Posted on

Содержание

Для чего нужен дроссель в люминесцентных лампах: принцип работы

Дроссель для люминесцентных ламп – это обязательное устройство для нормального функционирования осветительного прибора. Разобравшись в принципе работы такого приспособления можно правильно подключить светильник к электрической цепи самостоятельно.

Для чего нужен?

Люминесцентная лампа не может работать по принципу простой лампы накаливания. Чтобы обеспечить ее функционирование необходимо дополнительное устройство, которое способно создать импульс для электрического пробоя наполненной газом среды. Таким элементом является дроссель. Он поддерживает требуемую мощность в процессе работы светильника.

Чтобы задействовать люминесцентную лампочку необходимо не только обеспечение доступа тока, а и подача напряжения к ней. Для этого подключают дроссель, который ограничивает нарастание движения электрического заряда при подключении к электросети.

Основными функциями ограничивающего ток устройства являются:

  • обеспечение беспрерывной работы лампы независимо от возникающих в электрической сети отклонений напряжения;
  • организация подачи оптимального и безопасного для конкретного светильника тока, способствующего быстрому разогреву при зажигании электродов;
  • стабилизация разрядов тока при номинальных показателях.

С помощью дросселя в люминесцентной колбе происходит формирование разряда за счет образования в обмотке импульса повышенного напряжения.

Принцип работы

Дроссель функционирует в лампе вместе со стартером. Принцип их действия имеет такую последовательность:

  • при возникновении напряжения в лампе электрические заряды поступают в стартер, который состоит из заполненного инертным газом баллона с контактами и конденсатора;
  • за счет напряжения газ ионизируется и по цепи дросселя проходит ток;
  • происходит возрастание силы тока до 0,5 Ампер за счет разогрева контактов из биметалла и газа;
  • далее происходит нагревание катодов, и освобождаются электроды, подогревая в трубке светильника ртутные пары;
  • ионизация завершается при мгновенном замыкании контактов завершение ионизации происходит при мгновенном замыкании контактов;
  • при понижении температуры стартера осуществляется их быстрое размыкание и прекращение подачи тока к катоду и стартеру.

Заряд, сформировавшийся в ртутных парах, обеспечивает ультрафиолетовое излучение, под воздействием которого возникает освещение видимое человеком.

Технические характеристики

Приобретая дроссель нужно внимательно изучать технические характеристики устройства. Он должен соответствовать параметрам газоразрядного осветительного прибора. Существенную роль играет индуктивность дросселя. Такая величина обозначает индуктивное сопротивление устройства, способствующее регулировке поступающего к светильнику электричества.

Немаловажной величиной является коэффициент потери мощности при поддержке необходимых параметров эклектического питания лампы. Также имеет значение качество изделия.

В основном технические данные отличаются в зависимости от мощности дросселя. Согласно такому значению приспособление делят на три группы – «B», «D» и «C». Некоторые электронные модели имеют показатели климатических условий использования.

электромагнитный дроссельЭлектромагнитный дроссель для люминесцентных ламп

Виды

Дроссели бывают двух видов:

  1. Электронный. Такое приспособление работает без подключения стартера. Основными его достоинствами считаются – высокая скорость включения, небольшие габариты и вес изделия, а также способность обеспечить равномерное свечение лампы без мерцаний. Работает электронный дроссель совершенно бесшумно.
  2. Электромагнитный. Такое устройство для люминесцентных светильников подсоединяется параллельно со стартером. Дроссель электромагнитный имеет несложную конструкцию и надежен в использовании. Такие изделия отличаются невысокой стоимостью. К недостаткам данного приспособления причисляют – длительное включение, наличие характерного шума во время работы, возможность мерцаний при запуске, необходимость установки конденсатора.

Согласно типу сетей, в которые подключаются светильники, дроссели различают:

  • бытовые однофазные устройства – 220 Вольт;
  • трехфазные приспособления для люминесцентных ламп промышленного применения – 380 Вольт.

В некоторых моделях дроссель располагается в специальном кожухе, что позволяет размещать его в светильниках наружного расположения. Многие устройства для обеспечения свечения размещены внутри лампу. Такой вариант позволяет надежно защитить дроссель от влияния различных внешних факторов.

электронный дроссельЭлектронный дроссель для люминесцентных ламп

Устройство и схема

Конструкция дросселя вмещает в себя такие компоненты:

  • сердечник, на который намотана проволока из изолирующего материала;
  • специальная смесь для дополнительной защиты обмоточного провода, изготовлена из устойчивых к возгоранию веществ;
  • термоустойчивый корпус для размещения намотки.

Стандартная схема подключения со стартером – это наиболее простой и распространенный вариант подключения люминесцентных ламп. Несмотря на некоторые недостатки, такое подсоединения имеет хорошие показатели.

 схема подключенияСтандартная схема подключения люминесцентных ламп

Подключение

Чтобы подключить дроссель по схеме со стартером следует выполнить несколько простых действий:

  • подсоединить стартер к контактам, которые находятся по бокам на выходе осветительного прибора;
  • на свободные выводы подключить дроссель;
  • конденсатор соединить с питающими контактами.

Подключение всех элементов проводится параллельно. За счет конденсатора можно значительно уменьшить сетевые помехи.

подключение дроселяПодключение электромагнитного дросселя к люминесцентной лампе

Как проверить исправность?

Дроссель является достаточно прочным и надежным составным элементом люминесцентной лампы. Поэтому выходит из строя устройство очень редко.

Но все же иногда может возникать обрыв его обмотки или перегорание. Также при нарушении изоляционного слоя между витками дроссель перестает функционировать. Как определить исправность дросселя?

Проверка проводится мультиметром. Прибор, настроенный на величину сопротивления подключают к выводам дросселя. При нарушениях в обмотке на измерительном приборе высвечивается бесконечное сопротивление. Минимальные показатели этого значения свидетельствуют о непригодности изоляции или замыкании между витками.

При перегорании обмотки в катушке ощущается характерный паленый запах, который изначально исходит от детали в процессе ее работы. Все описанные характеристики неисправности дросселя в основном относятся к устройствам электромагнитного типа.

Как заменить?

Иногда при выходе дросселя из строя его начинают ремонтировать. Для этого требуются особые знания и навыки. Чаще всего деталь заменяется. Установку нового дросселя может сделать каждый:

  • полностью отключить подачу электроэнергии в доме;
  • снять дроссель;
  • разъединить крепежи и провода, проводящие к светильнику ток;
  • подключить к ним новый дроссель, вставляя на место старого.

Выполнять замену нельзя при простом отключении лампы, так как напряжение от этого не исчезнет.

Дроссель в люминесцентной лампе – это простой, но необходимый для создания свечения элемент. Имея представление о работе такого устройства можно подключать светильник и заменять в нем нерабочие детали без помощи специалиста.

Дроссель для люминесцентных ламп: 36вт, электронный, устройство, назначение

До настоящего времени дроссель для ламп был незаменимым узлом люминесцентного светильника (ЛЛ), выпущенная английской компанией General Electric в 1934 году. Она создала первые трубки с горячим катодом, в которых использовался положительный разряд в колонке в ртутной атмосфере низкого давления, для генерации коротковолнового УФ-излучения. Последнее стимулировало флуоресцентное порошковое покрытие на внутренней поверхности разрядной трубки. Хотя в той конструкции еще отсутствовали многие современные функции, но именно General Electric стал первопроходцем на рынке флуоресцентных ламп.

Дроссель для лампочек

Популярность люминесцентных ламп подтверждается тем фактом, что она и сегодня вырабатывает больше количества света на планете, чем любой другой источник. Пик производства был достигнут к 1970-му году. По современным оценкам, сегодня на их долю приходится около 80% мирового искусственного освещения.

Люминесцентное освещение

Люминесцентный вид освещения предлагает низкую стоимость системы, очень большой срок службы. Он полностью диммируемый и простой в использовании, и, кроме того, достигает высокой световой отдачи. Большая площадь трубки хорошо подходит для эффективного и безбликового освещения больших пространств.

Флуоресцентная лампа использует электричество, чтобы ртутный газ смог излучать ультрафиолетовый (УФ) свет. Когда этот свет, который невидим невооруженным глазом, взаимодействует с покрытием порошка люминофора внутри трубки, он начинает светиться и излучать яркий свет. Для того чтобы контролировать пропускаемое электричество, используют дроссель или в западной терминологии — дроссель балласт или механизм управления. Он представляет собой небольшое устройство, подключенное к электрической цепи источника света, которое ограничивает количество тока, проходящего через него.

Дроссель для лампочек

Поскольку напряжение в бытовой сети имеет более высокое значение, чем необходимо для работы светильника, дроссель первоначально дает источнику скачок напряжения для запуска, а затем только поддерживает минимальное количество для безопасной работы.

Процесс, который происходит внутри флуоресцентного света, вовлекает молекулы ртутного газа, нагреваемые электричеством. Без дросселя, контролирующего этот процесс, на лампу поступало бы много тока, который вывел бы ее из строя.

Флуоресцентные лампы используют два вида балластов:

  1. Магнитные, которые устарели и сегодня уже не используются в новых моделях ламп. Работа их построена на принципах электромагнетизма, когда электрический ток проходит через провод, он генерирует вокруг себя магнитную силу. Балласт содержит катушку из медной проволоки. Магнитное поле, создаваемое проводом, задерживает большую часть тока. Это количество может колебаться в зависимости от толщины и длины медной проволоки.
  2. Электронный дроссель для люминесцентных ламп использует более сложные схемы и компоненты, может с большей точностью контролировать ток, проходящий через люминесцентные лампы. По сравнению со своими магнитными аналогами они меньше, легче, эффективнее и, благодаря подаче энергии на гораздо более высокой частоте, практически не вызывают мерцание или жужжание.

Важно! Магнитные балласты не могут функционировать без помощи стартера. Этот небольшой цилиндрический элемент расположен позади светильника и заполнен газом, который при нагревании позволяет зажечь свет.

Характеристики

Базовые функции балластов: обеспечивает процесс подогрева катодов для старта процесса электронной эмиссии, создает напряжение стартового разряда и последующее ограничение рабочего тока. В режиме переменного тока, он обеспечивает сдвиг фаз (cos f) между I и U, называемым коэффициент мощности. Эта величина обозначается в паспорте и маркировки балласта. Активная мощность рассчитывается по соотношению: P = U х I х cosf, очевидно, что низкий cos f дает рост использования реактивной энергии.

Маркировка балласта

В связи, с чем балласты группируются по уровню мощности:

  • С— низкий показатель;
  • В— супернизкий;
  • D — средняя возможность поглощения.

Классификация и по уровню шума:

  • С — очень низкий шумовой эффект;
  • А — особо низкий показатель;
  • П — пониженный шум;
  • Н — норма.

Технические характеристики балласта должны соответствовать показателям мощности лампы, иначе она работать не будет.

Люминесцентные ламы требуют установку дросселей различной мощности:

  • Вт до 15.0 Вт — небольшие настольные светильники;
  • 16.0 Вт до 36.0 Вт — потолочные и настенные бытовые осветительные устройства;
  • 37.0 Вт до 80.0 Вт — мощные промышленные осветительные системы с несколькими единичными точками света.

На территории России выпуск люминесцентных ламп и комплектующих производятся достаточно большими партиями — от миллиона ламп в год. Производство организовано на предприятиях: «ЛИСМА-ВНИИС» им. Лодыгина, «Фотон», Саранский завод точных приборов, компании «СЭПО-ЗЭМ». Среди западных производителей популярностью пользуются греческая компания Schwabe Hellas и финская Helvar. Считается, что балласты и стартеры лучше приобретать известных марок, таких как Navigator или Luxe.

Как работает

Первоначально, подается переменное напряжение, которое пройдя через дроссель, попадает на лампу. Так как мощность передается через балласт, который является индуктором, он ограничивает ток и препятствует возникновению короткого замыкания в лампе. Далее ток проходит через нити накаливания и нагревает их, а также присутствующие в трубке газы.

Работа люминесцентных ламп

Разрядная трубка заполнена газообразным аргоном и имеет внутри фосфорное покрытие, а также содержит небольшое количество ртути. Затем ток поступает на стартер, внутри которого есть биметаллическая полоса, расширяемая при нагревании и замыкающая цепи, минуя лампу и создавая короткое замыкание. Когда цепь замкнута, напряжение падает до нуля. После того биметаллическая полоса остынет, она возвращается в исходное положение, открывая цепь. Так как в балласте имеется индуктор и собственное магнитное поле.

Во время размыкания цепи, магнитное поле разрушается и это создается «индуктивный удар с всплеском высокого напряжения, проходящего через нить накала, создавая дугу, для возбуждения фотонов в газовой среде аргона. Их эмиссия вызывает излучение ультрафиолетового света, который, проходя через фосфорное покрытие лампы, преобразуется в видимый свет.

Назначение дросселя

Принципиальные схемы электронных балластов разные. Но все они поддерживают фактическую типовую структурную схему:

  1. Сначала подключается последовательный резистор. Он подключен для ограничения тока перегрузки и короткого замыкания. В некоторых электронных балластах вместо последовательного резистора используется предохранитель. Этот резистор имеет очень низкое значение до 22 Ом.
  2. Затем подключается схема фильтра электромагнитных помех, который состоит из одного последовательного индуктора и одного параллельного конденсатора.
  3. Затем используется выпрямительная схема для преобразования переменного тока в постоянный. Схема мостового выпрямителя состоит из четырех PN диодов.
  4. Конденсатор подключен параллельно для фильтрации постоянного тока, поступающего из выпрямительной цепи.

Применяется инверторная схема с использованием двух транзисторов. Эти транзисторы создают высокочастотный переменный ток и повышающий трансформатор. С частотой в электронном балласте от 20.0 кГц до 8.00 кГц. Как правило, транзистор создает прямоугольный токовый сигнал. Повышающий трансформатор повышает уровень напряжения до 1000.0 В. В начальный момент и после того, как лампочка накаливания загорается, напряжение на ней снижается до 230 В. Таким образом главное назначение дросселя в люминесцентной лампе — сдерживать ток при работе осветительного прибора.

Конструкция

Конструктивно он выполнен из индуктивной катушки, намотанной на ферримагнитный сердечник, имеющего сходство с трансформатором, но с одной обмоткой из медного эмаль-провода.

Типовая структура дросселя:

  • Проволока с изолированным покрытием;
  • сердечник ферритовой конструкции, обеспечивающий индуктивность;
  • компаунд для заливки — негорючее вещество, для дополнительного обеспечения межвитковой изоляции;
  • корпус из термоустойчивых полимеров для размещения функциональных узлов.

Катушка

Дроссель в схеме ЛЛ должен выполнить скачок, чтобы возникло ЭДС самоиндукции катушки по правилу Ленца. Чтобы увеличить эти свойства, провод накручивают на сердечник, тем самым увеличивая электромагнитный поток.

Таким образом, по устройству балласт — это обыкновенная катушка, работающая по типу электротрансформатора.

Катушка дросселя

Обратите внимание! Перед применением нужно их точно рассчитать, чтобы обеспечить работоспособность ламп. Особенно в момент старта свечения, когда потребуется разряд достаточно высокого напряжения, чтобы пробить газовую среду.

После чего балласт, примет на себя функции гасящего устройства. Поскольку для того чтобы ЛЛ светилась, больших параметров тока не требуется, в связи с чем этот класс светильников обладает повышенной экономичностью.

Сердечник для балласта

Индуктивность дросселя люминесцентных ламп обеспечивается сердечником, поэтому он выполняется из пластин с ферромагнитными свойствами, изолированные друг от друга, чтобы препятствовать токам Фуко, создающим недопустимые помехи в работе. Он служит мощным функциональным барьером, как при снижении входного напряжения, так и при его подъеме.

Сердечник

Конструкция относится к низкочастотным схемам. Переменный ток в бытовых электросетях имеет большой диапазон колебаний: от 1.0 до миллиарда Гц и выше и группируется по таким градациям:

  1. Звуковые низкие частоты с диапазоном от 20.1 Гц до 20.1 кГц.
  2. Ультразвуковые от 20.1 кГц до 100.1 кГц.
  3. Сверхвысокие свыше 100.1 кГц.

Дополнительная информация. Сердечник присутствует только у низкочастотных дросселей, в высокочастотных вариантах сердечники не устанавливаются. Для намотки медного провода, применяют пластиковые каркасы или обыкновенные резисторы. В этом случае трансформатор выполнен в форме секционной, многослойной намотки.

Как подобрать

В паспортной документации для дросселя указывается, какие типы, и конфигурации ламп предназначены для работы с ним. Для правильного выбора нужно обратить внимание на следующие данные:

  1. Контрольный список параметров выбора дросселя ЛЛ.
  2. Тип запуска — мгновенный или запрограммированный.
  3. Обычный балластный коэффициент (от 0,77 до 1,1) является значением по умолчанию для большинства ламп.
  4. Входное напряжение — 120/230/380В.
  5. Минимальная начальная температура от −17С до 20С.
  6. Схема — параллель это норма. Это позволяет другим лампам оставаться зажженными, даже если одна лампа в приборе гаснет.
  7. Контроль анти-стратификации — нежелательные яркие и тусклые области, которые могут образовывать структуру стоячей волны по всей длине лампы. Полоски более вероятны, когда лампа работает при низких температурах.
  8. Оценка звука: балласт с рейтингом «А» будет тихо гудеть; балласт с рейтингом «D» вызовет ярко выраженный шум.
  9. Гарантия производителя.

Как подключить дроссель

Установка люминесцентного дросселя не сложная, но, как и всегда, при работе с электрическими цепями, лучше доверить ее квалифицированному специалисту, если у пользователя не соответствующей группы допуска по электробезопасности.

Алгоритм установки дросселя на ЛЛ:

  1. При установке люминесцентного осветительного прибора сначала отключают питание от сети.
  2. Снимают пластину рассеивателя, закрывающую лампу и удаляют саму лампу.
  3. При получении доступа к дросселю снимают с него крышку и отсоединяют все провода. Перед этим рекомендуется удостовериться, что питание прибора не выполняется, используя тестер напряжения.
  4. После приобретения необходимого балласта выполняют зачистку проводов для подсоединяют по указанной схеме.
  5. Включают электропитание только тогда, когда все вышеперечисленные шаги были выполнены в обратном порядке ибалласт будет полностью установлен.

Обратите внимание! Согласно европейским нормам старые дросселя утилизируют, поскольку они содержат токсины, вредные для окружающей среды.

Как заменить

В последнее время очень часто такая операция вызвана необходимостью замены магнитных дросселей на электронные. Этот процесс довольно прост и понятен, но также должен выполнятся специалистами электриками.
Процесс замены балласта с магнитного на электронный:

  1. Отключают питание на прибор.
  2. Открывают светильник, снимают колбу и балластный кожух.
  3. С помощью кусачек обрезают силовые (коричневые) и нейтральные (синие) провода, идущие в прибор.
  4. Закрывают провода проволочными гайками.
  5. Кусачками, отрезают провода и снимают магнитный балласт.
  6. Присоединяют электронный балласт в место, где был магнитный.
  7. Подключают провода питания и нейтрали к соответствующим балластным проводам.
  8. Закрепляют провода проволочными гайками.
  9. Возвращают колбу лампы и дроссельный кожух обратно.
  10. Включают питание на лампу.

Правильно установленные и функционирующие электрические осветительные балласты должны долго проработать, обеспечивая безопасный, хорошо регулируемый ток для ламп освещения без раздражающего мерцания и гудения.

Схема дневного освещения

Дроссель, хоть и выполняет сегодня важную роль в установке ЛЛ, но уже не является незаменимым, его место занял электронный пускорегулирующий аппарат ЭПРА (электронный балласт). Собственникам помещений,планирующим устанавливать такое освещение нужно учитывать, что 1 июля 2018 года в России запрещено применение трубчатых ЛЛ, а также ртутных ламп, а с начала 2020 года будут запрещены люминесцентные и натриевые светильники.

назначение, устройство и принцип работы

Зачем нужен дроссель для люминесцентных лампПоявление и усовершенствование светодиодных ламп постепенно снижают популярность люминесцентного освещения. Но еще долго светильники «дневного света» будут пользоваться спросом у населения из-за своих положительных качеств. Современные стартеры и дроссели для люминесцентных ламп имеют высокую надежность, что способствует сохранию лидерства люминесцентного освещения.

Назначение дросселя

Сам термин «дроссель» происходит из немецкого языка. В вольном переводе он означает «фильтр», или «ограничитель». Именно такую функцию и выполняет дроссель для ламп дневного света. Газоразрядные лампы в момент пробоя и стабильного горения газового разряда имеют существенные различия в своих параметрах.

В момент включения этот элемент ведет себя как дополнительное оборудование к стартеру, создавая импульс напряжения для зажигания тлеющего разряда. Потом стартер отключается, а дроссель поддерживает горение лампы и сглаживает пульсацию переменного тока.

Устройство и принцип работы

Дроссель по своему устройству — обычная индукционная катушка, рассчитанная на конкретное напряжение и силу тока. Его составляющими элементами являются:

  • сердечник;
  • медная проволока со специальной изоляцией;
  • защитный кожух.

Назначение дросселяПри прохождении переменного электрического тока через витки проволоки в сердечнике возникает магнитное поле, которое поддерживает направление течения тока после смены его движения.

Так и происходит сглаживание пиков пульсации переменного тока, что обеспечивает стабильное горение тлеющего разряда внутри трубки люминесцентной лампы. Вот для чего нужен дроссель в люминесцентных лампах.

Возможные неисправности

Так как устройство данного элемента очень простое, то возможных поломок может быть только две: обрыв цепи и межвитковое замыкание. При обрыве цепи деталь полностью выходит из строя и не выполняет своих функций; её следует заменить.

При межвитковом замыкании часть обмотки выходит из строя, элемент сохраняет, как правило, свою работоспособность, но меняются его рабочие параметры. Такая неисправность более опасна, так как сразу ее диагностировать без тестера не всегда возможно. А долгое использование лампы с таким дросселем может привести к поломке всего оборудования.

Виды и модели

По типу питания дроссели бывают однофазными и трехфазными. Первые наиболее распространены и используются как для бытового, так и для промышленного освещения. Вторые менее популярны и используются только в промышленном осветительном оборудовании.

По степени потери мощности выделяют три группы: с низкой, средней и обычной потерей мощности. Их маркируют соответственно символами B, C и D.

Обычные дроссели имеют электромагнитный принцип действия, в их конструкции присутствует сердечник и обмотка.

Устройство и принцип работы дросселя

Более современная разновидность — электронные, которые массово начали выпускаться всего несколько лет назад. У них вместо обычного сердечника и обмотки — миниатюрный инвертор. Такие детали несколько дороже обычных, но они не требуют дополнительно применять стартер для зажигания тлеющего газового разряда.

Разные люминесцентные источники света нуждаются в подключении дросселей разной мощности. Есть три группы по мощности:

  • от 9 Вт до 15 Вт — предназначены для небольших настольных светильников;
  • от 18 Вт до 36 Вт — для потолочных и настенных бытовых светильников;
  • от 65 Вт до 80 Вт — используются в мощных промышленных светильниках и источниках света с несколькими лампами.

Обзор производителей

Виды и модели дросселяДля бытовых источников света лучший вариант — детали греческого производства под торговой маркой Schwabe Hellas. Широкий ассортимент по мощности позволяет подобрать необходимый элемент для любой бытовой однофазной лампы дневного света.

Хорошо себя зарекомендовали элементы финского производителя Helvar. Они славятся тем, что обладают низкими потерями мощности и практически не создают помех при работе. Для мощных промышленных люминесцентных источников света оптимальны дроссели данной фирмы мощностью 85 Вт.

Обычно дроссели и стартеры являются комплектующими элементами при продаже ламп дневного света. Но иногда возникает необходимость их замены. Рекомендуется выбирать для этого продукцию таких известных и проверенных производителей, как Navigator, Luxe и Chilisin.

Ремонт дросселей, особенно электронного типа, лучше не производить. Их устройство таково, что отремонтировать данную часть качественно в домашних условиях нет возможности из-за миниатюрных деталей. Лучше заменить элемент в сборе.

Замену деталей необходимо производить при полном обесточивании светильника.

Проверку работоспособности можно произвести и без мультиметра. Достаточно подключить элемент к заведомо исправному светильнику, проверить скорость зажигания разряда и стабильность его горения.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Просмотров: 8

Действительно ли дроссель для люминесцентных ламп является незаменимым элементом, обеспечивающим запуск прибора и его последующее беспроблемное функционирование? Согласитесь, что лишние приспособления, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. Вы сомневаетесь, нужен ли дроссель в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом — в статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции.

Также приведены тематические фотоматериалы и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, по выбору нужного дросселя в зависимости от типа лампы.

Содержание статьи:

  • Назначение и устройство дросселя
    • Назначение балласта в схеме включения
    • Из чего состоит пускорегулятор?
  • Схема + самостоятельное подключение
  • Перегрев дросселя и возможные последствия
  • Выводы и полезное видео по теме

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать.

Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Галерея изображений

Фото из

Дроссель в импульсных схемах питания

Дроссель ограничивает величину переменного тока до нужных параметров. В импульсных схемах питания его назначение – блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение

Ограничитель в высокочастотных электрических схемах

Применяется для реализации высокочастотных электрических схем. Причем в них часто сердечники не используются. Исполнение может быть одно или многослойным

Сердечник в виде кольца

Применение магнитных сердечников неслучайное. Оно позволяет ощутимо уменьшить размер самого дросселя при тех же параметрах индуктивности. На высоких частотах используются ферритовые и магнитодиэлектрические составы. Сердечники в виде кольца позволяют получить большую индуктивность

Секционная намотка провода

В диапазоне длинных и средних волн, чтобы обеспечить требуемые/заданные параметры электроцепи, используется специальное исполнение элемента – секционная намотка провода

Дроссель в импульсных схемах питания

Ограничитель в высокочастотных электрических схемах

Сердечник в виде кольца

Секционная намотка провода

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя.

Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

Электромеханические ПРА

При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности.

Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Различные типы дросселей

Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

Изображение дросселя на схемах

На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Подключение лампы через дроссель

Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока.

В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

А для более габаритных изделий потребуется пускорегулирующая аппаратура, которая бывает как электромеханического, так и электронного типа.

Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.

Различные варианты включения лампочки

Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы

Правда, имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей.

Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

Подключение двух лампочек

На схеме реализовано подключение двух лампочек люминесцентного типа последовательно. Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет

Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.

 

Галерея изображений

Фото из

Установка держателей для лампочек

Сначала в корпус светильника ставят держатели для ламп – по 2 для каждой. И такие же механизмы для крепления 2 стартеров. Эти детали оснащены разъемами – клеммниками

Установка ламп в держатели

В держатели нужно аккуратно поставить каждую из ЛЛ трубчатого типа, стараясь не разбить колбу. Все действия следует выполнять при отключении светильника от сети

Подсоединение короткого проводка к держателю стартера

Для сборки электроцепи потребуется запастись короткими и более длинными проводками. Короткую жилу предстоит вставить в разъем держателя, предназначенного для стартера

Проверка работоспособности собранной схемы

Второй конец подсоединяют в одно из отверстий крепления первой лампочки люминесцентного типа. Важно обеспечить надежный контакт при этом

Соединение длинным проводом держателя стартера с ЛЛ

Во второе гнездо держателя для первого стартера нужно вставить длинный проводок, хорошо его там зафиксировав. Чтобы жила не мешала, ее следует аккуратно уложить в полости светильника

Второй конец жилы от стартера крепят ко второму держателю лампы

Второй конец этого длинного проводка предстоит поместить и зафиксировать в одном из гнезд второго держателя первой ЛЛ. Причем разъем этот должен быть симметричным отверстию на противоположной стороне лампочки, в котором уже закреплена жила, идущая от стартера

Соединение первой лампы со второй в одну цепь

Теперь предстоит соединить между собой первую ЛЛ со второй. Для этого нужно взять еще один короткий проводок – один его конец крепится в свободном разъеме первой лампочки, а второй подсоединяется в ближайшее отверстие второго держателя ЛЛ

Подключение питающего кабеля

У первой лампочки с обратной стороны остался еще один свободный разъем. Его предстоит использовать, чтобы запитать схему – нужно подключить жилу питающего кабеля, который в дальнейшем будет включаться в электросеть

Установка держателей для лампочек

Установка ламп в держатели

Подсоединение короткого проводка к держателю стартера

Проверка работоспособности собранной схемы

Соединение длинным проводом держателя стартера с ЛЛ

Второй конец жилы от стартера крепят ко второму держателю лампы

Соединение первой лампы со второй в одну цепь

Подключение питающего кабеля

При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.

Поэтому фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.

Галерея изображений

Фото из

Фазную жилу питающего кабеля подсоединяют в дроссель

Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе

Соединение второй лампы со вторым стартером

Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера

Подсоединение в цепь второй стороны лампы

Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось

Соединение второй лампы с дросселем

Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента

По одному стартеру для каждой лампочки

Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ

Установка пускателей в держатели

Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим

Дроссель один на две лампочки

Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки

Проверка работоспособности собранной схемы

Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют

Фазную жилу питающего кабеля подсоединяют в дроссель

Соединение второй лампы со вторым стартером

Подсоединение в цепь второй стороны лампы

Соединение второй лампы с дросселем

По одному стартеру для каждой лампочки

Установка пускателей в держатели

Дроссель один на две лампочки

Проверка работоспособности собранной схемы

Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным ЭПРА, вмонтированном внутри корпуса изделия.

Компактная люминесцентная лампочка

В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ

Перегрев дросселя и возможные последствия

Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром.

Избежать этой ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.

Перегрев дросселя

К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями

При неправильной эксплуатации может произойти взрыв колбы светильника. Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики.

Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Опасность замыкания витков обмотки

Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем

Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и разрядной лампочки

Выводы и полезное видео по теме

Тонкости сборки схемы из двух ЛЛ с последовательным включением:

Видеоролик о том, что такое дроссель и зачем он нужен:

Видеоролик о том, что такое дроссель и зачем он нужен:

Проверка дросселя на предмет поломки:

О правилах выбора дросселя в зависимости от типа разрядной лампы:

Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.

В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.

Facebook

Twitter

Вконтакте

Google+

электронный — для чего и зачем нужен, почему может греться

Время на чтение: 3 минуты

АА


Дроссель — деталь, служащая для регулировки силы тока. Эта деталь разделяет или ограничивает электросигналы различной частоты и устраняет пульсацию постоянного тока.

Для чего и зачем нужен в устройствах дневного света

Люминесцентные лампы (дневного света) как один из видов разрядных ламп, невозможно подключить для освещения таким же образом, как и обычную нагревательную электролампу. Для их подключения необходимо использовать дополнительный пускорегулирующий аппарат.

Дроссель включается методом последовательного соединения с лампой дневного света и предназначается для ограничения тока, который протекает через ее электроды. Это устройство характеризуется наличием реактивного сопротивления, а также отсутствием излишнего тепловыделения. Дроссель может ограничить ток и организовать предотвращение его лавинообразного нарастания при включении в сеть.

Дроссель — неотъемлемая составная часть любой стартерной системы включения. Помимо этого, он способен исполнять следующие дополнительные функции:

  • создание безопасного тока для конкретной лампы, при котором возможно обеспечение разогрева ее электродов при разжигании;
  • образование импульса повышенного напряжения, способствующего возникновению разряда в колбе лампы;
  • обеспечение стабилизации электрического разряда;
  • способствование бесперебойной работы лампы при отклонениях напряжения в электрической сети.

Принцип работы

Дроссель для люминесцентной лампы работает в паре со стартером. — еще одна часть стартерной системы включения, состоящей из баллона инертного газа и конденсатора. При подаче напряжения на стартерную систему, электрический заряд попадает на стартер, а затем протекает по сети дросселя благодаря ионизации газа. При этом происходит процесс разогрева газа и контактов, затем разогреваются катоды и освобождаются электроды.

Электроды же разогревают ртутные пары, находящиеся в трубке лампы. После замыкания контактов процесс ионизации завершается, что приводит к падению температуры стартера и размыканию этих контактов. В дросселе начинается процесс самоиндукции, способствующий газовому наполнению лампы, в результате чего ток снова попадает на дроссельную цепь и катод.

Технические характеристики

Основными техническими характеристиками рассматриваемой детали являются коэффициент потери мощности и индуктивность. Для обозначения этого коэффициента на устройстве указываются параметры тока, мощности и емкости конденсатора.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Индуктивностью называется индуктивное сопротивление, которое представляет возможным регулировать мощность электричества, поступающего на ламповые контакты.

Виды

Дроссели делятся на те же виды, что и подключаемые к ним лампы. Если подключить лампу к дросселю, который не соответствует ее характеристикам, то это, вероятнее всего, приведет к поломке какого-либо из элементов, используемых в системе подключения. Существуют следующие виды дросселей, подразделяемых в зависимости от мощности:

  • дроссель мощностью в 9 Вт — для энергосберегающих ламп;
  • 11 Вт — для миниатюрных светильников;
  • 15 Вт — для настольных светильников;
  • 18 Вт — для офисных ламп;
  • 36 Вт — для малых люминесцентных ламп;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых потолочных светильников;
  • 80 Вт — для большых люминесцентных ламп.

Устройство

Типичная схема подключения дросселя газоразрядного типа представлена на рисунке ниже.

фото 1фото 1

Условные обозначения:

  • EL — лампа;
  • SF — стартер;
  • LL — дроссель;
  • 1, 2 — спирали лампы;
  • C — конденсатор.

Отчего может греться

Дроссели чаще всего изготавливают из двух металлических материалов — алюминия и меди. Алюминиевые устройства обладают одним существенным недостатком — сильным нагреванием. В свою очередь, медные греются меньше из-за меньшего сопротивления в электрической цепи, и поэтому они являются гораздо более долговечными.

При использовании ламп дневного света дроссель должен постоянно поддерживать свою рабочую температуру. Для снижения температуры достаточно использовать простой компьютерный кулер. Однако, существует возможность выбрать и другой путь, заключающийся в покупке более дорогой системы охлаждения, например, водяной.

Помимо самой работы дросселя, он также способен перегреваться из-за короткозамкнутых витков. При такой проблеме помочь может только полная замена устройства. При замене рекомендуется выбрать детали из меди, основываясь на том, что они менее подвержены перегреву.

Практика показывает, что дроссели являются весьма долговечными устройствами при правильной их эксплуатации. А также нельзя не отметить тот факт, что дроссель способен погашать броски напряжения, даже очень сильные. Поэтому, если вы правильно подберете дроссель к своей люминесцентной лампе, то эта лампа может прослужить вам годами, и даже десятилетиями.

Рейтинг автора

Автор статьи

Доцент кафедры энергетики. Автор статей по осветительным приборам.

Написано статей

Предыдущая

ЛюминесцентныеЗапускаем люминесцентную лампу с помощью стартера

Следующая

ЛюминесцентныеОбзор схем подключения люминесцентных ламп

Дроссель что это такое, принцип работы. Применение в электрике, разновидность

Чтобы зажечь лампу, натриевую или люминесцентную, необходимо выровнять ток. При включении в сеть лампы, для выполнения этой функции используется дроссель. Он является в данном случае пускорегулирующей аппаратурой. Это устройство необходимо чтобы лампа загорелась. Без данного элемента лампа не может быть запущена. Лампа в обычном режиме может разогреваться на протяжении пяти минут, а иногда и больше. Пусковой ток, которые выдает дроссель может быть значительно больше рабочего напряжения.

Вообще есть два типа дросселей – с одной и двумя обмотками. Однообмоточный также называется ДНаТ. В статье будут рассмотрены все аспекты работы дросселей, как они действуют и какие функции выполняет. В заключении читатель найдет интересный материал на данную тему и видеоролик, который поможет детальнее разобраться в работе дросселей.

Дроссель

Дроссель.

Дроссель ДНаТ разновидности и способы подключения

Для того, чтобы обеспечить зажигание и выравнивание тока натриевых ламп, как высокого, так и низкого давления, при включении осветительных приборов в сеть, применяется дроссель днат, к которым относятся пускорегулирующая аппаратура и балласты.Это основные устройства, без которых применение натриевых ламп является не то, чтобы нецелесообразным, а попросту бессмысленным. Помимо пускорегулирующего аппарата, необходимо приобрести также импульсное зажигающее устройство, сокращенно ИЗУ, которое позволяет разогреть лампу, при этом используется импульс, который позволяет получить разряд в газовой смеси.

В настоящее время двухобмоточные дроссели считаются морально устаревшими, поэтому применяются достаточно редко. Пускорегулирующий аппарат можно приобрети как отечественного производства, так и зарубежного, данное утверждение касается и импульсного зажигающего устройства. Главное условие, заключается в том, что мощность дросселя и ИЗУ должна соответствовать мощности натриевой лампы.

Дроссель для люминесцентной лампы Дроссель для люминесцентной лампы.

Отметим тот факт, что импульсное зажигающее устройство (ИЗУ) может быть двух видов. К первому виду относятся ИЗУ двухпроводные, ко второму виду относятся ИЗУ с тремя проводами. Соответственно, трех проводные устройства надежнее, но при этом цена на них дороже, поэтому вопрос упирается в экономическую целесообразность приобретения изделия. Следующим термином, который относится к такому понятию, как дроссель днат, является балласт. Балластом принято называть пускорегулирующий аппарат и импульсное запускающее устройство, которые имеют металлический корпус.

Существуют и открытые пра. Вопрос выбора открытого или закрытого устройства, зависит от предпочтений отдельно взятого электрика. К достоинства пра в металлическом корпусе отнесем более низкую рабочую температуру, гарантии производителя относительно сборки изделия, и более простую схему монтажа в осветительных приборах. Остановимся на схеме подключения днат. Итак, основное условие, это соответствие мощности дросселя, мощности лампы. Например, если у вас дроссель днат 600, то и натриевая лампа должна быть 600. Правило простое, но если его не соблюдать, то период эксплуатации осветительного прибора значительно снизится, и светоотдача упадет до критической отметки.

Дроссели в электрике: что это и где используются?

Следующий момент, на который необходимо обратить внимание, это схема монтажа. При этом необходимо учитывать различные параметры, среди которых отметим длину провода от лампы к дросселю. Это расстояние не должно превышать одного метра.

Причем, для соединений необходимо применять медный провод, моножильный или многожильный, сечением 0,75х1,5, хотя также вопрос на любителя, можно взять провод и большего сечения, так сказать, с запасом. Уделите внимание вопросу приобретения сетевого шнура, он также должен выдерживать большие нагрузки, сечение должно быть порядка 1,5 – 2,5 мм, даже если дроссель для днат 150. Примерные параметры дросселей приведены в таблице ниже.

Таблица свойств дроселля

Таблица расчетов основных свойств дросселя.

Следующий момент, на который обращаем внимание, это необходимость установки предохранителя. Многие будут утверждать, что это лишняя трата денег, но это высказывание не соответствует истине. Предохранитель, как верный страж, спасет при пробое балласта, когда возможны различные неприятности, которые могут закончиться либо взрывом лампы, пожаром или банальным выбиванием пробок, если у вас не прикручены жучки. Автомат лучше всего приобретать двухполюсной, так более удобно, чтобы не заморачиваться, как необходимо вставить вилку в розетку.

Стоит почитать: все об электолитических конденсаторах.

Причем к выбору автоматов необходимо подойти со всей степенью серьезности. Как, впрочем, и к покупке других деталей, таких как дроссель днат 250, пускорегулирующая аппаратура или импульсное зажигающее устройство. Поэтому, необходимо покупать комплектующие исключительно в торговых точках, которые не занимаются продажей бракованного неликвида.

При этом лучше переплатить и купить нормальный автомат или дроссель, чем недоплатить и купить ПРА для ДНаТ произведенное китайской промышленностью. Чтобы потом не получилось, как в русской пословице: скупой платит дважды. Схемы подключения всех обозначенных в статье устройств, в каждом конкретном случае разные, поэтому необходимо воспользоваться услугами профессионального электрика, который выполнит работу качественно.

Дроссель на схеме

Дроссель на схеме.

Потери в обмотках

Существуют два принципиально разных вида потерь в дросселях: потери в сердечнике и потери в обмотках. Первые обусловлены вихревыми токами внутри самого сердечника и магнитными свойствами материала — потерями на перемагничивание, отображаемыми в виде петли гистерезиса. Причина потерь в обмотках — это сопротивление самих проводов, обычно медных.

Дроссели, используемые в импульсных силовых приборах, подвержены воздействию ВЧ-пульсаций тока, что может привести к существенному росту эффективного сопротивления обмотки и связанных с ним потерь в медных проводниках. Сопротивление обмотки силовых дросселей включает в себя две составляющие: сопротивление постоянному и переменному току, возникающее в результате действия скин-эффекта и эффекта близости.

Изменение тока в проводе индуцирует магнитный поток, который, в свою очередь, приводит к снижению тока в центральной части провода до очень малых величин. Это ведет к уменьшению эффективного поперечного сечения проводника и увеличению его сопротивления с ростом частоты. Поэтому чем выше частота и ток, тем больше потери мощности. На рабочих частотах той цепи, в которую включен дроссель, сопротивление переменному току может становиться очень большим, часто намного превышающим сопротивление по постоянному току, что ведет к существенному росту потерь в медных проводниках.

Кроме того, в силовых дросселях, оснащенных сердечниками с зазором, магнитное поле в зоне воздушного промежутка создает сильный локальный эффект близости, способный значительно увеличить сопротивление медных проводников по переменному току, а, значит, привести к росту соответствующих потерь и даже выходу дросселя из строя. Все описанные явления влияют на величину потерь мощности в любом электромагнитном устройстве. Взаимосвязь этих явлений значительно усложняет процесс разработки дросселей. Например, один из распространенных способов уменьшения сопротивления по переменному току — применение литцендрата. Однако при этом значительно снижается поперечное сечение проводника, что ведет к резкому росту сопротивления постоянному току.

Различные лампы

Различные лампы.

Рассмотрим другой пример. Для снижения потерь в обмотках при работе в режимах высоких постоянных токов часто применяются дроссели с обмотками из фольги, позволяющие эффективно использовать пространство внутри сердечника. Однако появление даже очень небольшого переменного тока может привести к возникновению в таких обмотках существенных потерь. Все это неприемлемо для большинства современных силовых систем. Многие преобразователи постоянного тока требуют использования дросселей, способных работать в режиме пульсирующих токов с большой постоянной составляющей.

Даже при условии того, что переменная составляющая тока будет всегда намного меньше постоянной составляющей, сопротивление переменному току может стать на порядок больше сопротивления постоянному току. Проблема становится все более острой по мере того, как в современных установках повышается плотность тока и рабочая частота. К счастью, уже найдены способы снижения потерь по переменному току в медных проводниках.

Дроссели в электрике: что это и где используются?

Эти потери существенно уменьшаются при применении однослойных обмоток. При использовании порошковых сердечников без зазора удается значительно ослабить влияние эффекта близости, что также ведет к снижению потерь по переменному току в медных проводниках.

Однако порошковые сердечники, как правило, характеризуются гораздо большими потерями на перемагничивание, чем ферритовые. Поэтому в силовых установках с высоким уровнем пульсаций тока иногда все же предпочитают использовать сердечники с зазором — из-за меньших потерь в них. Или же применяют порошковые сердечники из материала со сравнительно высокой магнитной проницаемостью и зазором, что позволяет использовать преимущества и того, и другого подхода. Но в этих случаях приходится решать проблемы, связанные с краевыми эффектами в зазорах, а также с потерями в медных проводниках, которые могут быть весьма значительными.

Дроссели разной мощности

Дроссели разной мощности.

Другая работа, проведенная West Coast Magnetics совместно с Thayer School of Engineering, позволила найти способы решения ряда проблем, связанных с применением обмоток из литцендрата в силовых дросселях с сердечниками с зазором. Дело в том, что поле в зоне зазора бывает довольно сильным, что может привести к возникновению локальных потерь в части обмотки, расположенной близко к нему. Было показано, что для заданной геометрии сердечника и каркаса существует оптимальное соотношение параметров обмотки из литцендрата и ее расположения внутри каркаса, позволяющее минимизировать потери в обмотке.

  • ширина и высота окна внутри сердечника;
  • ширина и высота окна каркаса дросселя;
  • амплитуда и частота пульсаций тока;
  • длина зазора;
  • коэффициент заполнения каркаса;
  • диаметр жил литцендрата;
  • длина витка;
  • количество витков.

Материал в тему: все о переменном конденсаторе.

Используя эти данные, программа рассчитывает напряженность поля внутри каркаса, а также идеальное расположение в нем обмотки. Кроме того, программа определяет суммарные потери в обмотке и выбирает количество жил, требуемое для заполнения доступного внутреннего пространства. Для примера рассмотрим дроссель индуктивностью 10,6 мкГн, работающий на частоте 250 кГц со среднеквадратичным значением пульсаций тока 4 А.

Дроссели в электрике: что это и где используются?

В дросселе используется сердечник E19/8/5 с зазором 0,65 мм и обмотка из 13 витков. Для обмотки выбран литцендрат 44 AWG с диаметром жил 0,05 мм. Программа ShapeOpt выдала результат, что при оптимальном суммарном количестве жил (314) полные потери в обмотке дросселя составят 0,28 Вт. На рисунке 3 показано оптимальное расположение обмотки внутри каркаса: зеленым показана область, занимаемая обмоткой, а белым — свободное пространство.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер. Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

P=(14.7-3.3)*0.02=0.228 Вт

Ближайший по номиналу в большую сторону – резистор на 0.25 Вт. Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими. Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока. Недостаток – выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Установка дросселя

Установка дросселя.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации. Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления. Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление).

Пример использования индуктивного сопротивление – это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников. А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется “бестрансфоматорный блок питания с балластным (гасящим) конденсатором”.

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны – нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Три дросселя

Три дросселя.

Заключение

Более подробно о том, что такое дроссель и зачем он нужен, можно узнать прочитав статью дроссели. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.artlight.ru

www.dima-boets.ru

www.russianelectronics.ru

www.electrik.info l

Обсуждение:Люминесцентная лампа — Википедия

Логичнее назвать статью газо-или свето- люминесцентная лампа, потому что понятие люминесценция включает разные типы излучения света(катодолюминесценцию, хемилюминесценцию и т.д), разные физические принципы. Пропускание тока через газ и свечение вещества при облучении ультрафиолетом только 1 из разновидностей люминесценции.84.242.229.116 05:15, 16 июля 2014 (UTC) Газоразрядная фотолюминесцентная лампа — более адекватный термин, ИМХО.84.242.229.116 05:22, 16 июля 2014 (UTC)

Напишите про стартер. Mercury 18:36, 27 декабря 2006 (UTC)

«Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненой газом трубки, которая была возбуждена при помощи соленоида» — первым был Ломоносов. Пропуская ток от электрофорной машины через шар заполненый разряженным воздухом он наблюдал свечение газа в шаре.195.110.6.202 13:03, 1 апреля 2009 (UTC)

(−)Против. Все не то, их лампы — предки газоразрядных ламп низкого давления, а в люминецентной лампе делается упор именно в люминофор. Потому и люминесцентная.

Товарищи, у меня есть что сказать, и я даже готов открыто противоречить всем, кто изберет другую точку зрения. Пишу коротко: вся часть про «балласт» требует переработки на 100 (сто) процентов. Там исходный посыл неверный, про «увеличение тока», а затем всё последующее рассуждение подгоняется под этот посыл.

Назначение дросселя совсем иное. (В статье назначение в даже смысле «балласта», как автор это понял, туманно прописано.) Дроссель, совместно со стартёром, нужен только для одного: для зажигания лампы. Электронный «балласт», требуется (а здесь я точно цитирую, кстати, ссылку для этой статьи), поскольку «он обеспечивает прогрев спиралей за счет перестройки частоты, зажигание при программируемой температуре спиралей».

Категорически не согласен. Балласты хоть и принято называть пускорегулирующими аппаратами, на самом деле они играют огромную роль в работе лампы уже после поджига, контролируя ток через неё.
  • Кто вам такое сказал про дроссель? Дроссель очень нужен во время работы лампы, т.к. он ограничивает ток через нее. Вы хоть раз «держали в руках» светильник с дросселем? А вот попробуйте. И еще, попробуйте при горящей лампе закоротить дроссель перемычкой, раз по-вашему он не нужен. Только глаза берегите, чтоб при возможном взрыве лампы осколками не зацепило.—OTIS 09:34, 25 декабря 2009 (UTC)

Повторим: он обеспечивает 1) прогрев спиралей, и 2) зажигание про программируемой температуре.

Как видим, ничего про «ограничение тока». (Так что надо про дроссели и их последователей — систем зажигания с электронным управлением, там микросхемка стоит, которая в щадящем режиме зажигает лампу — полностью переписать.)

А теперь я пишу точно, как зажигается люминесцентная лампа, и где же там «балласт».

Без тока лампа у нас разомкнута. Подаем от розетки ток 50 Гц, он идет через дроссель, спираль лампы, зажигается неонку, вторая спираль, снова розетка. Дроссель накапливает электромагнитную энергию. Неонка гаснет, это воспринимается дросселем как ступенька напряжения, и он «сбрасывает» несколько киловольт между длинными концами лампы. (Это есть сущность вашего балласта, которую вы неправильно поняли.) В результате в лампе возникает плазменный шнур, канал тока — лампа зажигается, и горит дальше уже без помощи стартера и дросселя. За счет того, что в ней токовый канал был создан высоковольтным импульсом от системы дроссель + стартер на размыкании. Повторю еще раз, при размыкании неонки, дроссель «сбрасывает» импульс в пару киловольт в лампу по длине, зажигая её.

  • Ну и как по вашему лампа может гореть без дросселя? Она обладает отрицательным сопротивлением, без токоограничивающего элемента (дросселя в данном случае) лампа или погаснет, или сгорит. Дроссель критически необходим при горении лампы, не верите — закоротите его во время работы, и посмотрите что случится. И еще, простое погасание обычной неонки никак на дросселе не скажется, в стартере не просто неонка, а неонка с биметаллическим контактом, который при нагреве замыкает ее. И вот как раз в момент размыкания дроссель благодаря самоиндукции выдает высоковольтный импульс.—OTIS 09:34, 25 декабря 2009 (UTC)

Зачем электронные: это же напряжение можно создать и без катушки, только с помощью транзисторных схем или с помощью силовой микросхемы. Преимущество в том, что на нитку лампы уже не подаются «киловольты» с током как на душу положит, а совершенно определенные заранее заданные величины тока, чисто для прогрева, и напряжения, чисто для пробоя. Причем такого напряжения, чтоб оно было достаточным (на фотке там U < 400 В), а не избыточным (с «дедовским» дросселем там реальные киловольты). Это создает щадящий режим для нитей накала, и увеличивает срок службы лампы. Ну так шта? Будем переписывать, или еще потолкуем.

Я еще хочу добавить. То что я про дроссель написал, это мало кто в курсе, так сказать. Но вы уж поверьте.

77.223.116.171 06:03, 25 декабря 2008 (UTC)171

И еще добавлю, про «резистор». Как вам верно на уроке сказали, дроссель можно шунтировать резистором (но уже после зажигания). Поскольку прок от дросселя только в первую секунду после размыкания неонки. Сказать-то сказали, да еще чай велели покумекать, чего так. (См. мой комментарий рядом.)

Про спектр также надо получше написать, про цветовую температуру, то что A B C D E F.

77.223.116.171 06:18, 25 декабря 2008 (UTC)171

Ты уже и тут тоже со своей теорией появился…
  • 1)Во-первых, секцию обсуждения следует отделять таким хитрым кодом == Заголовок секции ==, чтобы можно было прочитать, а обсуждение не шло сплошным текстом.
  • 2) Во-вторых, люминесцентная лампа обладает негативным сопротивлением, т.е. если включить её концы в розетку, то она просто не зажжётся. Если же мы включим стартер, то она почернеет и сгорит после запуска.
  • Что же происходит в катушке?
В первую волну катушка ещё «девственна», т.е. в ней нет тока самоиндукции и она оказывает сопротивление по формуле R=ρ⋅LS{\displaystyle R={\frac {\rho \cdot L}{S}}} и соответственно ток в цепи согласно закону Ома будет в несколько раз выше. Как только лампа зажжётся, в катушке образовываются токи самоиндукции, оказывающие сопротивление протеканию тока по катушке, что и ограничивает протекающий ток и не даёт лампе сгореть сразу же.
  • Для чего же нужен ЭПРА?
Реактивное сопротивление катушки рассчитывается по формуле XL=ωL=2πfL{\displaystyle X_{L}=\omega L=2\pi fL\,\!}, т.е. зависит от частоты. ЭПРА же представляет собой генератор импульсов, таким образом дроссель из 5 витков при частоте 60 000 герц окажет такое же сопротивление, как и 2-килограмовая катушка при 50 герцах.
  • Что за 400 вольт указаны на корпусе ЭПРА?
ЭПРА, для увеличения срока, перед запуском прогревает спирали недостаточным для зажигания напряжением от 190 до 450 вольт и потом латтер перед выходными клеммами повышает напряжение до 1,2 — 1,6 киловольт, при которых и происходит старт лампы без мерцания и гула (к сожалению, изображение с внутренностями ЭПРА зачем-то удалили с сервера, но там ясно видно было 1,5-киловольтовый латтер перед выходом). Dmitry G 08:06, 12 февраля 2009 (UTC)

нужно написать про запуск ламп со сгоревшими нитями накала 85.115.248.2 10:40, 13 августа 2011 (UTC)

== Эксилампа ==

Просьба проставить iwiki
Carn !? 19:55, 10 февраля 2009 (UTC) Мне кажется, что не заслуженно обойден конденсатор шунтующий дроссель. Именно он убирает киловольты с электродов лампы.83.217.31.78 14:46, 25 июня 2009 (UTC)

Что за конденсатор, шунтирующий дроссель? Включенный параллельно ему чтоли? Впервые слышу, в обычных схемах не применяется такого. Какие киловольты и откуда убирает? Или может речь идет о конденсаторе, включенному параллельно стартеру? Тот да, уменьшает напряжение высоковольтного импульса в момент размыкания, и увеличивает его длину.
  • Конденсатор параллельно стартёру защищает от радиопомех при его размыкании, и в меньшей степени при работе лампы (дуговой разряд в лампе ведь).
  • Конденсатор последовательно с дросселем используется для сдвига фазы тока через лампу — борьба со стробоскопическим эффектом в многоламповых светильниках (часть ламп через конденсатор, часть без → в целом уменьшаются пульсации света) Правда после перехода с колб ламп с Т12 на Т8 это стало менее актуально из-за уменьшения пульсаций света в современных ламах.
  • Конденсатор параллельно дросселю вместе с лампой ставится для улучшения cos φ светильника. Т. е. чтобы уменьшить потребляемый ток от сети. Реактивный ток замыкается внутри светильника и бесполезная реактивная мощность не потребляется. Fruktazi 20:38, 30 декабря 2015 (UTC)

А дуговой ли там разряд?! Может какой тлеющий или др.? 217.118.66.102 19:25, 14 октября 2009 (UTC)Dust

  • Дуговой. Не даром же бактерицидные лампы называются ДРБ (дуговая ртутная бактерицидная), по устройству они аналогичны обычным люминесценткам, только колба без люминофора и кварцевая. А тлеющий разряд в лампах бывает, например, при включении лампы — в некоторых лампах при подаче напряжения 220 В возникает тлеющий разряд, лампа при этом тускло мерцает, потом уже срабатывает стартер, тлеющий разряд гаснет и в лампе зажигается дуга.—OTIS 02:48, 29 ноября 2009 (UTC)
  • Тлеющий. Для дугового разряда характерна высокая температура, так что лампа скорее всего перегревалась бы и взрывалась/сгорала. Насчет «низкотемпературного дугового разряда» — в гугле этот термин выскакивает исключительно в тех местах, где приведен текст из Википедии. Насчет ДРБ. Стандартные уличные лампы освещения (ртутные), выпускавшиеся в СССР, назывались ДРЛ, так что скорее всего ДРБ схожа по конструкции именно с не 79.136.219.77 08:26, 26 июня 2012 (UTC)й. В уличных лампах разряд дуговой, и это сразу отражается в виде повышения температуры, да и пробойный промежуток там намного короче. 194.85.161.2 04:56, 13 января 2010 (UTC)
    • Вы бы для начала узнали как выглядит ДРБ — устроена она абсолютно так же как и обычная люминесцентная, лишь колба кварцевая и люминофора нет. Названа ДРБ — значит дуговая. Про тлеющий разряд вам уже написали, как он выглядит в люминесцентных лампах.—212.111.203.178 12:02, 15 января 2010 (UTC)
      • Говоришь выглядит так же? А теперь возьми дуговую лампу поднеси к глазам и убедись что ты осёл! (об этом будет свидетельствовать ещё одна колба внутри основной лампы). Как тебе уже сказали если в «обычноый» (низкого давления) люм. лампе загорится дуга — лампа взорвётся, я гарантирую это!;)
  • Т.н. накал обычной дуге не присущ.—1101001 07:15, 22 января 2011 (UTC)
  • Всем идиотам посвящается: есть люминесцентные лампы высокого, и низкого давления. В первых разряд дуговой, во вторых тлеющий. Практически все лампы которыми пользуются в быту и на работе это тлеющий разряд, а посему я заменил «дуговой» разряд на «тлеющий» (какому ослу вообще пришло в голову вписать «дуговой» разряд, ведь и ужу понято что под люминесцентными сейчас везде и всюду подразумевают именно тлеющий разряд, а говорить то что дуговые по устройству аналогичны «обычным люминисценткам» это просто расписываться в непонимании вопроса)
  • Не надо, пожалуйста, ругаться, хамство не есть свидетельство глубокого понимания предмета. В люминисцентных лампах низкого давления — дуговой разряд. Для запуска катоды разогреваются пропусканием тока через них, когда разряд загорается он шунтирует ток и нагрев поддерживается ионной бомбардировкой. Катоды эффективные (оксидные), поэтому температура их невысока, но механизм эмиссии — термоэлектронный, а такой разряд называется дуговым (в тлеющем разряде — вторичная ион-электронная эмиссия). В лампах высокого давления принцип работы схожий. Ток дуги ограничивается дросселем или схемой питания. В последнее время появились «лампы с холодным катодом», в них сначала загорается тлеющий разряд на высоком напряжении, обеспечиваемом источником питания с падающей характеристикой, затем катод разогревается, и всё как обычно. Это в «энергоэффективных» лампочках, заворачиваемых в патрон вместо ламп накаливания. Они, как правило, дольше набирают яркость именно из-за нагрева катодов. Inmodus 09:05, 27 октября 2013 (UTC)
  • У вас на картинке неправильно показан принцип зажигания ЛДС. Сначала в цепи течёт слабый ток, светится стартёр, но ток слишком слаб для нагрева катодов лампы. Потом биметаллические пластинки в стартёре изгибаются, происходит короткое замыкание, и через катоды лампы течёт сильный ток, который и нагревает катоды. Потом пластины в стартёре остывают, цепь размыкается и возникает импульс высокого напряжения за счёт энергии, накопленной в дросселе (это тоже нужно как-нибудь отобразить). Обычно лампа не загорается с первого раза, и последние два шага повторяются несколько раз. Подробнее: http://igors.ru/content/view/94/67/ — 46.188.19.7 15:11, 22 августа 2014 (UTC) Ivan

«О люминесцентных лампах NARVA. Технические статьи. Полная информация.»

Ага, полезная информация. Сплошная реклама. 94.137.14.28 14:15, 31 октября 2009 (UTC)

Раздел «бренды» — тоже сплошная коммерческая реклама, которую месяцами никто не удаляет 🙂 90.191.190.76 08:52, 31 марта 2010 (UTC)

Повторное срабатывание стартера[править код]

—green_fr 09:28, 9 апреля 2010 (UTC)

Раздел: Механизм запуска лампы с электромагнитным балластом. Стартер срабатывает повторно, если в момент размыкания мгновенное значение ТОКА В ЦЕПИ равно нулю.

Автор сообщения: Шаранов (конструктор) 178.178.151.187 11:57, 1 апреля 2010 (UTC)

Устаревшая маркировка[править код]

Что за столбец «сила света», которая почему-то почти всегда составляет 1/1000 от… европейской маркировки? Удалил Raoul NK 18:47, 18 июня 2010 (UTC)

Люминесцентные лампы с качественным электронным балластом служат до 10000…15000 часов, а лампы накаливания при плавном нагреве до 2000. По этому значение 20 сильно завышено. 178.165.55.68 17:04, 31 октября 2011 (UTC) SEn

Утилизация в мусорный контейнер во дворе[править код]

Наверно не стоит добавлять, но я сам лично видел, как в 2000 или 2001 году в мусорных контейнерах во дворе здания районной администрации (!!!) лежали торчали люминесцентные лампы. Даже у властей пофигистское отношение к утилизации. Ксенон 10:39, 11 ноября 2011 (UTC)

Более менее утилизировать лампы правильно стали только в последнее время. И это более менее! А буквально лет 5 назад, когда лампы накаливания только начали заменяться КЛЛ, народ (обращаю внимание, я говорю гражданах в целом) прям на землю рядом с баками выбрасывал лампы, они там грудками лежали, битые. Сейчас такого уже нет, точнее есть но не везде.

Так, а какое отношение к теме имеет именно ваш случай? Я даже не знаю о какой администрации вы говорите, о московской?

И еще, у властей как раз таки самое пофигистское отношение. Ничего в этом удивительного нет. Doudnick_Val 17:38, 5 января 2013 (UTC)

Включение с электромагнитным балластом на производстве[править код]

Поэтому люминесцентные лампы с электромагнитным балластом не применяют для освещения подвижных частей станков и механизмов

На Западе может и не применяют, а у нас отношение ко всему , поэтому у нас широко применяются светильники со старым добрым дросселем на металлорежущих станках. И до сих пор устанавливают новые на старые станки. Ксенон 10:39, 11 ноября 2011 (UTC)

Ну так поменяйте на «нежелательно применение для освещения подвижных частей станков и механизмов». Doudnick_Val 17:34, 5 января 2013 (UTC)

Международная маркировка по цветопередаче и цветовой температуре[править код]

«Международная маркировка» — это копипаста с немецкой википедии. Посмотрите на «нидерландскую» и про «Международность» маркировки на русской странице станет всё понятно. Отсутствует стандарт на международную маркировку. Есть маркировка по производителям. 89.207.66.42 08:11, 29 августа 2012 (UTC)

Согласен. Вообще-то это не только германская маркировка, она популярна во всем мире, но единой — не является. Нет единой! Потому предлагаю просто переименовать в «Наиболее используемую зарубежную маркировку» или что-то в этом роде. Doudnick_Val 17:32, 5 января 2013 (UTC)

Перенести видео «мерцание лампы»[править код]

Данное видео расположено прямо рядом с описанием механизма запуска электронного балласта. В тоже время в статье говорится, что электронный балласт решает проблему с мерцанием, значит видео относится к электромагнитному ПРА. 81.4.235.101 08:36, 7 ноября 2012 (UTC)

✔Готово. Перенес. Doudnick_Val 17:28, 5 января 2013 (UTC)

Fluorescent lamp Почему в английском языке так называется?—Kaiyr 06:29, 15 января 2013 (UTC)

Флюоресцетная? а хз . —Tpyvvikky 04:25, 24 февраля 2013 (UTC) ..может надо см. люминофор

Ядовитые ртутно-фосфорные лампы погубят людей и Землю — Полный текст http://www.amelta.com/artiklid_rus.html Производители и продавцы люминесцентных ламп ( далее ЛЛ ), всячески их расхваливают, даже на популярном сайте Википедия очень много и подробно о них написано ( похоже как раз производителями и продавцами ЛЛ ) и лишь в самом конце многостраничного описания, до которого мало кто дочитает, в разделе со скромным названием «безопасность и утилизация» есть информация о вреде ЛЛ: Люминесцентная лампа#Безопасность_и_утилизация . — Эта реплика добавлена участником Amir Fatkullin (о • в) 23фев2013

Вышедший из строя стартёр[править код]

«сокращая срок службы нитей накала;» причем здесь это? 37.110.1.220 09:30, 16 апреля 2013 (UTC) danich

Не работающий должным образом стартер держит спирали в стадии накала постоянно, а кроме того периодически все же вызывает пробои газа в лампе. Это ведет к тому, что нить быстро расходуется. Doudnick_Val 12:14, 16 апреля 2013 (UTC)

Странно, что в статье нет ни одной ссылки на ГОСТ, зато есть пачка ссылок-примечаний на весьма сомнительные источники.

ГОСТ 6825-91. Лампы люминесцентные трубчатые для общего освещения 91.124.225.133 15:21, 12 июня 2013 (UTC)

Преимущества и недостатки — спектр излучения[править код]

Сначала написали как плюс: «приближенный к естественному спектр излучения лампы»,
потом в недостатках: «неравномерный, линейчатый спектр, неприятный для глаз и вызывающий искажения цвета освещённых предметов (существуют лампы с люминофором спектра, близкого к сплошному, но имеющие меньшую светоотдачу)». Уберу «естественному спектр», т.к. естественный это наверно от Солнца, а не от люминесцентной лампы.

Маркировка цветопередачи по ГОСТ 6825-91[править код]

В ГОСТе на странице 218 только 4 маркировки и даны для них только координаты цветности: ЛТБ (x=0,440 y=0,403), ЛБ (x=0,409 y=0,394), ЛХБ (x=0,372 y=0,375), ЛД (x=0,313 y=0,337). S-Ene 17:56, 29 апреля 2014 (UTC)

ЛЕ есть в МУ 2.2.4.706-98/МУ ОТ РМ 01-98 «Оценка освещения рабочих мест» — надо бы поправить текст, там кстати есть другие. —LA 09:21, 16 июля 2014 (UTC)

Спект на компакт-дисках?[править код]

Насколько корректными могут быть иллюстрации спектра, показанные на компакт-дисках? Предлагаю их убрать. —Sergei Frolov (обс) 07:05, 26 сентября 2014 (UTC)

Светящийся перемещающийся шнур в лампе[править код]

Иногда у некоторых линейных (трубчатых) ламп наблюдается интересный красивый эффект: лампа светится не равномерно и целиком, как обычно, а по ней как будто двигается светящийся шнур. Этот шнур может извиваться или вращаться по трубке спиралями или зигзагами, быстро или медленно, плавно или рывками. Что это за эффект? ←A.M.Vachin 14:22, 8 июня 2016 (UTC)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *