Posted on

Содержание

Линейная Электрическая Схема — tokzamer.ru

Для упрощения чертежей и их восприятия применяются различные методики. В этом документе указываются общепринятые варианты черчения подобных элементов.


Следующим шагом определяются линии групповых частей, которые будут отходить от основных питающих.

Этот этап включает в себя все необходимые материалы для прокладки сети, разъяснения по схемам монтажа кабелей, подключение к сети объектов-потребителей, запуск аппаратов защиты в распределительном щитке и вводном устройстве частного дома.
Автоматическая прорисовка однолинейной схемы

Ведь для этого существует множество платных и бесплатных программ, а также онлайн сервисов.

Дома однолинейная схема электроснабжения чертится вручную или при помощи AutoCAD чертёжная программа. Согласование разработанного проекта по электроснабжению.

Однолинейные схемы делятся на две группы: — Расчетная однолинейная схема — электрическая схема объекта или электроустановки, составляемая для строящихся проектируемых объектов, потому что при подготовке проекта производится расчет электрических нагрузок, выбор проводников и электрических аппаратов защиты и автоматики; — Исполнительная однолинейная схема — схема электроснабжения для действующего объекта или электроустановки.



А так же линии групповых сетей, которые будут отходить от питающих. Такой подход позволяет обеспечить более целесообразное использование технической документации.

Важно знать, что все указанные элементы и размеры должны быть точными и четкими.

ВЛ80 Цепи управления линейными контакторами

Возобновляемые источники энергии

Расчет требуемой мощности потребителя и в соответствии с ним — разработка однолинейной схемы электроснабжения частного дома. Пример однолинейной схемы электроснабжения Однолинейные схемы электроснабжения других объектов не имеют принципиальных различий с рассмотренной нами однолинейной схемой электроснабжения частного дома или любого другого сооружения.


Она же позволяет определить нахождение запитывающей магистрали. В проекте должны быть также учтены наружное и внутреннее освещение, а также дополнительные требования по проектированию определенных систем безопасности дома — сигнализаций, камер видеонаблюдения, защиты систем доступа.

На правильной, схеме электрооборудования, показываются все розетки квартиры, указывается их высота от пола и обозначается трассировка электропроводки от квартирного электрощита или распределительного этажного щита. Так, она включает в себя: точку подключения объекта к электросети; вводно-распределительные устройства; точку прибора, применяемого для подключения и его марку; иногда нужны параметры щита; кабель питания должен не только быть изображенным схематически, то и должно быть указано его сечение и марка; информация о номинальных и максимальных токах приборов, которые применяются в рамках того или иного помещения.

Правила выполнения могут варьироваться в зависимости от требования к конкретным помещениям.

Однолинейная схема электроснабжения бывает нескольких видов Это пара основных видов однолинейных схем, которые при грамотном составлении, становятся удобной инструкцией для быстрого монтажа элементов электрической сети. Однолинейные схемы бывают нескольких видов: Исполнительная.

Вы должны уделять внимание любой мелочи, ведь основные требования к проекту выдвигаются снабжающей электричеством компанией.

Поэтому, по окончании работ, заказчик получает не только схему, но и рекомендации по устранению дефектов, выявленных при обследовании.
Однолинейная схема электроснабжения дома.

Программы для рисования электрических схем

Но есть три основные схемы электропроекта, но которых базируется, не только весь проект, но и вся будущая работа электромонтажников или электриков. Она выполняется тогда, когда возникает необходимость ввести серьезные изменения в проект по результатам обследования действующей электроустановки и выявления несоответствий существующим нормативам и правилам.

Помимо расчетных и исполнительных, однолинейные схемы бывают такие: структурные — содержат общие данные про электроустановку, которая выражается в указании связей силовых элементов, в частности, трансформаторов, линий электропередач, точек врезки и многого другого; функциональные — их делают преимущественно с целью абстрактной передачи действий механизмов, к которым присоединяется электроснабжение, также указывается их взаимодействие друг с другом и то, как они влияют на общее положение дел с точки зрения безопасности.



Можно выделить несколько замечательных бесплатных программ для черчения электросхем в доме и квартире на русском языке: Компас электрик. По своей сути особо принципиальных различий между ними нет, за исключением назначения каждого из видов. Важно знать, что все указанные элементы и размеры должны быть точными и четкими.

Поэтому, по окончании работ, заказчик получает не только схему, но и рекомендации по устранению дефектов, выявленных при обследовании. От такой схемы будут зависеть электромонтажные работы, безопасная эксплуатация электросети.

Можно выделить несколько замечательных бесплатных программ для черчения электросхем в доме и квартире на русском языке: Компас электрик. При ее правильном составлении обеспечивается полная электро- и пожарная безопасность для людей и объектов.

Новые технологии проектирования


Однолинейные схемы бывают исполнительные и расчетные В зависимости от вида электросхемы, этапы ее создания будут различны: В исполнительной электросхеме первым шагом построения будет составление расчетно-вычислительных материалов. До точки подключения эксплуатационную ответственность несет поставщик электроэнергии владелец сетей , после нее — потребитель электроэнергии. Расчетная однолинейн ая электрическая схема выполняется для объектов нового строительства. Это автоматы, УЗО, контакторы, выключатели и прочие части электросети. Подобная однолинейная схема электроснабжения того или иного жилого и нежилого объекта является ключевым документом, который отвечает за эксплуатационную ответственность разных сторон.

Однолинейная электрическая схема электроснабжения Для упрощения чертежей и их восприятия применяются различные методики. Такое подключение отлично демонстрирует однолинейная схема трансформатора КТП : Фото — однолинейная схема трансформатора КТП Примеры того, что должна включать однолинейная типовая схема электроснабжения поликлиники, квартиры, загородного или дачного дома , завода или прочих помещений: Точку, где объект подключается к электрической сети; Все ВРУ вводно-распределительные устройства ; Точку и марку прибора, который используется для подключения помещения в большинстве случаев, нужны также параметры щита ; Нужно не только начертить кабель питания, но и отметить на схеме его сечение и марку, иногда мастера помечают номинал; Проект должен содержать данные про номинальные и максимальные токи оборудования, которое используется на объекте.

Общее представление о линейной схеме электроснабжения Схема — это изображение в графике каких — либо элементов конструкции, указанные на чертежах. От такой схемы будут зависеть электромонтажные работы, безопасная эксплуатация электросети.

Но при этом однофазная проводка обозначается одной линией с одним штрихом. На ней указано все, что нужно электромонтажнику для устройства электропроводки квартиры, кроме привязки розеток и светильников по месту установки. Цифра в такой схеме отвечает за определение количества фаз, а перечеркнутая косыми отрезками линия — это определение фазы.
Как читать электрические схемы. Урок №6

Навигация по записям

В состав проектной документации может входить несколько электрических схем. Дома однолинейная схема электроснабжения чертится вручную или при помощи AutoCAD чертёжная программа.

Данный вид электросхем выполняется по мировым стандартам.

В схему в обязательном порядке нужно включить не только основные её составляющие кабеля ввода, заземления, УЗО , но и розетки, выключатели света в комнатах. Однолинейная схема рисуется просто: Сначала чертится линия, которая будет определять многофазное питание.

А этот вид схемы составляется при строительстве нового объекта.

Правила выполнения могут варьироваться в зависимости от требования к конкретным помещениям. Электросхема является документом, в котором присутствуют все составляющие электроэлементы. До точки подключения эксплуатационную ответственность несет поставщик электроэнергии владелец сетей , после нее — потребитель электроэнергии. Такое подключение отлично демонстрирует однолинейная схема трансформатора КТП: Фото — однолинейная схема трансформатора ктп Примеры того, что должна включать однолинейная типовая схема электроснабжения поликлиники, квартиры, загородного или дачного дома, завода или прочих помещений: Точку, где объект подключается к электрической сети; Все ВРУ вводно-распределительные устройства ; Точку и марку прибора, который используется для подключения помещения в большинстве случаев, нужны также параметры щита ; Нужно не только начертить кабель питания, но и отметить на схеме его сечение и марку, иногда мастера помечают номинал; Проект должен содержать данные про номинальные и максимальные токи оборудования, которое используется на объекте.

Еще по теме: Составление сметы на электромонтажные работы

Особенности электроснабжения

Граница балансовой принадлежности.. Электросхема является документом, в котором присутствуют все составляющие электроэлементы.

На сегодняшний день их чаще всего визуализируют на мониторе компьютера, где есть функция принятия решения пользователем вручную. ЕСКД — это Единая система конструкторской документации.

Важно помнить, что при необходимости расчетная часть исполнительной однолинейной схемы может быть увеличены в несколько раз. Она содержит сведения о расчетных нагрузках, о потерях напряжения, о приборах коммерческого учета, о режимах работы объекта при отключениях электроэнергии и т. На сегодняшний день их чаще всего визуализируют на мониторе компьютера, где есть функция принятия решения пользователем вручную. Функциональные — применяются в случаях, когда имеется большое количество различных потребителей машин, станков, оборудования , и отображают общую картину сети и взаимодействие между механизмами, электроснабжением и друг с другом.

Примеры схем освещения квартир.

В схему в обязательном порядке нужно включить не только основные её составляющие кабеля ввода, заземления, УЗО , но и розетки, выключатели света в комнатах. На ней указано все, что нужно электромонтажнику для устройства электропроводки квартиры, кроме привязки розеток и светильников по месту установки. На правильной, схеме электрооборудования, показываются все розетки квартиры, указывается их высота от пола и обозначается трассировка электропроводки от квартирного электрощита или распределительного этажного щита.
Однолинейные схемы

Однолинейная схема электроснабжения своими руками

Очень часто с целью упрощения восприятия чертежей по электроснабжению используются те или иные методики, одной из которых является однолинейная система электроснабжения жилого помещения, производственного или другого строения. Такая система позволяет понять и разработать те или иные проекты повышенной сложности. Сегодня мы расскажем, как создать однолинейную схему электроснабжения своими руками, и что она представляет собой.

Однолинейная схема электроснабжения

Ключевая особенность однолинейной схемы электроснабжения состоит в том, что такая принципиальная схема состоит только из линий обозначения трех- или двухфазных цепей. Подобное решение позволит более разумно использовать техническую документацию и совместить в рамках одного проекта сразу несколько чертежей, которые не связаны друг с другом.

По типу однолинейные схемы электроснабжения подразделяются на такие:

  • исполнительные;
  • расчетные.

Расчетная схема

Расчетная однолинейная схема электроснабжения чаще всего применяется после окончательного просчета нагрузок, которые требуются для электропитания одного помещения. Часто такую схему проектируют уже после того, как были совершены просчеты по проводам и кабелям.

Расчетная однолинейная схема включает в себе следующее:

  • структурная электрическая;
  • функциональная электросхема;
  • монтажная электросхема;
  • кабельные планы;
  • чертежи;
  • проект пожарной безопасности.

Исполнительная схема

А вот исполнительная схема электроснабжения применяется с целью перерасчета существующей системы подачи электроснабжения, чаще всего, это делают для того, чтобы серьезно обновить уже готовый проект.

Исполнительная схема электроснабжения – это документ, который включает в себя такие данные:

  • текущее состояние сетей;
  • приборов, которые входят в сети;
  • рекомендации по устранению тех или иных недостатков, выявленных в ходе проведения тех или иных технических мероприятий.

Классификация однолинейных схем

Во время проектирования систем электроснабжения своими руками применяются разные схемы, которые отображают плановые работы, существующую уже систему или же разделение систем те или иным образом. Помимо расчетных и исполнительных, однолинейные схемы бывают такие:

  • структурные – содержат общие данные про электроустановку, которая выражается в указании связей силовых элементов, в частности, трансформаторов, линий электропередач, точек врезки и многого другого;
  • функциональные – их делают преимущественно с целью абстрактной передачи действий механизмов, к которым присоединяется электроснабжение, также указывается их взаимодействие друг с другом и то, как они влияют на общее положение дел с точки зрения безопасности. Такие схемы в основном применяются для проектирования промышленных объектов с большим количеством машин, механизмов и оборудования, которые тоже нужно наносить на схему;
  • принципиальные – чаще всего выполняются согласно ГОСТ и других стандартов той или иной страны, например, IEC, ANSI, DIN и т.д.;
  • монтажные – должны четко быть согласованными с теми или иными архитектурными решениями и строительными конструкциями, в частности, несущими. Каких-то специальных требований к их оформлению нет, то размеры оборудования и сечение проводов нужно указывать четко, также нужно указывать точно диаметры кабелей и четкие размеры элементов крепежа и прочих аксессуаров.

Помимо перечисленных схем с кабельными планами есть также и электрические специальные схемы, которые используются при проектировании об отображении компонентов по отдельности.

Например, в микроэлектронике для того чтобы отобразить микрокристалл интегральной микросхемы, нужна специальная топологическая схема. Такие схемы называют мнемосхемами, они имеют вид плакатов, где действующими элементами выступают приборы и сигнализирующая аппаратура и всевозможные имитационные агрегаты. На сегодняшний день их чаще всего визуализируют на мониторе компьютера, где есть функция принятия решения пользователем вручную.

Итак, можно сделать вывод, что однолинейные графические системы должны быть созданы согласно действующим в стране строительным правилам и нормам и включать в себя такую информацию:

  • полные и правдивые сведения об оборудовании;
  • расчеты аварийного выключения электроснабжения объекта как целиком, так и частично;
  • сведения о системе автономного питания, что важно на этапе проектирования частных домов, располагающихся вдалеке от центральных электромагистралей.

Однолинейная схема электроснабжения своими руками

Такая однолинейная схема электроснабжения того или иного объекта должна соответствовать нормам ГОСТ. Графическое изображение должно включать в себя:

  • три фазы, которые питают сеть помещения;
  • линии групповых сетей, которые отходят от питающих.

Если составляете схему своими руками впервые, помните, что самое в ней главное – это дать с ее помощью общее понятие о конструкции системы электропитания рассматриваемого помещения.

В итоге вы должны начертить довольно простое изображение, которое обязано четко показывать ключевые параметры сети электроснабжения.

Делается все очень просто:

  • начертите линию, которая будет определять многофазное питание;
  • рядом с ней поставьте цифру с перечеркнутым штрихом.

В данной схеме цифра соответствует количеству фаз, а перечеркнутый штрих – это их определение.

Кроме того, что чертеж включает в себя изображения отдельных проводов, необходимо изобразить на нем дополнительные детали электросхемы объекта. Чтобы знать, как нужно обозначать УЗО в квартире, выключатели, контакторы и прочие элементы, изучите соответствующий ГОСТ, который без труда можно отыскать на тематических ресурсах в Интернете. В них вы легко сориентируетесь на тему того, как своими руками обозначить в чертеже тот или иной элемент системы.

Чтобы защитить групповые линии от перегрузок и общих цепей объекта от электрозамыкания, нужно применять автоматические выключатели. Проект, помимо ключевых составляющих, таких как кабели ввода или заземления либо УЗО, должна включать в себя информацию о наличии розеток или выключателей света в помещениях.

Ниже приведем пример создания однолинейной типовой схемы электроснабжения для жилой квартиры, частного дома, производственного или социального объекта. Так, она включает в себя:

  • точку подключения объекта к электросети;
  • вводно-распределительные устройства;
  • точку прибора, применяемого для подключения и его марку;
  • иногда нужны параметры щита;
  • кабель питания должен не только быть изображенным схематически, то и должно быть указано его сечение и марка;
  • информация о номинальных и максимальных токах приборов, которые применяются в рамках того или иного помещения.

Также не забывайте о необходимости применения примерных расчетных нагрузок, которые могут быть предельными для той или иной сети электропитания в вашем населенном пункте. Их правила выполнения могут отличаться в зависимости от требования к помещению.

Попытайтесь уделять внимание каждому элементу, даже минимальному, поскольку ключевые требования к проекту выдвигаются компанией, которая снабжает вас электричеством. Подобная однолинейная схема электроснабжения того или иного жилого и нежилого объекта является ключевым документом, который отвечает за эксплуатационную ответственность разных сторон.

Если вы хотите своими руками и совершенно бесплатно создать однолинейный проект того или иного объекта, вам потребуется ЕСКД, то есть Единая система конструкторской документации.

В домашних условиях своими руками ее можно начертить вручную или специальной чертежной программы на компьютере. В частности, программа AutoCAD вам поможет создать проект офиса, торгового центра, частного дома или другого строительного объекта.

Если вам нужно создать такую схему, но своими руками вы не осилите эту работу, то необходимо обратиться в конструкторское бюро своего населенного пункта, специалисты которого помогут вам справиться с этой задачей.

Проектируем электрику вместе: Однолинейная схема электроснабжения

Почему схема однолинейная? Однолинейная схема – это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название. Назначение однолинейной схемы.. Точка подключения.. Граница балансовой принадлежности..  Коммерческий учет электроэнергии.. Правила выполнения однолинейной схемы.. Пример однолинейной схемы электроснабжения.. Однолинейная схема частного дома.

Почему схема однолинейная?

В состав проектной документации может входить несколько электрических схем. В их числе есть и однолинейная схема.

Название ее чисто условное. Однолинейная схема – это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название.

Различают исполнительную и расчетную однолинейную схему.
Для находящихся в эксплуатации электроустановок используется исполнительная схема. Она выполняется тогда, когда возникает необходимость ввести серьезные изменения в проект по результатам обследования действующей электроустановки и выявления несоответствий существующим нормативам и правилам.

Для проектируемых новых объектов выполняется расчетная однолинейная схема. Она выполняется после расчетов электрических нагрузок, выбора защитно-коммутационных аппаратов и кабельно-проводниковой продукции. Расчетная однолинейная схема является основой для разработки электрических принципиальных и электромонтажных схем, необходимых для выполнения монтажных работ.

Правила выполнения однолинейной схемы электроснабжения

Правила, согласно которым выполняются все виды электрических схем, в том числе и однолинейная схема электроснабжения, определены ГОСТ 2. 702-75.
Как уже говорилось выше, под понятием «однолинейная схема электроснабжения» понимается графическое изображение трех фаз питающей сети и отходящих линий групповых сетей в виде одной линии. Это условное изображение значительно упрощает и делает более компактными схемы электроснабжения. Подробная детализация подобным схемам не нужна, поскольку они предназначены давать общее представление о строении электросети и основных ее элементах.

Условное изображение трехфазного напряжения питания, для примера, приведено на рисунке «а», а его упрощенное изображение, которое и явилось причиной названия однолинейных схем отображено на рисунке «б».
Для того, чтобы визуально отобразить на схемах трехфазное подключение, используют несколько обозначений, таких как перечеркнутая линия с цифрой «3», расположенной рядом с вводом или выводом проводки, и прямая линия, перечеркнутая тремя косыми отрезками.
Для однолинейных схем электроснабжения обозначения приборов, пускателей, контакторов, выключателей, розеток и прочих элементов применяют согласно ГОСТ 2. 709, как и для всех видов электрических схем.

Назначение однолинейной схемы

Однолинейная схема электроснабжения служит одним из основных документов при заключении договоров на поставку электроэнергии и выдаче технических условий (ТУ) на присоединение к электрическим сетям.
Исходя из однолинейной схемы электроснабжения, определяются границы балансовой принадлежности и эксплуатационной ответственности сторон.

Граница балансовой принадлежности и эксплуатационной ответственности сторон находится в точке подключения. До точки подключения эксплуатационную ответственность несет поставщик электроэнергии (владелец сетей), после нее – потребитель электроэнергии.

Коммерческий учет электроэнергии осуществляется во вводном устройстве, устанавливаемом, как правило, на границе балансовой принадлежности. Конкретное место установки приборов коммерческого учета прописывается в ТУ на присоединение к сетям. Обычно владелец сетей всегда требует установки шкафа учета в точке подключения, поскольку, как было сказано, за участок линии от точки подключения до объекта эксплуатационную ответственность несет потребитель. На самом объекте могут устанавливаться приборы технического учета для контроля общего потребления и оценки тепловых потерь электроэнергии.

Какие сведения должны быть указаны на однолинейной схеме?

На однолинейной схеме, входящей в состав проекта электроснабжения, указывают:
 • точку подключения объекта;
 • границу балансовой принадлежности;
 • марку и номинальный ток вводного устройства в точке подключения;
 • сведения о приборах коммерческого учета;
 • марку питающего кабеля или воздушной линии, их длину и сечение;
 • расчетные значения потерь напряжения в кабельных и воздушных линиях;
 • установленная и расчетная мощность ВРУ, их расчетный ток и cosφ; 
 • марки и номинальные токи защитно-коммутационных аппаратов;
 • расчетные нагрузки;
 • шкаф АВР и режим его работы.

Выбор сечения проводников и расчет потерь напряжения можно посмотреть на   странице «Выбираем сечение проводников», выбор номинальных токов аппаратов защиты — на странице «Выбор автоматических выключателей».

Однолинейная схема должна быть информативной

Как мы видим, однолинейная схема является одним из основополагающих документов в проекте электроснабжения. Она содержит сведения о расчетных нагрузках, о потерях напряжения, о приборах коммерческого учета, о режимах работы объекта при отключениях электроэнергии и т. д.
Сведения, перечисленные выше, должны присутствовать на однолинейной схеме в обязательном порядке. Отнеситесь к оформлению однолинейной схемы со всей ответственностью и тогда у вас не будет проблем с согласованием и утверждением проекта.
Пример оформления однолинейной схемы жилого дома представлен на рис. 1. Схема кликабельна, ее можно увеличить.

Пример однолинейной схемы электроснабжения
                                          
Однолинейные схемы электроснабжения других объектов не имеют принципиальных различий с рассмотренной нами однолинейной схемой электроснабжения частного дома или любого другого сооружения.

В населенных пунктах воздушные линии 380/220В проходят, как правило, в непосредственной близости от домов. Поэтому приборы учета электроэнергии допускается устанавливать на фасадах домов, как это показано на рис. 1.

                      




Рис. 1 
      
Если статья Вам понравилась и Вы цените вложенные в этот проект усилия – у Вас есть возможность внести посильный вклад в развитие сайта на странице «Поддержка проекта».

Статьи по теме:

1. Схема электроснабжения загородного дома
2. Внутреннее электроснабжение
3. Групповые сети освещения

Внимание! 
Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и процессы, в них происходящие.

Однолинейная схема

Схемой называют документ, который графически сконструирован специалистами, предназначенный для изображения и обозначения на нем основных деталей изделия, а также связи между ними.
Для того чтобы упростить чертежи, чтобы сделать их восприятие максимально простым для обычного пользователя, вырабатывают разнообразные методики их создания. Все линии однофазных и трехфазных сетей отображаются одной линией на схеме. При разработке проектов для жилых домов либо предприятий всегда применяют однолинейную схему, которая значительно может упростить работу с проектом. Проектная документация может включать в себя несколько однолинейных схем.
Существует два вида однолинейных схем: исполнительная, расчетная.
Исполнительная схема чаще всего применяется при необходимости кардинальных изменений в существующий проект, находящийся на стадии установления. При ее использовании перерассчитывают существующую систему подачи энергии.
В то же время расчетную однолинейную схему обычно используют уже после того, как были просчитаны нагрузки, которые необходимы для обеспечения энергией здания либо помещения. Также, иногда ее могут создавать до выяснения потребности питающих кабелей и проводов.

Применение однолинейной схемы

Однолинейную схему используют как один из главных документов во время заключения договора о поставках электроэнергии, а также выдачи тех-условий на добавление к электросети. Опираясь на однолинейную схему, обычно обозначают границы ответственности поставщика и потребителя электроэнергии.

Основные функции однолинейной схемы могут отличаться на разных этапах:

• проектирования;
• производства;
• эксплуатации.
Во время первого этапа однолинейную схему используют с целью точного обозначения структуры будущего творения и выбора схемы электроснабжения.
Во время второго – чтобы ознакомиться с самой конструкцией, а также разработать технологические процессы создания изделия.
Ну а уже на третьем этапе данный вид схемы применяется с целью выявления, каких либо неполадок в работе системы, чтобы вовремя их исправить, проведя техническое обслуживание.
Изготовление однолинейных электрических схем предназначается также и для действующих электроустановок. В этом случае, в схеме представлено более упрощенные линии, точки подключения и электрические аппараты. Такие схемы предназначаются для внутреннего использования ответственным персоналом.

Отличия однолинейной схемы

Однолинейная схема имеет свое определенное отличие. Оно заключается в том, что на данном типе схемы показывается оборудование только лишь одной фазы. В случае если какой-либо вид оборудования был установлен не во всех фазах, то в схеме пользователь сможет увидеть данное отличие.

Что содержит в себе однолинейная схема?

Схема электроснабжения должна состоять из таких элементов как линии обозначения, а также однофазные и трехфазные цепи.
По примеру загородного дома посмотрим, что включает в себя однолинейная схема:
• точка подключения дома к электросети;
• данные о вводных и распределительных устройствах;
• информация о щитке электричества;
• данные о приборе, где было выполнено подключение загородного дома к сети электричества;
• отметку сечения кабеля и его марку на схеме;
• информацию о номинальных и максимальных токах оборудования, которое используется в доме.

• Расчет моента нагрузки

• Выбор кабеля для электроплиты

• Выбор кабеля для розеток
Существуют определенные требования, которые необходимо выполнять при создании однолинейной схемы. Их устанавливает государство, поэтому соблюдение – обязательно. Их выполнение обеспечивает пожарною и электрическую безопасность помещения.

Вот некоторые основные правила из всего списка:

• Когда на систему электроснабжения происходит довольно большая нагрузка, то стоит применить устройство в режиме защитного отключения;
• необходимо делать расчеты нагрузок для отдельных компонентов сети электричества, которые определяют особенности исходных материалов;
• указать местонахождение выключателей и розеток в помещение, которое необходимо определять лишь при помощи нормативных показателей.

• Выбор того или иного кабеля

Как читать однолинейные схемы?

Существует определенный алгоритм чтения данного вида схемы:
1. Начинается чтение с ознакомления и списком элементов, которые показаны в виде условных обозначений. К ним будет предоставлены пояснения.
2. Далее идет процесс определения системы электропитания, электромагнитов, регуляторов и так далее.
3. Следующим шагом будет изучение различных цепей электроприемника.
4. Последним шагом будет определение поведения электроприемников при частичном отключении электропитания, а также после его возобновления.

Детальный обзор, что такое «однолинейная схема электроснабжения«, читайте на этой странице.

Главные схемы электрических соединений подстанций | Справка

В современных условиях для обеспечения надежности и экономичности электроснабжения потребителей необходима совместная работа большого числа электростанций, подстанций и связывающих их электрических сетей разных напряжений. Однако при этом электрические схемы станций и подстанций должны обеспечивать соединение их отдельных элементов достаточно просто, надежно и удобно. В условиях эксплуатации подстанций возникает необходимость изменения схемы при выводе оборудования в ремонт, ликвидации аварий. Чтобы можно было производить эти изменения электрических схем, их элементы — трансформаторы, шины распределительных устройств (РУ), воздушные и кабельные линии — соединяют друг с другом посредством коммутационных аппаратов.
Главной схемой электрических соединений или схемой первичной коммутации называется схема электрических соединений основного электрооборудования, к которому относятся трансформаторы силовые и измерительные, реакторы, коммутационные аппараты и соединяющие их проводники. Для главных схем подстанций определяющими факторами являются местоположение подстанции в энергосистеме и ее назначение, мощность, перерабатываемая на подстанции и проходящая через нее транзитом, количество и мощность трансформаторов и отходящих линий, уровни их напряжений, категории потребителей, которые питаются по этим линиям.
По способу начертания главные схемы подстанций подразделяются на многолинейные, на которых показываются все фазы электроустановки и нулевой провод, и однолинейные, на которых изображается только одна фаза, остальные ввиду их аналогичности не показываются. Графическое изображение однолинейных схем значительно проще, повышается наглядность и запоминаемость таких схем. Однолинейные схемы составляют для всей электроустановки, те участки, схемы, где по фазам есть отличия имеют многолинейное изображение.
Выбранная схема при выполнении электроустановки должна обеспечивать ряд условий:
обеспечивать надежность электроснабжения потребителей;
осуществлять эксплуатацию с минимальными затратами средств и расходом материалов;
обеспечивать безопасность и удобство обслуживания;
исключать возможность ошибочных операций персоналом в процессе срочных переключений.
Выполнение последнего условия затрудняется при очень сложной схеме электроустановки, однако значительное упрощение схемы может вызвать трудности для выполнения первого условия в отношении надежности электроснабжения. Железнодорожные потребители в основном относятся к первой и второй категориям, и для их питания используют чаще трансформаторные подстанции с двумя трансформаторами, один из которых может быть резервным. Для электроснабжения потребителей третьей категории применяют схемы однотрансформаторных подстанций.

Рис. 1. Схема однотрансформаторной подстанции с первичным напряжением 10 кВ
Однолинейная схема однотрансформаторной подстанции с первичным напряжением 10 кВ и вторичным напряжением 0,4 кВ. Подстанция (рис. 1) получает питание по воздушной линии 10 кВ. На вводе подстанции W установлен разъединитель QS и предохранитель FUX, который защищает трансформатор Т от токов КЗ, длительных перегрузок, опасных для трансформатора. От атмосферных перенапряжений, набегающих на подстанцию по воздушной линии, она защищается разрядником FV. РУ-0,4 кВ имеет одинарную систему сборных шин, на которую напряжение подается от трансформатора Т по вводу. На вводе установлен рубильник S{, предохранитель FU2 и трансформатор тока ТА. Так как трансформаторы тока могут устанавливаться не на всех фазах, то эта часть схемы показана в трехфазном изображении во избежание неясностей. Нулевой провод от нейтрали трансформатора до нейтральной шины N показывается отдельно. От сборных шин 0,4 кВ отходят линии потребителей, на которых установлены рубильники (пакетные выключатели) S2-S5 и предохранители FU1-FU6. Конструкция такой подстанции показана на рис. Как видно на рис. 1, схема подстанции очень проста, ее элементы не резервируются, и в случае отказа или повреждения любого из них часть потребителей или все (при повреждении трансформатора) остаются без электроэнергии. Такой недостаток в значительной степени устраняется при использовании подстанций с двумя трансформаторами.
Однолинейная схема двухтрансформаторной подстанции с первичным напряжением 10 кВ и вторичным напряжением 0,4 кВ представлена на рис. 2. В РУ-10 кВ подстанции принята одинарная секционированная на две секции двумя разъединителями QS1 и QS4 система сборных шин. Это позволяет работать на одной секции без отключения другой. Вводы подстанции W2 и IVр которые снабжают электроэнергией потребители второй и третьей категорий, для удешевления и упрощения обслуживания могут выполняться на выключателях нагрузки QW1 и QW4 с заземляющими ножами. На отходящих линиях Wt и W4 и присоединениях понижающих трансформаторов устанавливают выключатели нагрузки QWV Q W2, Q W5, QWb в комплекте с предохранителями FU2, FUV FU4, FUy При этом предохранители целесообразно устанавливать перед выключателями нагрузки, считая по направлению передачи электроэнергии. На вводах применяются выключатели нагрузки ВНЗ- 16 с заземляющими ножами, на отходящих линиях и трансформаторах — ВНПЗ-17. Для учета электроэнергии, отпускаемой потребителям по линиях W] и W4, предусмотрены счетчики, подключаемые к трансформаторам тока ТА{ и ТА , и к трансформаторам напряжения TV] и TV2, которые подключаются к шинам через разъединители QS2 и QSs с заземляющими ножами типа РВЗ-10. Пунктиром показана блокировочная связь разъединителей и их заземляющих ножей, которая не позволяет включать разъединитель при включенном заземляющем ноже и включать заземляющий нож при включенном разъединителе. Защищаются от токов КЗ 7У, и TV2 предохранителями FUl и FU6. Заземление каждой секции сборных шин предусматривается заземляющими разъединителями QSX и QSb типа РВ-10.

Рис. 2. Схема двухтрансформаторной подстанции с первичным напряжением 10 кВ


Рис. 3. Схема двухтрансформаторной подстанции с первичным напряжением 35 кВ

Рис. 3. Схема двухтрансформаторной подстанции с первичным напряжением 35 кВ

Пой наличии воздушных линий 10 кВ должна быть предусмотрена установка разрядников РВО-10, подключаемых к секциям шин через разъединители QS2 и QSy распределительное устройство 0,4 кВ выполняется из щитов серии Щ0-70, которые в зависимости от назначения комплектуются различными аппаратами, рассчитанными на широкий диапазон токов. В РУ-0,4 кВ принята одинарная секционированная автоматическим выключателем SF2 и рубильниками S4 и S5 на две секции система сборных шин. Питание каждой секции осуществляется от своего трансформатора Г, и Т2, подключенного к шинам через автоматические выключатели 5F, и SF3 и рубильники S2 и Sr К трансформаторам тока ТА4 и Т А1 подключаются амперметры и счетчики активной и реактивной энергии. При раздельной работе секций шин предусмотрено автоматическое включение резерва [ABP)., которое осуществляется включением межсекционного автоматического выключателя SF2 (нормально он отключен) при отключении трансформатора Г, или Т2. При отсутствии АВР секционирование выполняют рубильниками. Разрядники F Vx и F V2 типа РВН-0,5 для защиты изоляции трансформаторов и оборудования РУ-0,4 кВ от перенапряжения устанавливают только при наличии воздушных линий 0,4 кВ. В цепи каждого присоединения линий устанавливаются рубильники Sv Sy Sb, Sg и предохранители F U1 -FU]0 (возможно применение автоматических выключателей). К трансформаторам тока ТАЪ, TAS, ТА6, ТАН подключаются амперметры и, при необходимости, счетчики электроэнергии. Питание собственных нужд СН подстанции выполняется от специальной шины, на которую электроэнергия поступает по вводам 0,4 кВ от трансформаторов 7, и Т2.

Однолинейная схема двухтрансформаторной подстанции с первичным напряжением 35 кВ представлена на рис. 3. Электроэнергия подается на подстанцию под двум вводам W2 и W3 от районной или тяговой подстанции и поступает на одинарную, секционированную выключателем Qs систему сборных шин РУ-35 кВ. На каждом вводе установлены многообъемные масляные выключатели q2 и q1 типа С-35М-630 со встроенными трансформаторами тока ТА4н ТА6типа ТВ-35. Для подключения счетчиков денежного расчета применяются трансформаторы тока ТА3 и ТА5 (комплект из Двух трансформаторов имеет один номер) типа ТФЗМ-35А. К линиям W2 и W» /> выключатели Q2 и Q» /> подключаются линейными разъединителями с двумя заземляющими ножами QS2 и QS3 типа РНДЗ-2-35 (РДЭ-2-35), а к секциям шин — шинными разъединителями QS6 и QS1 типа РНДЭ-1-35 (РДЗ-1-35). Секционный выключатель Q5 подключается к секциям шин с помощью секционных разъединителей QS9 и QS[Q типа РНДЗ-1-35 (РДЗ-1-35). Разъединители с двух сторон выключателя ввода или секционного позволяют обеспечить безопасность производства ремонтных работ на выключателях и трансформаторах тока.
В отдельных случаях от РУ-35 кВ получают питание смежные подстанции по линиям Wх и W4. Электроэнергия поступает на шины по вводам Wг и Wъ и часть ее транзитом без переработки передается другим подстанциям. На линиях W, и W4 установлено такое же оборудование как и на W 2 и Wъ.
К каждой секции РУ-35 кВ подключается понижающий трансформатор Г, и Т2 через выключатель Q6 и Q1 со встроенными трансформаторами тока ГЛ|0 и ТАи и разъединитель QSn и QSi3 с одним заземляющим ножом, позволяющим отделить выключатель от секции при ремонте.
Трансформаторы напряжения TVlnTV2 типа 3HOM-35 и разрядники FVl и FV2 типа РВС-35 присоединяются к секциям шин через разъединители QS[, и QSW которые имеют заземляющие ножи для заземления TV и FV при ремонте и ножи для заземления секций шин. Понижающие трансформаторы Г, и Т2 могут работать параллельно на шины РУ-10 кВ, раздельно (отключен секционный выключатель Ql2) или поочередно (один в работе, второй в резерве) с возможностью автоматического включения резервного (АВР) трансформатора.
Схема РУ-10 кВ предусматривает использование одинарной секционированной выключателем системы сборных шин. Размещают оборудование РУ в закрытых помещениях или шкафах наружной установки. В обоих случаях используют комплектные устройства, состоящие из шкафов или камер, в которых размещаются выключатели и трансформаторы тока. На рис. 3 приведена схема РУ-10 кВ с выключателями Qs — Qw установленными на выкатных тележках, что позволяет обходиться без разъединителей. На каждом присоединении РУ используются стационарные заземляющие ножи, обеспечивающие безопасность ведения работ внутри шкафов. От шин 10 кВ отходят четыре линии, питающие потребителей. Потребители первой категории для надежного электроснабжения получают питание по двум линиям, отходящим от разных секций шин. и Q[(>. Трансформаторы тока ТАХ2 и ТАп используются для подключения релейных защит. Учет энергии, расходуемой на собственные нужды подстанции, ведется со стороны вторичного напряжения ТСН.
К секциям шин РУ-10 кВ присоединяются трансформаторы напряжения Т V3 и Т К4типа НТМИ-10, защищаемые предохранителями FUxhF U2 типа ПКТ-10, и разрядники FV3hFVa типа РВП-10, защищающие изоляцию РУ-10 кВ от перенапряжений. Трансформатор напряжения и разрядник одной секции размещаются на общей выкатной тележке. Секционирование шин выполняется с помощью двух шкафов: в одном установлен секционный выключатель Ql2 с трансформаторами тока ТАХ6; во втором — выдвижной элемент  Т, выполняющий роль разъединителя. При использовании понижающих трансформаторов мощностью до 4000 кВ-А и сравнительно небольшой мощности КЗ при напряжении 35 кВ и реже 110 кВ находят применение схемы с выхлопными предохранителями типа ПВТ.
Однолинейная схема комплектной однотрансформаторной подстанции с первичным напряжением 110 кВ представлена на рис. 4, а ее конструктивное выполнение -— на рис. 27. От линии электропередачи по вводу Wх электроэнергия напряжением 110 (35) кВ поступает на трансформатор Г, типа ТМН-2500/110, который защищается от токов КЗ предохранителем F £/, типа ПВТ-110 и разрядником F Vx типа РВС-110 от перенапряжений. Разъединитель QS типа РНДЗ-1-110/630 служит для отключения трансформатора Тх на холостом ходу при отключенном выключателе ввода РУ-10 кВ Qx и создания видимого разрыва цепи при ремонте и замене предохранителя FUr На одной фазе ввода W х установлена аппаратура высокочастотной связи, состоящая из заградительного реактора L R, не пропускающего высокочастотные токи связи за пределы линии, и конденсатора С, через который токи связи попадают на приемо-передающую аппаратуру.

Рис. 4. Схема комплектной однотрансформаторной подстанции с первичным напряжением 110 кВ
Нейтраль первичной обмотки трансформатора обычно заземляется разъединителем QS2 типа РНД-35 или заземлитель нейтрали ЗОН-110, при работе системы напряжением 110 кВ с изолированной нейтралью заземление осуществляется через разрядник F V2, состоящий из последовательно соединенных разрядников типа РВС-35 и РВС-15.
РУ-10 кВ имеет одинарную несекционированную систему сборных шин, от которой потребители получают электроэнергию по четырем линиям W2, Wy WA и Ws, на которых установлены выключатели, Qv Q4 и Qs типа ВМП-10 или ВКЭ-10. Для подключения релейных защит, счетчиков электрической энергии и других измерительных приборов на каждой линии и на вводе установлены трансформаторы тока TA1 — ТА3. Питание обмоток напряжения измерительных приборов и реле осуществляется от трансформатора напряжения Т V, подключаемого к сборным шинам через высоковольтный контакт пальцевого типа. Разрядник F V3, защищающий изоляцию оборудования РУ-10 кВ от перенапряжений располагается на одной с трансформатором напряжения TV выкатной тележке. Шины заземляются в процессе ремонтных работ на них стационарным заземляющим ножом QSG, расположенном в высоковольтном шкафу трансформатора напряжения.
Такие подстанции используются для питания потребителей второй и третьей категории. Питание потребителей первой категории может осуществляться от данной подстанции при наличии резервного питания от другого источника. При необходимости питания потребителей первой категории от одной подстанции, на ней необходимо устанавливать не менее двух трансформаторов, подключаемых к питающим линиям напряжением 35-220 кВ с помощью отделителей и короткозамыкателей. В районах с интенсивным гололедообразованием, где работа отделителей и короткозамыкателей недостаточно надежна, они заменяются выключателем.
Однолинейная схема РУ-110 (220) кВ концевой и ответвительной подстанций представлена на рис. 5. Питание на трансформаторы Г, и Т2 поступает от линии электропередачи по вводам Ж, и Wг, на которых установлены разъединители QS1 и QS2 типа РНДЗ-2-110 с дистанционными приводами типа ПДН-1. Между вводами выполняется перемычка с двумя разъединителями QS3 и QS4> QS3 имеет привод ПДН-1, QS4 с ручным приводом ПР-90. На первичной стороне трансформаторов Г, и Т2 установлены разъединители QS5 и QS6 такие же как на вводах, быстродействующие отделители QR\ и QR2, дополненные короткозамыкателями QNS и QNr. Встроенные трансформаторы тока ТА{ и ТАг необходимы для подключения амперметра и релейных защит. Наличие перемычки с разъединителем, имеющим дистанционное управление, позволяет обеспечить питание любого трансформатора по любому вводу или двух трансформаторов по одному вводу. Второй разъединитель перемычки QS4 с ручным приводом используется при ремонте QS3 для создания видимого разрыва цепи, Трансформатор Т2 остается в работе, получая электроэнергию по вводу W2. Разрядники FV1 и FF2 THna РВС-110 защищают изоляцию РУ-110 кВ от перенапряжений.

Рис. 5. Схема РУ-110 кВ концевой и ответвительной подстанций
Однолинейная схема РУ-110 (220) кВ проходной подстанции, включаемой в рассечку линии 110 (220) кВ, показана на рис. 6. РУ-110 кВ имеет ремонтную и рабочую перемычки между вводами. Рабочая перемычка с выключателем Q типа МКП-1 10М со встроенными трансформаторами тока Т А2 типа ТВ-110 и разъединителями QSs и QS6 типа РНДЗ-1-110, необходимыми для ремонта выключателя перемычки, используется для транзита электроэнергии энергосистемы. Разъединители QSi и QS2 ремонтной перемычки нормально отключены, включаются для обеспечения транзита электроэнергии при ремонте рабочей перемычки. К трансформаторам тока Т АХ типа ТФЗМ-110 (220) подключаются приборы и реле, нормально получающие питание от ТА2, при переводе транзита энергии через ремонтную перемычку. Трансформаторы напряжения ТУ, и TV2типа НКФ-110 (220) используются для питания обмоток напряжения измерительных приборов и реле. Схема РУ между рабочей перемычкой и трансформаторами такая же как у рассмотренной выше ответвительной или концевой подстанции.


Рис. 6. Схема РУ-110 кВ проходной подстанции

Электронные схемы, как научится их читать

Электронная схема — изделие, сочетание отдельных электронных компонентов, таких как резисторы, конденсаторы, индуктивности, диоды, транзисторы и интегральные микросхемы, соединённых между собой, для выполнения каких либо задач или схема (рисунок) с условными знаками.

Для начинающих электронщиков важно понимать, как работают детали, как их рисуют на схеме и как разобраться в схеме электрической принципиальной. Для этого нужно сперва ознакомиться с принципом работы элементов, а как читать схемы электроники я расскажу в этой статье на примерах популярных устройств для начинающих.

Схема настольной лампы и фонарика на светодиоде

Схема – это рисунок на которых с помощью определенных символов изображаются детали схемы, линиями – их соединения. При этом, если линии пересекаются – то контакта между этими проводниками нет, а если в месте пересечения присутствует точка – это узел соединения нескольких проводников.

Кроме значков и линий на схеме изображены буквенные обозначения. Все обозначения стандартизированы, в каждой стране свои стандарты, например в России придерживаются стандарта ГОСТ 2.710-81.

Начнем изучение с простейшего – схемы настольной лампы.

Схемы не всегда читают слева направо и сверху вниз, лучше идти от источника питания. Что мы можем узнать из схемы, посмотрите в правую её часть. ~ — значит питание переменным током.

Рядом написано «220» — напряжением в 220 В. X1 и X2 – предполагается подключение в розетку с помощью вилки. SW1 – так изображается ключ, тумблер или кнопка в разомкнутом состоянии. L – условное изображение лампочки накаливания.

Краткие выводы:

На схеме изображено устройство, которое подключается к сети 220 В переменного тока с помощью вилки в розетку или других разъёмных соединений. Есть возможность отключения с помощью переключателя или кнопки. Нужно для питания лампы накаливания.

С первого взгляда кажется очевидным, но специалист должен уметь сделать такие выводы глядя на схему без пояснений, это умение даст возможность выносить диагноз неисправности и устранять её или же собирать устройства с нуля.

Перейдем к следующей схеме. Это фонарик с питанием от батарейки, в качестве излучателя в нём установлен светодиод.

Взгляните на схему, возможно, вы увидите новые для себя изображения. Справа изображен источник питания, так выглядит батарейка или аккумулятор, длинный вывод это плюс другое название – Катод, короткий – минус или Анод. У светодиода к аноду (треугольная часть обозначения) подключается плюс, а к катоду (на УГО выглядит как полоска) – минус.

Это нужно запомнить, что у источников питания и потребителей названия электродов наоборот. Две исходящие от светодиода стрелки дают вам понять, что этот прибор ИЗЛУЧАЕТ свет, если бы стрелки наоборот указывали на него – это был бы фотоприемник. Диоды имеют буквенное обозначение VDx, где х- порядковый номер.

Важно:

Нумерация деталей на схемах идет столбцами сверху вниз, слева направо.

Резистор – это сопротивление. Преобразует электрический ток в тепло, препятствую его движению, выглядит как прямоугольник, обычно на схемах имеет буквенное обозначение «R».

Как читать электронные схемы: увеличиваем уровень сложности

Когда вы уже разобрались с базовым набором элементов, пора ознакомится с более сложными схемами, давайте рассмотрим схему трансформаторного блока питания.

Главным средством преобразователя на схеме является трансформатор TV1, это новый для вас элемент. Предлагаю рассмотреть ряд подобных изделий.

Трансформаторы используются повсеместно, либо в сетевом (50 гц), либо в импульсном (десятки кГц) исполнении. Катушки индуктивности используются в генераторах, радиопередающих устройствах, фильтрах частот, сглаживающих и стабилизирующих приборах. Она выглядит следующим образом.

Второй незнакомый элемент на схеме – это конденсатор, здесь используется для сглаживания пульсаций выпрямленного напряжения. Вообще основная его функция – это накапливать энергию в качестве заряда на его обкладках. Изображается следующим образом.

В центре схеме изображен мостовой диодный выпрямитель.

Если к схеме добавить узел стабилизации, построенный по схеме параметрического стабилизатора, напряжение блока питания будет стабилизировано. При этом только от повышения питающего напряжения, при просадках ниже, чем Uстабилизации напряжение будет пульсирующем в такт с просадками. VD1 – это стабилитрон, они включаются в обратном смещении (катодом к точке с положительным потенциалом). Различаются по величине тока стабилизации (Iстаб) и напряжения стабилизации (Uстаб).

Краткие итоги:

Что мы можем понять из этой схемы? То, что блок питания состоит из трансформатора, выпрямителя и сглаживающего фильтра на конденсаторе. Подключается первичной стороной (входом) к сети переменного тока с напряжением 220 Вольт. На его выходе имеет два разъёмных соединения – «+» и «-» и напряжение 12 В, нестабилизорванное.

Давайте перейдем еще более сложным схемам и познакомимся с другими элементами электрических цепей.

Как читать схемы с транзисторами?

Транзисторы – это управляемые ключи, вы можете закрыть их и открыть, а если нужно открыть не полностью. Данные свойства позволяют их применять, как в ключевом, так и линейном режимах, что позволяет их использовать в огромном спектре схемных решений.

Давайте рассмотрим популярную среди новичков схему – симметричный мультивибратор. Это по сути генератор, который на своих выходах выдаёт симметричные импульсы. Может применяться, как основа для простых мигалок, в качестве источника частоты для пищалки, в качестве генератора для импульсного преобразователя и во многих других цепях.

Пройдемся по знакомым деталям сверху вниз. Вверху мы видим 4 резистора, средние два – времязадающие, а крайние – задают ток резистора, также влияют на характер выходных импульсов.

Далее HL – это светодиоды, а ниже два электролита – это полярные конденсаторы, когда будете их монтировать оставайтесь внимательны – неправильное подключение электролитического конденсатора чревато выходом его из строя вплоть до взрыва с выделением тепла.

Интересно:

На графическом обозначении электролитического конденсатора всегда помечается «положительная» обкладка конденсатора, а на настоящих элементах – чаще всего есть пометка отрицательной ножки, не перепутайте!

VT1-VT2 – это новые для вас элементы, таким образом обознаются биполярные транзисторы обратной проводимости (NPN), ниже указана модель транзистора – «КТ315». У них обычно 3 ножки:

1. База.

2. Эмиттер.

3. Коллектор.

При этом на корпусе их назначение не указывается. Чтобы определить назначение выводов, нужно воспользоваться одним из поисковых запросов:

1. «Название элемента» — цоколевка.

2. «Название элемента» — распиновка.

3. «Название элемента» datsheet.

Это справедливо, как для радиоламп, так и для современных микросхем. Запросы имеют почти одинаковый смысл. Вот таким образом я нашел цоколевку транзистора КТ315.

На изображении с распиновкой должно быть четко видно: с какой стороны считать ножки, где находится ключ, срез или метка, чтобы вы правильно определили необходимый вывод.

Интересно:

У биполярных транзисторов стрелка на эмиттере обозначается направление протекания тока (от плюса к минусу), если стрелка ОТ базы – это транзистор обратной проводимости (NPN), а если К базе то прямой проводимости (PNP), часто вы можете заменить все NPN транзисторы на PNP, как в схеме мультивибратора, тогда нужно будет и поменять полярность источника питания (плюс и минус местами) ведь, повторюсь, стрелка на эмиттере указывает направление протекания тока.

На приведенной схеме положительный контакт источника питания подключен к верхней части схемы, а отрицательный к нижней. Так и на транзисторе стрелка указывает сверх-вниз – по направлению протекания тока!

В элементах с большим количеством ног имеет значение куда подключать, так же, как и в диодах и светодиодах, если вы перепутаете ножки – в лучшем случае схема не заработает, а в худшем – убьете детали.

Что мы смогли узнать, прочитав схему мультивибратора:

В этой схеме используются транзисторы и электролитические конденсаторы, питается она напряжением в 9 В (хотя может и больше, и меньше, например 12 В не повредят схеме, как и 5 В).

Стало ясно о способе соединения деталей и включения транзисторов. А также о том, что схема представляет собой прибор, работающий на принципе автогенератора основанного на процессе перезаряда транзисторов, которое вызвано попеременным открытием и закрытием транзисторов каждого по очереди, когда первый открыт, второй закрыт.

Проследив пути протекания тока (от плюса к минусу) и использовав знания о том, как работает биполярный транзистор мы делаем выводы о характере работы.

Тиристоры – полууправляемые ключи, учимся читать схемы

Давайте рассмотрим схему с не менее важным и распространенным элементом – тиристором. Я выбрал слово «полууправляемый» потому что, в отличие от транзистора, вы можете только открыть его, ток в нем прервется либо при прерывании питания, либо при смене полярности приложенного к нему напряжения. Открывается с помощью подачи на управляющий электрод напряжения.

Симисторы – содержат два тиристора соединённых встречно-параллельно. Таким образом, одним компонентом можно коммутировать переменный ток, при прохождении верхней части (положительной) полуволны синусоиды, при условии наличия сигнала на управляющем, электроде откроется один из внутренних тиристоров. Когда полуволна сменит свой знак на отрицательный – он закроется и в работу вступит второй тиристор.

Динисторы – разновидность тиристора, без управляющего электрода, а открываются они, подобно стабилитронам, по преодолению определенного уровня напряжения. Часто используются в импульсных блоках питания, как пороговый элемент для запуска автогенераторов и в устройствах для регулировки напряжения.

Вот так, собственно это выглядит на схеме.

Внимательно смотрим на подключение. Схема предназначена для подключения к сети переменного тока, например 220 В, в разрыв одного из питающих проводов, например фазного (L). Симистор VS1 – основной силовой элемент цепи, справа внизу дана его распиновка из даташита, 3 вывод – управляющий. На него через двунаправленный динистор VD1 модели DB3 рассчитанный на напряжение включения порядка 30 вольт, подаётся управляющий сигнал.

Так как все полупроводниковые приборы в этой конкретной схеме двунаправленные, регулировка осуществляется по обеим полуволнам синусоиды. Динистор открывается, когда на конденсаторе C1 появляется необходимой величины потенциал (напряжение), а скорость его заряда, следовательно, момент открытия ключей, задаётся RC цепью, состоящей из R1, переменного резистора (потенциометра) R2 и С1.

Эта простая схем имеет огромное значение и прикладное применение.

Выводы

Благодаря умению читать схемы электрические принципиальные, вы можете определить:

1. Что делает это устройство, для чего оно предназначено.

2. При ремонте – номинал вышедшей из строя детали.

3. Чем питать это устройство, каким напряжением и родом тока.

4. Примерную мощность электронного устройства, исходя из номиналов компонентов силовых цепей.

Важно не только знать условные графические обозначения элементов, но и принцип их работы. Дело в том, то не всегда те или иные детали могут использоваться в привычной роли. Но в пределах сегодняшней статьи рассмотреть все распространенные элементы довольно сложно, так как это займет очень большой объем.

Ранее ЭлектроВести писали, что Министерство развития экономики, торговли и сельского хозяйства передало госпредприятие, мощного производителя электрогенерирующего оборудования, завод «Электротяжмаш» на приватизацию в Фонд государственного имущества Украины.

По материалам: electrik.info.

Схема электропроводки в квартире | elesant.ru

 

Вступление

Здравствуй Уважаемый читатель! Схемы электропроводки в квартире являются основными документами для электрика. На основе схем электропроводки выполняются все работы по организации электропитания квартиры. Вся электрика в квартире должна выполняться в соответствии со схемами электропроводки, которые в свою очередь делаются в строго соответствии с нормативными документами.

Для электрики в квартире делается несколько различных схем электропроводки. Все они относятся к одному виду схем-электрические схемы, но различаются по типу. Каждый тип электрических схем имеет свою информационную нагрузку и, соответственно, различный внешний вид. 

Типы электрических схем электропроводки в квартире

Все электрические схемы электропроводки отображают основные функциональные части проводки (розетки, светильники, автоматы защиты, УЗО и т. п.) и основные взаимосвязи между ними.

К основным типам электрических схем электропроводки в квартире относятся:

  • Структурная схема;
  • Функциональная схема;
  • Принципиальная схема;
  • Расчетная схема;
  • Монтажная схема (соединений).

На диаграмме ниже я отобразил типы электрических схем с небольшими примерами.

Разберем каждый тип электрических схем в отдельности.

Структурная схема электропроводки квартиры

Структурная схема электропроводки делается самой первой. На ней в виде прямоугольников иллюстрируются взаимосвязи между распределительным щитом, электрическим вводом в квартиру и всеми планируемыми электроприборами, которые в квартире будут установлены.

Графическое построение структурной схемы должно максимально полно отобразить все электрические взаимосвязи. Связи на структурной схеме желательно отобразить в виде стрелок. НА всех элементах схемы нужно проставить их номиналы: можность, напряжение, сила тока. Все это нужно для функциональной электрической схемы квартиры.

Функциональная(принципиальная) схема электропроводки квартиры

В этой схеме электрические связи между элементами электропроводки и сами элементы иллюстрируются в виде специальных обозначений. Смотрите рисунок ниже. Здесь же представляю пример функциональной схемы электропроводки квартиры с заземлением и двумя УЗО(устройства защитного отключения)

Электромонтажная (Полная принципиальная) схема электропроводки квартиры

Это наиболее полный тип схемы электропроводки. На этой схеме обозначаются все электрические элементы (розетки, светильники и т.п.) и бытовые устройства (плита, джакузи, теплый пол, кондиционеры). Точно отображаются линии прокладки всех кабелей электропроводки. Расположение распаячных коробок, шин соединения на входах и выходах электрических цепей. Пример принципиальной схемы электропроводки смотрите ниже.

Однолинейная расчетная схема электропроводки квартиры

Очень важная схема электропроводки квартиры. Делаются расчетные схемы для электрических квартирных щитков. На ней указываются все вводные автоматы защиты, автоматы защиты для отдельных групп электропроводки. Изображаются они специальными условными обозначениями. Также на расчетной схеме обозначаются все потребители и кабели электропроводок.

Все элементы схемы нанесены с расчетными номинальными характеристиками. Для автоматов защиты указываются ток срабатывания в Амперах. Для кабелей указывается количество жил, их сечение и марка. Например: кабель ВВГнг 3х2.5,обозначает кабель с тремя медными жилами в виниловой изоляции с сечением жил 2,5 квадратных миллиметра, причем изоляция нг-негорючая. Об электрических кабелях и их маркировках читайте отдельную статью на сайте.

На основе именно расчетной схемы покупаются материалы для выполнения работ по электрике. Также по расчетной схеме электропроводка квартиры разбивается на группы.

По расчетной схеме любой электрик может собрать электрический квартирный щит и поэтому в электропроекты квартир обычно не включают следующий тип электрической схемы. Это монтажная схема или схема соединений.

Монтажная схема (схема соединений) электропроводки в квартире

Монтажная схема иллюстрирует все электрические соединения в квартире.

Делается она в виде подробной таблицы с указанием, от какого устройства и куда идет кабель, к какой клемме он подсоединяется и какие характеристики имеет. Для электропроектов квартир монтажные схемы делаются редко, В основном схемы соединений делаются для промышленных предприятий с большими распределительными щитами, а также для главного распределительного щита (ГРЩ) жилых домов.

Нормативные ссылки

  • ГОСТ 2.701,Виды и типы схем
  • ПУЭ (Правила Устройства Электроустановок) изд.7
  • ГОСТ 2.702-75,Правила выполнения электрических схем

©Elesant.ru

Другие схемы электропроводки и электропроекты

  • мая 2012

  • июня 2012

  • октября 2012

  • ноября 2012

 

Основное различие между линейной и нелинейной схемой

Основное различие между линейной и нелинейной схемой

Линейная схема

Проще говоря, линейная схема — это электрическая цепь, параметры которой (сопротивление, индуктивность, емкость , форма сигнала, частота и т. д.) постоянны. Другими словами, схема, параметры которой не меняются по току и напряжению, называется линейной схемой.

По сути, слово «линейный» буквально означает «по прямой».Как видно из названия, линейная цепь означает линейные характеристики между током и напряжением, что означает, что ток, протекающий по цепи, прямо пропорционален приложенному напряжению.

Если мы увеличим приложенное напряжение, то ток, протекающий по цепи, также увеличится, и наоборот. Если мы нарисуем кривую выходной характеристики цепи между током и напряжением, она будет выглядеть как прямая линия (диагональ), как показано на рис. (1).

Обратитесь к закону Ома, где мы признаем, что:

«Если приложенное напряжение увеличивается, то увеличивается и ток (при неизменном сопротивлении).

Но это не всегда так. Вот почему мы используем P = VxI вместо V = IxR (в трансформаторе)

Другими словами,

В линейной схеме выходной отклик схемы прямо пропорционален входному. Простое объяснение приведенного выше утверждения:

в электрической цепи, в которой приложенное синусоидальное напряжение с частотой «f», выход (ток через компонент или напряжение между двумя точками) этой цепи также является синусоидальным с частотой «f». ».

Щелкните изображение, чтобы увеличить

Линейная схема и ее характеристическая кривая показаны на рис. (1) ниже.

Примеры схем лайнера и линейных элементов
  • Цепи сопротивления и сопротивления
  • Цепи индуктивности и индуктивности
  • Цепи конденсатора и емкостные цепи

Нелинейная цепь

A нелинейная цепь, параметры которой являются нелинейной схемой различаются по току и напряжению.Другими словами, электрическая цепь, в которой параметры цепи (сопротивление, индуктивность, емкость, форма волны, частота и т. Д.) Непостоянны, называется нелинейной схемой.

Если мы нарисуем кривую выходной характеристики цепи между током и напряжением, она будет выглядеть как кривая или линия изгиба, как показано на рис. (2).

Щелкните изображение, чтобы увеличить

Нелинейная схема и ее характеристическая кривая показаны на рис. (2) ниже.

Примеры нелайнерных схем и нелинейных элементов
  • Диод
  • Транзистор
  • Трансформатор
  • Железный сердечник
  • индуктор (когда сердечник насыщен)
  • и любая схема, состоящая исключительно из идеального диода,
  • Транзистор
  • Трансформатор
  • и индуктор с железным сердечником называется нелинейной схемой.

Решение линейных и нелинейных схем

Решение нелинейных схем немного сложнее, чем линейных схем. Линейная схема может быть решена с помощью простых методов и научного калькулятора. При решении нелинейных цепей требуется много данных и информации.

Но в настоящее время, из-за агрессивных технологических изменений и модернизации, мы можем очень легко моделировать и анализировать с выходными кривыми как линейные, так и нелинейные схемы с помощью инструментов моделирования схем, таких как PSpice, MATLAB, Multisim и т. Д.

Вы также можете прочитать:

Что такое линейные и нелинейные схемы и в чем их отличие

Электрические устройства построены с помощью линейных и нелинейных компонентов. Чтобы понять базовую конструкцию этих устройств, необходимо фундаментальное понимание линейной схемы и нелинейной схемы. В этой статье мы обсуждаем, что такое линейные и нелинейные схемы, с их различиями, элементами линейной и нелинейной схемы, а также объясняем некоторые примеры.

Что такое линейные и нелинейные цепи?

Проще говоря, мы можем сказать, что линейная цепь — это электрическая цепь, и параметры этой цепи — сопротивление, емкость, индуктивность и т. Д. — постоянны. Или мы можем сказать, что параметры цепей не меняются по напряжению и току, это называется линейной цепью.


Линейная цепь

Нелинейная цепь также является электрической цепью, и параметры этой цепи различаются по току и напряжению.Или в электрической цепи такие параметры, как форма волны, сопротивление, индуктивность и т. Д., Непостоянны, это называется нелинейной цепью.

Нелинейная схема

Разница между линейной и нелинейной схемой

Обычно слово линейный означает прямую линию, которая выглядит как диагональ, и говорит о линейных характеристиках между напряжением и током. т.е. ток в цепи прямо пропорционален напряжению. Если есть увеличение напряжения, то ток в цепи также увеличивается, и наоборот.Выходные характеристики линейной цепи находятся между током и напряжением, как показано на рисунке ниже.

Характеристики линейной цепи

В линейной схеме реакция выхода прямо пропорциональна входу. В схеме приложенная синусоидальная частота имеет частоту «f», а выходной сигнал означает, что напряжение между двумя точками также имеет синусоидальную частоту «f».

В нелинейной схеме выходная характеристика похожа на кривую, которая находится между напряжением и током, как показано на следующем рисунке.


Другое различие между линейной и нелинейной схемой — решение схемы. В линейных схемах решение схемы является простым путем использования простой техники, использования калькулятора для решения и сравнения с нелинейной схемой, решение линейной схемы легко решается

Решение нелинейных схем сложнее, чем линейная схема, и есть много данных, информация требуется для решения нелинейных схем. Из-за значительных изменений в технологии мы можем моделировать и анализировать выходные кривые линейных и нелинейных схем с помощью таких инструментов моделирования схем, как Multisim, Matlab и PSpice.

Используя уравнения линейного и нелинейного, мы можем найти разницу между линейной схемой и нелинейной схемой. Уравнения следующие.

Y = x + 2

Y = x2

Графическое представление двух вышеуказанных уравнений показано на следующей диаграмме. Если какое-либо уравнение представляет собой прямую линию, представленную на графике, то оно является линейным. Если уравнение представляет собой изогнутую линию, то оно нелинейное.

Графическое представление двух уравнений

Кусочно-линейное представление представлено следующим уравнением, а график осей x-y кусочно-линейной диаграммы также показан ниже.Это уравнение называется нелинейным, потому что мы не можем записать уравнение следующим образом.

Y = ax + b

Piece-Wise Linear

Элементы линейной и нелинейной схемы

В нелинейной схеме нелинейные элементы являются электрическими элементами, и между ними не будет линейной зависимости ток и напряжение. Примером нелинейного элемента является диод, и некоторые нелинейные элементы отсутствуют в электрической цепи, это называется линейной схемой.Некоторыми другими примерами нелинейных элементов являются транзисторы, электронные лампы, другие полупроводниковые устройства, индукторы с железным сердечником и трансформаторы.

Если в нелинейных кривых есть линейные кривые, то это называется кусочно-линейным.

В линейных схемах линейный элемент также является электрическим элементом, и между напряжением и током будет линейная зависимость. Примерами линейных элементов являются резистор — наиболее распространенный элемент, конденсатор и индукторы с воздушным сердечником.

Примеры линейных цепей линейных элементов

Примерами линейных цепей являются резистивная и резистивная цепь, катушка индуктивности и индуктивная цепь, а также конденсатор и емкостная цепь.

Примеры нелинейных цепей нелинейных элементов

Некоторыми из примеров нелинейных цепей нелинейных элементов являются диод, трансформатор, железный сердечник, индуктор, транзистор,

Применение линейных и нелинейных цепей
  • В электрических цепях используются линейные и нелинейные цепи.
  • С помощью этих цепей мы можем найти падение напряжения и ток.

В этой статье будет представлена ​​информация о том, что такое линейные и нелинейные цепи, а также их отличия.Надеюсь, прочитав этот раздел, вы получили некоторые базовые знания о линейных и нелинейных схемах. Если у вас есть какие-либо вопросы относительно этой статьи или реализации электрических проектов для студентов инженерных специальностей, не стесняйтесь оставлять комментарии в нижеследующем разделе. Вот вам вопрос, какие бывают линейные и нелинейные схемы?

Что такое линейный компонент в схеме

Линейные электрические цепи , и элементы линейных цепей — это те, в которых сопротивление, емкость и индуктивность не зависят от величины и направления тока или напряжения.Напряжение и ток определяются линейными алгебраическими или дифференциальными уравнениями.

Например, если r не зависит от тока i или напряжения u , то закон Ома является линейной функцией. То же самое применимо, если емкость C и индуктивность L не зависят от тока i или напряжения u , они определяются линейными дифференциальными уравнениями. Что касается линейных источников и источников напряжения, источник тока является линейным, когда ток не зависит от падения напряжения на источнике тока; Источник напряжения является линейным, если его ЭДС не зависит от тока, протекающего через источник.

К сожалению, настоящие полупроводниковые компоненты не являются линейными устройствами. По мере прохождения тока по проводнику он нагревается, и его сопротивление изменяется. При изменении тока в катушке индуктивности с ферромагнитным сердечником изменяется ее индуктивность. В зависимости от изолятора его изоляция изменяется в зависимости от заряда, что означает, что изоляция конденсатора изменяется с течением тока. Если в определенном рабочем диапазоне для электронных компонентов ток и напряжение сохраняют свою линейность, они считаются линейными.Линейные цепи легче вычислить, поэтому, если линейные законы применимы к цепи с некоторой надлежащей близостью, цепи считаются линейными.

В большинстве отделов электронной техники ток и напряжение в цепи называются управляющими сигналами, а ток и напряжение, которые появляются в цепи, являются выходными сигналами.

В линейной схеме работают два принципа — принцип наложения и пропорциональность сигналов. Принцип наложения сигналов гласит, что если управляющие сигналы, формируемые в цепи fin1 (t) и fin2 (t), соответствуют выходным сигналам fout1 (t) и fout2 (t), то для управляющего сигнала fin1 (t) + fin2 (t ) Соответствует выходной сигнал fout1 (t) + fout2 (t).Принцип пропорциональности сигналов гласит, что управляющему сигналу Afin (t) соответствует выходной сигнал Afout (t).

Электрическая сеть — это графическое изображение электрической цепи. Он показывает, как электрические элементы взаимосвязаны друг с другом. Электрические элементы могут быть пассивными и активными. Геометрические элементы — это узлы, ветки и петли. Чтобы понять разницу и решить аналитические задачи, важно понимать основные концепции.

Ответвление состоит из одного или нескольких последовательно соединенных элементов.Таким образом, ветвь представляет собой двухконтактный элемент.

Узел является точкой соединения трех или более ветвей в цепи. Узлы в сети обозначены точками.

Любой замкнутый путь в сети называется петлей . Цикл начинается с узла, проходит через набор узлов (только один раз) и заканчивается на первом узле.

Два или более элемента включены последовательно, если они принадлежат одному узлу и, следовательно, несут одинаковый ток.

Два или более элемента включены параллельно, если они соединены двумя или более узлами и имеют одинаковое напряжение.

Деление напряжения и тока — эквивалентное сопротивление для последовательного соединения

Полезный анализ и теоремы линейных электрических цепей — Wira Electrical

Линейная электрическая цепь очень поможет нам, если мы столкнемся с более сложной схемой, которую необходимо проанализировать.

Основным преимуществом анализа схемы с использованием законов Кирхгофа, как мы это делали раньше, является то, что мы можем анализировать схему, не изменяя ее исходную конфигурацию.

Главный недостаток состоит в том, что для большой сложной схемы требуются утомительные вычисления.

Обязательно сначала прочтите, что такое электрическая цепь постоянного тока.

Рост областей применения электрических цепей привел к эволюции от простых к сложным схемам.

Чтобы справиться со сложностью, инженеры на протяжении многих лет разработали некоторые теоремы, упрощающие анализ схем.

Такие теоремы включают:

Поскольку эти теоремы применимы к линейной схеме , мы сначала обсудим концепцию линейности схемы.

В дополнение к теоремам о схемах мы обсуждаем следующие концепции:

Свойство линейной электрической цепи

Линейность — это свойство элемента, описывающее линейную связь между причиной и следствием. Хотя это свойство применимо ко многим элементам схемы, на этот раз мы ограничим его применимость резисторами.

Свойство представляет собой комбинацию свойства однородности (масштабирования) и свойства аддитивности.

Свойство однородности требует, чтобы если вход (также называемый возбуждением ) умножался на константу, то выход (также называемый откликом ) умножался на ту же константу.

Для резистора, например, закон Ома связывает вход i с выходом v ,

(1)

Если ток увеличивается на постоянное значение k , то напряжение увеличивается, соответствующее k ; то есть

(2)

Свойство аддитивности требует, чтобы ответ на сумму входных данных был суммой ответов на каждый вход, применяемый отдельно.Используя соотношение напряжения и тока резистора, если

(3a)

и

, тогда (3b) i 1 + i 2 ) дает

, применяя (3b)
(4)

Мы говорим, что резистор является линейным элементом, потому что соотношение напряжения и тока удовлетворяет как однородности, так и свойства аддитивности.

В общем, схема является линейной, если она является одновременно аддитивной и однородной. Линейная схема состоит только из линейных элементов, линейно зависимых источников и независимых источников.

Линейная схема — это такая схема, выход которой линейно связан (или прямо пропорционален) входу.

На протяжении всей книги мы рассматриваем только линейные цепи. Обратите внимание, что, поскольку p = i 2 R = v 2 / R (что делает его квадратичной функцией, а не линейной), соотношение между мощностью и напряжением (или током) является нелинейным.

Следовательно, теоремы, описанные в этой главе, не применимы к власти.

Чтобы проиллюстрировать принцип линейности, рассмотрим линейную схему, показанную на рисунке. (1). Внутри линейной схемы нет независимых источников.

Он возбуждается источником напряжения v s , который служит входом.

Рис. 1. Линейная схема

Цепь завершается нагрузкой R .Мы можем взять текущие значения от i до R в качестве выходных. Предположим, v s = 10 V дает i = 2 A.

Согласно принципу линейности, v s = 1 V даст i = 0.2 A. Точно так же i = 1 мА должно быть связано с v s = 5 мВ.

Примеры схем линейности

Чтобы лучше понять, давайте рассмотрим примеры ниже:

1.Для схемы на рисунке (2) найдите I o , когда v x = 12 В и v s = 24 В.

Рисунок 2

Решение:

Применяя KVL к двум петлям, мы получаем

(1.1)
12)

Но v x = 2 i 1 . Уравнение (1.2) принимает вид

(1.3)

Сложив (1.1) и (1.3), мы получаем

Подставляя это с (1.1), получаем

Когда v s = 12 В,

Когда v с = 24 В,

Показывает, что при удвоении исходного значения I o удваивается.

2. Предположим, что I o = 1 А и с помощью линейности найти фактическое значение I o в схеме на рисунке (3).

Рисунок 3

Решение:

Если I o = 1 A, то V 1 I = o = 8 В и I 1 = V 1 /4 = 2 A .Применение KCL в узле 1 дает

Применение KCL в узле 2 дает

Следовательно, Is = 5 A. Это показывает, что если Io = 1 дает Is = 5 A, фактический ток источника 15 A даст Io = 3 A, поскольку фактическое значение.

Линейная схема

— обзор

8.4.3 Силовые транзисторы

Транзистор представляет собой трехслойное трехполюсное устройство. Это может быть биполярный переходной транзистор (BJT) или металлооксидный полупроводниковый полевой транзистор (MOSFET). Обычно производители классифицируют транзисторы в соответствии с их областью применения:

Малосигнальные транзисторы общего назначения предназначены для работы с малой и средней мощностью (менее 1 Вт) или для коммутации.

Силовые транзисторы предназначены для работы с большими токами и / или большими напряжениями.

Транзисторы RF (радиочастоты) разработаны для высокочастотной работы, например, в системах связи.

BJT представляет собой транзистор NPN или PNP, показанный на рис. 8.40, с тремя выводами: базой, коллектором и эмиттером. BJT иногда считают двумя диодами, соединенными последовательно, чтобы получить структуру n-p-n или p-n-p.

Рисунок 8.40. BJT: структура (вверху) и обозначение схемы (внизу), транзистор NPN (слева) и транзистор PNP (справа)

Поток базового тока (I B ) позволяет увеличить ток коллектора (I C ) для поток. Ток эмиттера — это сумма токов базы и коллектора. BJT действует как усилитель тока, хотя во многих случаях этот ток пропускается через резистор для создания напряжения. Соединяя BJT с резисторами (и конденсаторами), полученные схемы могут обеспечивать усиление как тока, так и напряжения.

MOSFET представляет собой транзистор nMOS или pMOS, показанный на рис. 8.41, с тремя выводами: затвор, сток и исток. Некоторые полевые МОП-транзисторы также имеют четвертое соединение, основную часть или подложку, но с трехконтактным устройством основная часть внутренне соединена с истоком транзистора.

Рисунок 8.41. MOSFET: структура (вверху) и обозначение схемы (внизу), nMOS-транзистор (слева) и pMOS-транзистор (справа)

Приложение напряжения между затвором и истоком (V GS ) MOS-транзистора (напряжение больше чем пороговое напряжение для транзистора) позволяет протекать току стока (I D ).Вход затвора в транзистор является емкостным, и в устройстве протекает только небольшой ток затвора (ток утечки в неидеальном конденсаторе). (В простом анализе этот ток затвора предполагается равным нулю для идеального конденсатора.) МОП-транзистор использует входное напряжение для управления выходным током. Во многих случаях этот ток пропускается через резистор для создания напряжения. Соединяя полевой МОП-транзистор с резисторами (и конденсаторами), полученные схемы могут обеспечивать выход напряжения и тока.

И BJT, и MOSFET могут использоваться для создания схем усилителя или аналоговых фильтров (линейные приложения) или коммутационных приложений (нелинейные приложения).Примеры приложений для силовых транзисторов:

Управление двигателем постоянного тока

Управление двигателем переменного тока

Управление шаговым двигателем

усилители звука (выходной каскад усилителя, управляющего динамиками)

Импульсные источники питания

Для силового транзистора безопасная рабочая область (SOAR) определяет безопасные пределы работы транзистора с точки зрения рабочих напряжений и токи для непрерывной работы (уровни постоянного тока и напряжения), а также для уровней, которые превышают область непрерывной работы в течение ограниченного периода времени.При использовании в качестве переключателя (особенно применимо для управления двигателем) время включения и выключения также необходимо учитывать, чтобы гарантировать правильную работу схемы, в которой используется транзистор. Если схема пытается слишком быстро включать и выключать транзистор, транзистор не может реагировать достаточно быстро, и результатом будет неправильная работа схемы.

Выбор силового транзистора для использования зависит от ряда факторов:

наличие транзистора, способного работать при требуемых уровнях напряжения, тока и температуры

Максимальный транзистор рассеиваемая мощность

подходящий корпус — корпус транзистора (два примера показаны на рисунке 8.42) требуется для крепления транзистора к печатной плате или корпусу и для отвода тепла, выделяемого внутри корпуса.

Рис. 8.42. Примеры корпусов силовых транзисторов

Размер транзистора

Материал корпуса (пластик, керамика или металл) — когда в корпусе корпуса используется металл, один из выводов устройства должен быть электрически подключен к корпусу

Сопротивление включения и выключения — когда полевой МОП-транзистор используется в качестве переключателя

стоимость

Когда транзистор используется в качестве усилителя, создается схема усилителя один из пяти классов усилителя (Таблица 8.13). Каждый класс имеет рейтинг эффективности, который описывает количество мощности, подаваемой на нагрузку схемы (например, электродвигателя), в процентах от мощности, подаваемой на усилитель. 100-процентный КПД означает, что усилитель не рассеивает мощность (в виде тепла), но 100-процентный КПД недостижим.

Таблица 8.13. Классы усилителя

Класс усилителя Описание
Класс A Транзистор проводит в течение всего периода входного сигнала.КПД низкий, максимум 25%.
Класс B Транзистор проводит в течение одной половины периода входного сигнала. КПД выше, максимум около 78%.
Класс AB Усилитель работает где-то между классом A и классом B.
Класс C Транзистор проводит менее половины периода входного сигнала. КПД приближается к 100%, но дает большие искажения входного сигнала.
Класс D Транзистор используется в качестве переключателя (ВКЛ или ВЫКЛ) и производит усилитель с хорошим КПД. Их часто называют переключающими усилителями или переключаемыми усилителями.

Силовые транзисторы могут использоваться в управлении двигателем, чтобы обеспечить управление скоростью, положением или крутящим моментом двигателя. Пример схемы транзисторного усилителя для управления скоростью электродвигателя постоянного тока показан на рисунке 8.43:

Рисунок 8.43. Управление скоростью двигателя без обратной связи

Схема работает от двухканального источника питания, где + V S — положительное напряжение источника питания, а –V S — отрицательное напряжение источника питания.

Пользователь устанавливает положение потенциометра для получения напряжения, которое представляет требуемую скорость двигателя.

Выход потенциометра буферизируется с помощью операционного усилителя.

Выход операционного усилителя управляет усилителем класса B.

Усилитель класса B приводит в действие двигатель постоянного тока.

В усилителе класса B используется один транзистор NPN и один транзистор PNP.Когда входное напряжение (выходное напряжение операционного усилителя) положительно (по отношению к общему узлу), NPN-транзистор проводит. Ток течет от положительного источника питания к общему узлу через двигатель, и двигатель вращается в одном направлении. Когда входное напряжение (выходное напряжение операционного усилителя) отрицательно (по отношению к общему узлу), транзистор PNP проводит. Ток течет от общего узла к отрицательному источнику питания через двигатель, и двигатель вращается в другом направлении.Два диода с обратным смещением подключены к узлам коллектор-эмиттер транзистора и используются для защиты транзисторов от высоких напряжений, которые могут возникать из-за быстро меняющихся токов в индуктивных катушках двигателя.

Это пример системы без обратной связи, в которой напряжение, приложенное к двигателю от схемы контроллера, заставляет двигатель вращаться. Изменение напряжения двигателя приведет к тому, что двигатель будет вращаться с другой скоростью. Одна потенциальная проблема с этой компоновкой заключается в том, что скорость двигателя изменяется в зависимости от различных нагрузок, подключенных к выходному валу двигателя, даже когда приложенное напряжение является постоянным.

Если скорость вала двигателя измеряется с помощью тахогенератора, напряжение генерируется в соответствии с фактической скоростью двигателя. Если это напряжение затем подается обратно в схему контроллера, как показано на рисунке 8.44, создается замкнутая система, и этот сигнал обратной связи может использоваться для автоматической регулировки скорости двигателя вверх или вниз. Здесь усилитель мощности (символ треугольника) представляет собой схему транзисторного усилителя. Пользовательский ввод устанавливает требуемую скорость, а схема контроллера автоматически регулирует скорость двигателя до правильного значения.Динамика полученной системы управления зависит от динамики двигателя и используемого алгоритма управления.

Рисунок 8.44. Управление скоростью двигателя с обратной связью

Система управления, показанная на рисунке 8.44, может быть реализована путем разработки цифровой схемы управления с аналоговым входом и выходом. Базовая компоновка показана на Рисунке 8.45. Здесь CPLD реализует алгоритм цифрового управления, такой как пропорционально-интегральное (PI) управление. Скорость двигателя устанавливается пользователем с помощью аналогового напряжения.Полярность вводимой команды определяет направление вращения вала двигателя, а величина определяет скорость вращения вала двигателя.

Рисунок 8.45. Пример управления двигателем постоянного тока через CPLD

Цифровой выход контроллера обеспечивает ввод данных в n-разрядный ЦАП. Выходное напряжение ЦАП подается через схему преобразования сигнала на базе операционного усилителя, которая обеспечивает вход для усилителя класса B. Схема преобразования сигнала на базе операционного усилителя создает выходное напряжение в диапазоне, требуемом для каскада усилителя мощности.Выход усилителя обеспечивает напряжение и ток, необходимые для вращения двигателя в любом направлении.

Тахогенератор вырабатывает напряжение постоянного тока с полярностью, определяемой направлением вращения вала двигателя, и величиной, определяемой скоростью вращения вала двигателя. Это напряжение является входом для схемы преобразования сигнала на базе операционного усилителя, которая изменяет уровни напряжения тахогенератора до уровней, требуемых n-разрядным АЦП. АЦП преобразует напряжение обратно в цифровое значение, которое обеспечивает цифровое представление напряжения аналогового тахогенератора.

Схема в CPLD обеспечивает функции цифрового алгоритма управления, который управляет напряжением, подаваемым на двигатель.

Каждый АЦП и ЦАП в конструкции требует своего собственного опорного сигнала (обычно напряжения).

Последней частью схемы является источник питания, который получает доступное напряжение источника питания и выдает уровни напряжения источника питания, необходимые для каждой части конструкции.

Примером коммерческого биполярного силового транзистора является транзистор 2N3772 NPN от ST Microelectronics.Это мощный кремниевый транзистор, помещенный в металлический корпус TO-3, и находит применение в таких областях, как линейные усилители и устройства индуктивной коммутации. В Таблице 8.14 приведены типичные абсолютные максимальные номинальные значения для силового транзистора в различных условиях эксплуатации.

Таблица 8.14. Типовой лист технических данных Абсолютные максимальные характеристики

I Примером коммерческого силового МОП-транзистора является N-канальный транзистор STF2NK60Z от ST Microelectronics.Это мощный кремниевый транзистор, доступный в следующих корпусах: TO-92, TO-220, IPAK и TO-220FP. Внутри транзистора находятся защитные стабилитроны. Приложения включают маломощные зарядные устройства, импульсные источники питания и управление люминесцентными лампами.

Linear Circuit — обзор

12.7 Имитатор схем ADS и его применимость к коммутационному классу E

Имитатор схем Agilent Advanced Design System (ADS) представляет собой комплексный симулятор линейных и нелинейных схем в частотной и временной областях.Его можно использовать непосредственно для моделирования и имитации характеристик усилителей мощности класса E в импульсном режиме. Это может быть сделано с использованием механизмов моделирования переходных процессов, огибающей и гармонического баланса.

На рисунке 12.34 показана схема моделирования идеальной параллельной схемы класса E во временной области. Активное устройство представлено переключателем, управляемым напряжением, с сопротивлением в выключенном состоянии 1 МОм и небольшим конечным сопротивлением во включенном состоянии, значение которого обычно можно изменять. Источник входного сигнала представляет собой источник напряжения с последовательностью импульсов, определенной с дискретными временными шагами, которые используются в имитаторах огибающей и переходных процессов.Использование источника импульсов с дискретным временем, в отличие от стандартного источника импульсов, может гарантировать отсутствие дрожания по времени на фронте импульса из-за асинхронной выборки формы сигнала с помощью моделирования с фиксированным временным интервалом. Время моделирования значительно быстрее, чем период прямоугольной волны.

Рисунок 12.34. Настройка моделирования для поддержания режима класса E во временной области.

Чтобы обеспечить моделирование схемы во временной области, имитатор переходных процессов добавлен в шаблон моделирования.Время остановки 20 с выбрано для нормализованной частоты 1 Гц, что достаточно для достижения установившегося режима для смоделированной рабочей частоты, нормированной на единицу, как показано на примере форм сигналов переключателя ( a ). напряжение и ( b ) ток нагрузки показаны на рис. 12.35. Катушки индуктивности и конденсаторы работают без потерь, а коэффициент качества под нагрузкой Q L последовательного резонансного контура выбран равным 20. Уравнения измерения MeasEqn включают условия, когда коммутируемое напряжение V_sw и его производная по напряжению V_sw_der должны принимать значения нулевые значения в момент непосредственно перед включением переключателя.Эффективность вычисляется в период 19 + 20, поскольку произведения мгновенного тока и напряжения интегрируются за эти два периода и делятся на два. Функция «интегрировать» автоматически обрабатывает непостоянные временные шаги в результатах моделирования переходных процессов. Термин «switch_index» представляет собой количество (индекс) точек моделирования за 19 с, момент, когда переключатель включен, в то время как термин «switch_index-1», следовательно, является точкой моделирования непосредственно перед включением переключателя.

Рисунок 12.35. Переходный отклик напряжения переключателя и тока нагрузки.

После того, как моделирование переходных процессов перешло в установившийся режим, результаты моделирования для оптимальных параметров сети нагрузки класса E для параллельной схемы, рассчитанные по формулам (6.79) — (6.81) в главе 6, 6,79, 6,80, 6,81 6 демонстрируют идеальные формы сигналов напряжения и тока класса E. Имитатор оптимизации, добавленный к шаблону моделирования, показанному на рис. 12.34, необходим для оптимизации параметров сети нагрузки путем изменения их коэффициентов для неидеального коммутатора с конечным сопротивлением во включенном состоянии.Оптимизация выполняется для минимизации значений напряжения переключения и значений производной напряжения до нуля.

На рисунке 12.36 показан набор форм сигналов напряжения переключателя ( a ) и тока ( b ) с рабочим циклом (или коэффициентом) 0,5, полученных для нулевого напряжения и условий производной напряжения путем изменения коэффициента нагрузки сопротивления переключателя. от 0,01 до 0,21 с шагом 0,02. Общее время моделирования для процессора с тактовой частотой 1,6 ГГц составляет 1,2 часа. В этом случае значения пикового напряжения и тока являются наименьшими для максимальных значений сопротивления включения, а напряжение насыщения становится значительным, что приводит к снижению выходной мощности и эффективности.Выходная мощность и КПД снижаются примерно на 45% и 39% соответственно, когда соотношение r sat / R достигает значения 0,15, как показано на рис. 12.37 ( a ). Это достигается за счет увеличения емкости на 29% и уменьшения индуктивности на 29%, как показано на рис. 12.37 ( b ). При r sat / R = 0,1 КПД равен 73,4%.

Рисунок 12.36. Оптимальные формы сигналов класса E для параллельной схемы с конечным сопротивлением во включенном состоянии.

Рисунок 12.37. Оптимальные параметры против на сопротивлении.

Однако условия нулевого напряжения класса E и нулевой производной напряжения становятся неоптимальными для конечных значений сопротивления во включенном состоянии. Это означает, что более высокая эффективность может быть достигнута, когда эти условия класса E отличны от нуля. Следовательно, до включения переключателя на конденсаторе присутствует некоторое напряжение. Поддерживая практически нулевое время переключения и оптимальные параметры сети нагрузки, можно наблюдать разряд этого напряжения в виде всплеска тока.На рисунке 12.38 показаны кривые напряжения переключателя ( a ) и тока ( b ) в зависимости от нормализованного сопротивления насыщения переключателя r sat / R L , меняющегося от 0,05 до 0,3 с шагом 0,05. Здесь более высокие пики соответствуют более низким значениям r sat / R L , а затем уменьшаются с большими значениями r sat / R L . В итоге для r сат / R = 0.1 КПД равен 75,7%, что на 2,3% больше, чем в номинальном случае; для r sat / R = 0,15 КПД равен 67,2%, что на 6,2% больше, чем в номинальном случае. Это означает, что для нормированного сопротивления насыщения r sat / R , равного или меньшего 0,1, имеет смысл использовать номинальные значения сети нагрузки класса E с параллельной схемой, поскольку это значительно упростит вся процедура проектирования (оптимизация не требуется) и эффективность будет близка к теоретически достижимому максимуму.

Рисунок 12.38. Формы сигналов класса E с параллельной схемой и конечным сопротивлением во включенном состоянии.

На рисунке 12.39 показана схема моделирования идеальной параллельной схемы класса E в частотной области. Использование частотной области позволяет общей процедуре моделирования быть намного быстрее, чем во временной области, и может занять несколько секунд. Однако, поскольку количество гармонических составляющих не бесконечно, формы сигналов моделирования и численные результаты для оптимальных параметров сети нагрузки не столь точны.В этом случае входной источник изменяется и представляет собой источник напряжения с разложением в ряд Фурье прямоугольной волны периода, используемой в симуляторе гармонического баланса. Порядок гармоник выбран равным 100. Процедура оптимизации может применяться в отношении эффективности в качестве параметра оптимизации. Поскольку время моделирования очень короткое, количество итераций может быть значительно увеличено для большей точности. На рисунке 12.40 показаны кривые напряжения коммутатора ( a ) и тока ( b ), полученные для оптимальных параметров сети нагрузки класса E с параллельной схемой.В отличие от моделирования во временной области, есть более плавные переходы между положениями, когда переключатель включен и переключатель выключен, и наоборот . Тем не менее, для r sat / R = 0,01 эффективность равна 96,9%, что лишь примерно на 0,1% меньше, чем при моделировании во временной области.

Рисунок 12.39. Настройка моделирования для поддержания режима класса E в частотной области.

Рисунок 12.40. Номинальные формы сигналов переключения для параллельной схемы класса E.

Что такое линейные и нелинейные цепи и их различие

Различные типы электрических устройств изготавливаются путем комбинирования линейных и нелинейных элементов. Итак, чтобы лучше понять базовую конструкцию этих электрических устройств, нам нужно знать о линейных и нелинейных цепях.

Сегодня мы обсудим основы линейных и нелинейных систем.

Что происходит в нашем сегодняшнем обсуждении:

  • Что такое линейная цепь?
  • Что такое нелинейная схема?
  • Разница между линейными и нелинейными схемами
  • Компоненты линейных и нелинейных схем
  • Использование линейных и нелинейных схем

Что такое линейная схема?

По сути, линейная цепь — это электрическая цепь и параметры этой цепи, такие как сопротивление, емкость, индуктивность и т. Д.всегда постоянны.

То есть можно сказать, что линейной цепью называется цепь, которая изменяет параметры цепи при изменении напряжения и тока.

Линейная схема

Нелинейная схема также является электрической схемой, но изменение напряжения и тока в этой схеме изменяет параметры схемы, такие как формы волны, сопротивление, индуктивность и т. Д.

То есть нелинейная схема называется цепью, в которой напряжение или ток изменяют параметры цепи.

Нелинейные схемы

Разница между линейными схемами и нелинейными схемами:

В случае линейных схем:

Обычно слово линейный означает прямую линию или прямую линию, которая выглядит как диагональ или диагональ, и она выражает линейные особенности между напряжением и током.

То есть ток в цепи прямо пропорционален напряжению. Если напряжение увеличивается, то ток в цепи также увеличивается, а если напряжение уменьшается, то ток в цепи также уменьшается.

Выходной ток линейной цепи между током и напряжением показан ниже на диаграмме:

Характеристики и кривые линейных цепей

Характеристики линейной цепи и реакция выхода на криволинейную цепь прямо пропорциональны входу. Если синусоидальное напряжение подается на вход линейной цепи, то мы получаем синусоидальное напряжение того же типа, что и на выходе. А в линейной схеме частота напряжения всегда одинакова.

Калькулятор легко решает линейные цепи.

Для нелинейных цепей:

В нелинейной цепи нет прямой зависимости между напряжением и током. Таким образом, такая схема выражается кривой V-I.

Характеристики и кривые нелинейных схем

Сравнение нелинейных схем с нелинейными схемами немного сложнее, поскольку предлагает много данных, и значение каждой из них различается.

Ради технологии мы в настоящее время можем моделировать и анализировать выходные кривые линейных и нелинейных схем с помощью таких инструментов моделирования схем, как Multisim, Matlab и Pspice.

Компоненты линейных цепей и нелинейных цепей

В случае линейных цепей:

Компоненты линейной цепи относятся к типу электрических элементов и имеют линейную зависимость между током и напряжением.

Вот некоторые из линейных элементов:

Символ Параметр Единицы
В CE0 Напряжение коллектора-эмиттера (I E = 0) В CEV Напряжение коллектор-эмиттер (для установленного ненулевого значения В BE ) В
В CB0 Напряжение коллектор-база (I B = 0) В
В EB0 Напряжение эмиттер-база (I C = 0) В
I c Ток коллектора A
Коллектор пиковый ток A
I b Базовый ток A
I bm Базовый пиковый ток A
P tot Общая рассеиваемая мощность при заданных температурных условиях (T C ) W
T stg Температура хранения ° C