышающий 20 А. Убедитесь, что предохранитель рассчитан на предполагаемый ток (лучше всего на 30 А). Вы также можете использовать тумблер для дальнейшего контроля над системой. Из соображений безопасности можно подвести датчик давления масла к реле, для того чтобы устройство включалось, только тогда, когда двигатель запускается. Всё должно быть прочно. Любое неплотное соединение может спровоцировать выделение искры или высокой температуры и привести к возгоранию, таким образом убедитесь, что все соединения плотные, и будьте готовы часто проверять их , чтобы удостовериться, что все соединения соответствуют технике безопасности.
Заполнение генератора водой
Заполните генератор дистиллированной водой и добавьте туда пищевую соду или гидроксид калия, при использовании пищевой соды Вам придётся проделывать это чаще. Сначала , заполните водородный генератор дистиллированной водой на 6см ниже верхнего края. Добавьте в воду чайную ложку гидроксида калия (KOH), NaOH или соды, затем закройте крышку. На данный момент не следует плотно закрывать крышку. Соедините 12-вольтовый источник питания с разъёмами и подключите к генератору Вашего двигателя. Стремитесь получить ток в 16 А, когда генератор водорода охлаждён. Как только температура воды начнёт повышаться токовая тяга будет увеличиваться на 4 А, пока не достигнет 20 А. Именно по этому Вы должны получить ток в 16 А, когда генератор охлаждён. Если ток будет слишком большим, отлейте немного воды, которая находится внутри и влейте небольшое количество дистиллированной воды. Если ток слишком маленький, добавьте небольшое количество соды или гидроксида калия, пока ток не достигнет 16 А. Если генератор переполнится, то часть водного раствора электролита пойдёт по выпускной трубе, поэтому к генератору присоединена труба, которая показывает уровень водного раствора внутри генератора. Обычно генератор нужно заряжать раз в неделю, это зависит от того, как долго он находится в работающем состоянии. Добавьте дистиллированную воду, затем снова проверьте токовую нагрузку. Вы можете заметить снижение тока, когда Вы добавляете воду, это обычная ситуация. Небольшое количество соды или гидроксида калия испаряется из генератора и накапливается в испарениях, поэтому так часто приходится добавлять соду или гидроксид калия. С помощью воды в барборере HHO газ очищается от примесей. Мы рекомендуем вам установить амперметр, чтобы вы могли следить за током, когда генератор работает.

Установка водородного генератора
Чтобы установить генератор, выберете вентилируемое пространство в моторном отделении или возле переднего бампера перед радиатором. Автомобили отличаются друг от друга, поэтому вам следует выбрать наиболее приемлемый вариант для вашей машины. Для установки лучше всего подойдут пластиковые стяжки, но старайтесь не перетянуть их, иначе хлорвиниловая труба деформируется и треснет. Закрепите нижнюю часть генератора с помощью металлической скобы, используйте две пластиковые стяжки: одну – для верхней части генератора, другую – для нижней.
Из соображения безопасности не устанавливайте генератор в салоне автомобиля.
Выходной шланг и барборер
Барборер должен быть заполнен водой от 1/3 до 1/2. Для барборера подойдет водопроводная вода. Обратный клапан перед барборером предназначен для того, чтобы не допустить попадания воды из барборера обратно в генератор, когда он охлаждается и газ сжимается.
Удостоверьтесь, что уровень воды в барборере достаточный. Недостаточный уровень воды может привести к возгоранию. Вода в барборере служит защитным средством между аккумулированным газом HHO и впускным устройством двигателя. Установите выпускной шланг из барборера как можно ближе к карбюратору или корпусу дроссельных заслонок. Для этого сделайте соединительное отверстие внутри впускной трубы или воздушного фильтра. Шланг должен быть коротким, это делается, чтобы уменьшить количество HHO газа внутри шланга. Рекомендуется использовать 6-ти миллиметровую поликремневую трубу. Ниже представлен список всех деталей, которые потребуются для изготовления водородного генератора и барборера.

Хлорвиниловая труба диаметром 10,16 см 1 труба длиной 30,48 см составляет корпус генератора
крышка для хлорвиниловой трубы 1 Закрывает дно генератора
Закручивающаяся крышка для хлорвиниловой трубы 1 Закрывает верхнюю часть генератора
Выходной патрубок для быстрого соединения, согнутый под углом 90° 13/8” Можно приобрести в магазине бытовой техники
Патрубок для трубы-индикатора уровня воды Можно приобрести в магазине бытовой техники
Труба для индикации уровня воды размером 20,32 см Можно приобрести в магазине бытовой техники
Крышка выключателя из нержавеющей стали 16 Предназначена для соединения пластин
Ленты из нержавеющей стали длиной 30,48 см 2 Можно изготовить из столовых приборов : вилок, ложек
30 см прозрачная поликремневая труба с внутренним диаметром 3/4 дюйма Можно приобрести в магазине бытовой техники
Болты из нержавеющей стали (5/16 дюймов), длиной 1.25 дюймы 2 Предназначены для соединения лент с крышкой
Гайки или шайбы из нержавеющей стали (5/16 дюймов) 6 Предназначены для соединения лент с крышкой
Нейлоновый резьбовой стержень диаметром 5/16 дюймов
Нейлоновый резьбовой стержень диаметром 5/16 дюймов
Нейлоновые шайбы (5/16 дюймов) толщиной 4,06 см 1 упаковка
Нейлоновая(6/6) плоская шайба (5/16 дюймов)
Контргайки(5/16-45,72 см) толщиной 1/4” 20 упаковок
Парубок для барборера, согнутый под углом 90° 2
Предохранительный клапан 1
Труба (1/4 дюйма)
Полихлорвиниловый клей 1 тюбик Желательно такого же цвета как и труба
Неопреновая уплотнительная шайба 2
Обкладка для инструментов Это жидкий пластик, который используется для создания обкладок на ручках инструментов
Светодиод диаметром 10 мм 1 Красный, с клеммой
Резистор номиналом 470 Ом мощностью 0,25 Вт 1 Маркировка на корпусе резистора: жёлтая, фиолетовая, коричневая

Если Вы собираетесь установить водородный генератор в машине, Вам потребуется сенсорный регулятор или устройство контроля впрыска топлива, чтобы обеспечить более жёсткий контроль над системой. Вам также понадобится сенсорный регулятор кислорода.

Если Вы не нашли нужной Вам информации в данном материале, обратите внимание на рекламу на нашем сайте-она для Вас совершенно бесплатна, но порой приносит хороший результат.

Panasonic выводит водородные электрогенераторы на европейский рынок

Компания выпустила две новые работающие на водороде модели домашних электрогенераторов специально для европейского региона, а также заключила соглашение о сотрудничестве с немецкой Viessmann.

Водородные генераторы электроэнергии для домашнего использования, которые преобразуют газ в электричество и тепло, появились в Японии в 2009 году. В конце прошлого года объем их рынка в этой стране составил около $1,7 млрд, сообщает Nikkei Asian Review.

Теперь Panasonic, один из крупнейших производителей домашних водородных генераторов в Японии, готовится к расширению на европейский рынок: компания выпустила две новые модели специально для европейских стран и заключила договор о сотрудничестве с немецким производителем компонентов систем отопления Viessmann.

Водородные электрогенераторы преобразуют в электричество энергию, вырабатываемую в результате электрохимической реакции между кислородом и водородом, которые используются в качестве топлива. В результате реакции вырабатывается только вода и не происходит выбросов углекислого газа, которые считаются главной причиной глобального потепления, поясняется на сайте Panasonic.

Тем не менее, такой вид производства энергии нельзя назвать абсолютно чистым, так как углекислый газ вырабатывается еще на этапе выделения водорода. Домашние водородные генераторы Panasonic используют в качестве топлива газ, который поставляется в жилые дома через муниципальные сети энергоснабжения, а затем при помощи технологии парового реформинга выделяют из него водород и диоксид угледорода.

Домашний водородный генератор в стандартной комплектации обойдется в Германии примерно в €25 000, но некоторые федеральные земли выделяют субсидии на установку генераторов в размере до €12 500. После запуска новых моделей в Германии компании планируют расширение на рынки Швейцарии, Австрии и Великобритании.

Японское правительство активно поддерживает переход на водородное топливо: власти потратят около $400 млн на субсидирование водородного транспорта к летним Олимпийским играм, которые пройдут в Токио в 2020 году. В сфере домашних водородных генераторов правительство также поставило амбициозную цель — добиться 1,4 млн установок к 2020 году, сообщает Bloomberg.

Ранее о том, что водород — это топливо будущего, заявляли Honda и GM. Компании вложили по $85 млн в строительство в Мичигане фабрики по производству водородных топливных элементов для автомобилей.

Источник  https://m.hightech.fm/2017/03/13/japan-home-fuel-cells

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *