Натриевые лампы: принцип действия
Одним из осветительных приборов, используемых в системе освещения и нашедших широкое применение, являются натриевые лампы. Пары натрия размещаются внутри стеклянной колбы под низким давлением. Под действием электрического разряда, создается свечение ярко-желтого цвета, длина волны которого составляет 590 нм. Благодаря этому, натриевые лампочки обладают очень высокой световой отдачей. Максимальный эффект удалось получить после изобретения натриевых ламп с высоким давлением. Их принцип действия напоминает металлогалогеновые лампы, а натрий используется, как светоизлучающая добавка.
Действие натриевых ламп
Горелки для натриевых ламп изготавливаются не из кварца, а из поликристаллической окиси алюминия, представляющей собой тонкостенную трубку, диаметром 5-9 мм. Такая конструкция связана с высокой химической активностью натрия и высокой температурой в разряде.
Вводы для тока представляют собой колпачки или диски, которые герметично впаиваются внутрь тонкостенных трубок. Сами электроды изготавливаются из вольфрама, активированного торием. Вся конструкция горелки во внутреннем пространстве колбы, где создан сильный вакуум. В колбу закачивается инертный газ в виде аргона или ксенона, а также, в небольшом количестве вводится сплав натрия и ртути.
В процессе работы лампы, стенки ее горелки нагреваются из-за воздействия тока разряда. При этом, происходит испарение натрия и ртути, давление их паров начинает расти, в результате чего, возникает свечение яркого желтого света. Трубочка-горелка практически без потерь пропускает свет через стекло, из-за чего и получается высокая светоотдача.
Где применяются натриевые лампы
При очень высокой световой отдаче, качество цветовой передачи натриевых лампочек находится на низком уровне. Это обстоятельство и определило их применение для освещения улиц и прочих площадей открытого типа. Натриевые лампочки все шире используются для освещения отдельных видов производственных помещений, где отсутствуют жесткие требования к цветовой передаче.
Данные виды ламп дают хороший эффект в освещении дорожного полотна, поскольку желтый свет хорошо различается водителями. Они имеют высокую термическую и химическую стойкость, позволяющую увеличить срок эксплуатации до 28,5 тысяч часов.
Кроме низкой цветовой передачи, натриевые лампы имеют недостаток в световом потоке с большой глубиной пульсаций. В течение всего срока эксплуатации, напряжение в лампочке начинает возрастать через каждые 1000 часов, приблизительно на два вольта. В результате, лампы в конце своей работы, просто перестают зажигаться.
Адрес: 127282, Москва, ул. Полярная д 31Б, стр 16
|
Натриевые лампы: особенности и принцип действия
Натриевые лампы – осветительные устройства, использующие в качестве рабочего вещества металлические пары. В отличие от двух прочих классов разрядных приборов. К примеру, ртутные лампы используют разряд в газах, выделяют семейство осветительных приспособлений, где рабочим веществом становятся соединения металлов.
Ключевые особенности разрядных натриевых ламп
Считается, что натриевые лампочки обладают самой большой светоотдачей, что предполагает наличие внушительного КПД. Изделия характеризуются, помимо прочего, долгим сроком службы. В период эксплуатации светоотдача снижается незначительно. Рабочие параметры (ламп высокого давления) мало зависят от температуры окружающей среды (перегрев исключается правильно реализованной конструкцией). Натриевые лампочки востребованы для освещения улиц. Присутствуют серьёзные недостатки:
- Не слишком достоверная цветопередача (значения коэффициента – 25). Это долго считалось основным ограничением для применения разрядных ламп в быту. Крайне плохо выглядит при подобном освещении человеческая кожа.
- Разряду в парах натрия присуща глубокая пульсация, что приводит к быстрому утомлению зрения. Эффект мерцания вреден для нервной системы и ряда аспектов человеческого здоровья. Упомянутое явление объясняется полной безынерционностью дуги в парах натрия – свечение повторяет закон приложенного напряжения (в сети обычно синусоида частоты 50 Гц).
- По мере расходования ресурса жизни потребляемая мощность натриевой лампы постепенно растёт и повышается на 40% относительно первоначальной.
- Пускорегулирующий аппарат натриевых ламп громоздкий (занимает много места) и характеризуется большими потерями (до 60% от полной расходуемой энергии).
- Наличие пускового дросселя предопределяет низкий коэффициент передачи мощности (до 0,35). Что требует наличия солидного блока компенсирующих конденсаторов для устранения реактивной части.
Осветительное устройство
Перечисленное объясняет применение натриевых лампочек преимущественно для ночного освещения, в особенности, нежилых объектов: цехов, складов, железнодорожных станций. Дополнительно – для хранилищ, дорожных магистралей, архитектурных сооружений. Жёлтый свет натриевой лампы низкого давления позволяет человеку различать детали при сравнительно низкой интенсивности излучения, превосходно проходит сквозь туман в плохих погодных условиях. Указанная специфика делает возможным создание на основе описанных приборов множества сигнальных установок.
Часть приведённых выше недостатков удаётся устранить применением электронных балластов инверторного типа. Этим снижается энергопотребление, по причине отсутствия пускового дросселя коэффициент мощности достигает 0,95. Разумеется, масса электронного балласта невелика. Это известно человеку, знающему о преимуществах светодиодных и разрядных ламп с эдисоновской резьбой Е27. Вся электроника здесь умещается в цоколе.
Срок службы натриевых лампочек повышенного давления колеблется в пределах 12 – 28 тысяч часов. Это конкурентоспособные значения, в пересчёте на трудодни составляет 4 – 9,5 лет. Постепенно падение напряжения на лампах увеличивается со скоростью 1 – 5 В ежегодно. Что становится причиной, провоцирующей отказ.
Колба ламп низкого давления обычно цилиндрическая. У изделий высокого давления – иногда грибовидная с внутренним отражателем или эллипсоидная. В последнем случае спектры свечения градируются по мощности: для её средних величин давление в колбе максимальное, объясняя упомянутое деление. На спектральные характеристики влияет сетевое напряжение (если не используется электронный балласт). Критичен срок службы и к амплитуде: увеличение или снижение вольтажа лишь на 5% приводит к резкому старению изделия.
Для рядовых потребителей представляют интерес лампы с улучшенной цветопередачей. Соответствующий коэффициент изделий достигает 83, что признано прекрасным показателем. К примеру, для светодиодных лампочек типичными значениями считаются 70 и более. Последние массово применяются в быту, мало отыщется желающих на такие параметры жаловаться. А учитывая экономичность натриевых лампочек, полагаем, приборы станут достойным конкурентом для прочих семейств осветительных приборов.
Работа лампы
Принцип действия натриевых ламп
В герметичной колбе создаются условия для испарения натрия. Для получения света используют D-линии на волнах 589 и 589,6 нм. Натриевые лампы бывают высокого и низкого давления. Согласно общепринятой классификации это, соответственно, от 30000 до 1 млн. Па и от 0,1 до 10000 Па. Такое положение дело возникло на основе долгих исследований специфики разряда.
Установлено, что максимум светоотдачи отмечается при давлениях 0,2 и 10000 Па. Первые натриевые лампы, созданные в 1931 году Марселло Пирани, функционируют на первом экстремуме функции в пределах указанного интервала при плотности тока 0,1 – 0,5 А на квадратный сантиметр. Наиболее благоприятные условия для излучения света достигаются при температурах жидкой фазы в интервале 270 – 300 градусов Цельсия (температура цоколя, по крайней мере, вдвое ниже). Лампы, работающие при давлении 0,2 Па, эффективнее.
Второй экстремум достигается при дальнейшем нагреве паров. При температурах 650 – 750 градусов Цельсия. Натриевые лампы повышенного давления долго не удавалось создать. Сложность заключалась в отсутствии подходящего материала для колбы. Лишь алюминиевая керамика сумела выдержать натиск агрессивной среды при температурах выше 1000 градусов (1300 – 1400 градусов Цельсия). Искусственные материалы дали человечеству немало, о чем косвенно упоминалось в обзоре по теме Электрических цепей.
Натриевые лампы низкого давления
Лампы низкого давления чрезвычайно эффективны. Указанные выше длины волн становятся доминирующими, но далеко не единственными в спектре свечения. У ламп низкого давления большинство линий лежит в области чувствительности глаза. Это значит, свет максимально ярок. Иными словами лампы низкого давления обладают привлекательным КПД.
У лабораторных моделей коэффициент полезного действия достигает 50-60%. В результате световая отдача поднимается до 400 лм/Вт (теоретический предел для современного уровня технологии составляет 500 лм/Вт).
Для сравнения. Светодиодная лампочка EKF мощностью 9 Вт (аналог нити накала мощностью 75 Вт) отдаёт поток 830 лм. Цифра считается хорошим показателем энергосбережения. Хотя световая отдача, нетрудно догадаться, составляет «лишь» 92 лм/Вт. Становится понятно, сколь эффективны натриевые лампы низкого давления, изобретённые давно, в 1931 году.
На практике приходится идти на жертвы (на лампочки Philips по-прежнему хороши и достигают световой отдачи в 133-178 лм/Вт). Температура колбы поднимается до необходимых 270-300 градусов Цельсия за счёт специальных мер по теплоизоляции (превышением радиуса колбы над максимально эффективным) и некоторого увеличения рабочего тока до оптимального. Как результат, КПД реальных изделий, выпущенных для массовой продажи, не достигает указанных выше границ. Но остаётся повышенным, чтобы натриевые лампочки назвали энергосберегающими.
Теплоизоляцию иногда дополняют и иными мерами. Отражающая рубашка из полупроводниковых материалов пропускает наружу полезное излучение жёлтого цвета, но отражает внутрь инфракрасное. Температура внутри дополнительно повышается. Но конструкция натриевой лампы сложнее.
Розжиг дуги облегчается добавлением некоторого количества неона и аргона. Этим сильно снижается напряжение, развиваемое драйвером. По причине наличия примесей стекло колбы не поглощает аргон. Радиус лампы берётся чуть больше оптимального и составляет 15-25 мм. Оксидный катод обычно бифилярный или сиптерированный (спечённый из порошка). В качестве материала используется вольфрам, активированный щелочными (щёлочноземельными) металлами.
Лампа низкого давления
Натриевые лампы высокого давления
В газовую смесь, помимо натриевых, добавляют пары ртути и снижающего напряжение розжига (до 2-4 кВ) ксенона. Давление в колбе находится в пределах от 4 до 14 кПа. Несложно заметить, что, согласно общей классификации разрядных ламп, указанный диапазон относится к низкому давлению.Для натриевых ламп выше 14 кПа указанный параметр не поднимается. Диапазон 4 – 14 кПа выносится в разряд сильного давления.
Максимум эффективности лежит в районе 10 кПа. Парциальное давление натриевых паров составляет десятую или двадцатую долю от общего. Прочее приходится на ртуть и ксенон. Давление последнего (в холодном виде) составляет 2,6 кПа. Если для снижения напряжения розжига применять смесь неона и аргона, световая отдача натриевой лампы снижается на четверть.
В спектре натриевых ламп повышенного давления, помимо D линий, отмечается активность в сине-зелёной части спектра. За счёт чего даваемый оттенок не жёлтый, а золотисто-белый (цветовая температура в теплом промежутке – 2000 К). Индекс цветопередачи (максимален при 2500 К) возможно повысить увеличением парциального давления паров натрия и диаметра колбы. Одновременно почти вдвое снижается световая отдача, уменьшается срок службы. Происходит повышение цветовой температуры. Ввиду описанных выше негативных результатов на такие меры идут редко.
В качестве материала колбы используется алюминиевая керамика. Обычное силикатное стекло непригодно, пары натрия под действием немалой температуры вступают тогда в химическую реакцию. Образуемые соединения устойчивы, и колба ощутимо чернеет уже через несколько минут после начала работы изделия. Изменения необратимы, под действием сильного давления присутствует вероятность полного разрушения стекла.
Поликристаллическая керамика и трубчатый монокристалл при толщинах стенки от 0,5 до 1 мм одинаково устойчивы к действию агрессивной среды до температуры 1600 К, с некоторым запасом относительно оптимальной точки. Керамика обнаруживает достойный коэффициент пропускания излучения в видимом диапазоне, занимающий 30% потребляемой натриевой лампой энергии.
Запредельные температуры требуют специальной конструкции вводов. Изготавливаемые из ниобия с малой (1%) примесью циркония они герметизируются на входе в колбу особым стеклоцементом (способным выдержать указанные агрессивные условия). Столь изощрённый по составу сплав выбран неспроста. Конструкторы изыскали материал, коэффициент теплового расширения которого близок к керамике. В результате удаётся избежать деформаций на стыках и швах. Та же идея используется в металлических оконных рамах. Известно, что коэффициент теплового расширения алюминия близок к значениям стекла.
Натриевым лампам повышенного давления присуща инерционность. При первом зажигании свет жёлтый и монохроматический. Постепенно изделие выходит на режим с одновременным расширением излучаемого спектра. Для повторного розжига дуги газ остывает, отнимая 2-3 мин. Чтобы не превысить рабочих температур, требуется исключить отражение излучения на колбу. В противном случае натриевая лампа выходит из строя от перегрева.
Натриевые лампы высокого давления для освещения растений
Любые культивационные сооружения, будь то теплицы, либо парники накрывают материалом, пропускающим солнечные лучи, чтобы растения могли осуществлять процесс фотосинтеза. Одни покрытия справляются с этой задачей получше, другие хуже. При разведении культур в летний период, а также в конце весны и начале осени освещения растениям вполне хватает. А вот если появилась необходимость начать эксплуатировать сооружение пораньше, к примеру, с начала марта, то без дополнительного искусственного освещения и натриевых ламп высокого давления обойтись вряд ли удастся. Любые сельскохозяйственные культуры для полноценного развития нуждаются в двенадцатичасовом световом дне.
Русский ботаник, академик Императорской Академии наук Санкт-Петербурга А.С. Фаминцын был первым ученым, доказавшим, что процесс фотосинтеза может осуществляться не только под воздействием дневного света, а и при искусственном освещении. В его научной лаборатории для изучения процессов использовали водоросли и керосиновые лампы. Именно его исследования положили начало применению искусственных источников света для сельскохозяйственных целей, многочисленные разновидности которых мы используем сегодня.
Натриевые лампы дают теплое оранжево-желтое освещение
В естественной среде, то есть под открытым небом, стебли, а в большей степени листья, поглощают из воздуха влагу, углекислый газ, а назад в атмосферу отдают кислород. Солнечный свет используется растениями для фотосинтеза. Часть света поглощается землей, за счет чего она прогревается. Свет является главным источником энергии для растений. Для фотосинтеза большинство культур используют электромагнитные излучения в диапазоне четыреста-семьсот нанометров. Для растений непригодны УФ-излучение (ниже 380 нм) и ИК-излучение(выше 780 нм).
Красные, желтые и оранжевые части спектра влияют на цветение, плодоношение, корнеобразование и развитие растения в длину. Холодный синий спектр стимулирует развитие кустистости стеблей и листвы, а также рост в ширину. Для выращивания растений необходимо сбалансированное освещение. Получается, что, выбирая источники искусственного света, нужно обращать внимание на спектральные характеристики прибора.
Сбалансированное освещение на основе LED-ламп и НЛВД
Цветовая температура у разных источников света различная, к примеру:
- пламя свечи имеет температуру 1900 К,
- cолнце – 5000-5500 К,
- небо в ясный день 10000-20000 К.
Солнечный свет, необходимый растениям, не постоянен, его температура варьируется и зависит от времени дня, поэтому для его имитации чаще всего используются комбинированные осветительные приборы. Солнце, находящееся:
- возле горизонта во время заката имеет температуру 3400 К,
- утреннее и обеденное солнце – 4300-4500 К,
- в зените – 5000 К.
- в сумерках освещение холодное – 7500-8500 К.
Яркий свет необходим светолюбивым растениям, которые в естественной среде растут или выращиваются на хорошо освещенной местности. Им требуется освещенность не менее 15000-20000 люкс. Растения, которые удовлетворительно чувствуют себя в полутени, требуют от 10000 до 15000 люкс. Освещение ниже 5000 люкс недостаточно даже для теневыносливых и тенелюбивых культур. Чтобы определить освещенность, нужно использовать специальный прибор – люксметр. Также существуют удобные комбинированные аппараты, которые одновременно могут измерять влажность и кислотность почвы плюс освещенность.
Прибор 3-в-1 для измерения кислотности, влажности и освещенности
Производители осветительных приборов указывают на упаковке следующие характеристики:
- Световая отдача, которая характеризуется отношением количества светового потока к получаемой лампой мощности и измеряется в лм/Вт. Другими словами световая отдача – это подобие эффективности или КПД, значения которых зависят от мощности прибора. Лампы накаливания имеют 13,8-15 лм/Вт, светодиоды от 10 до 300 лм/Вт, лампы натриевые высокого давления (НЛВД) 90-150 лм/Вт.
- Цветовая температура (ед. измерения – Кельвины (К)). Она показывает, в какой части спектра дает излучение лампа. Теплый желтый свет лампы натриевой ВД – 2000 К, лампа накаливания имеет температуру 2200-2800 К, люминесцентная белого света – 3500 К, а холодного – 4000 К.
- Индекс цветопередачи дает возможность оценить, насколько цветовой оттенок лампы близок к естественному свету Солнца.
Цветовая температура
Растениям нужна определенная освещенность (измеряется в люменах и люксах) – это то количество света, которое попадает на поверхность. В физике освещенность – зрительное понятие. Для того, чтобы охарактеризовать потребности растения в свете, используются другие величины:
- облученность – по другому энергетическая освещенность или фотометрия, измеряемая в Вт/м2
- либо фотосинтетически активная радиация, измеряемая в микромоль·фотонах/сек·м2. Иностранные производители пишут название термина на английском языке: Photosynteticaly Active Radiation (PAR).
Облученность, другими словами, является мощностью излучения, достигающего поверхности. ФАР – часть солнечной радиации, находящаяся в диапазоне 400-700 нанометров и используемая зелеными растениями для фотосинтеза.
— Лампы накаливания имеют небольшую световую отдачу, сильно греются и расходуют много электрической энергии. Для досветки растений они малопригодны, единственное, что у них есть положительное – низкая стоимость.
– Лампы газоразрядные высокой интенсивности. Внутри таких изделий находятся колбы с галогеном в виде газа. В группу входят три вида ламп:
- натриевые (типа ДНАТ (на английском HPS)
- металлогалогенные (типа МН-МГ)
- ртутные (ДРЛ).
Ртутные наиболее дешевые, но имеют наихудший спектр излучения, светят они слабо. Для сравнения ртутная лампа (175 Вт) дает 8000 люменов (лм), а натриевая (150 Вт) – около 15000, то есть больше в два раза. Получается, что натриевые лампы вдвое эффективнее, чем ртутные. При использовании светильников с рефлекторами световой поток натриевой лампы можно увеличить еще на 30%.
Лампы металлогалогенные, кроме ртутных паров, содержат иодиды металлов. Они имеют сбалансированный спектр красной и синей области. Свет таких ламп более хорош для вегетативного развития растений, чем свет натриевых, но менее эффективен (на 10-15%).
Натриевые лампы содержат внутри колбы ртутные и натриевые. Их свет теплый: желто-оранжевый. Он соответствует полуденному солнечному свету. Свет натриевых ламп больше подходит для подсветки растений в период цветения.
Конструкция лампы натриевой ВД
Существуют еще люминесцентные лампы, по сути это те же газоразрядные, но низкого давления. Их использование в быту более безопасно. Светоотдача прибора зависит от длины изделия. Более эффективным считается использование одной длинной лампы вместо нескольких коротких.
Наиболее доступными искусственными источниками света считаются лампы натриевые ВД (высокого давления). Их наиболее часто применяют в тепличных хозяйствах. Спектр их излучения усилен в голубом и красном диапазоне, ряд производителей выпускает довольно сбалансированные изделия.
НЛВД имеют наибольший коэффициент полезного действия ФАР (фотосинтетической радиации), который достигает 25-35%. Они также характеризуются более длинным сроком службы. Эти лампы целесообразно применять на более поздних этапах развития растений (репродуктивных). Если применять фитолампы этого типа для освещения рассады, она может вытянуться, растения будут раскидистые с длинными междоузльями. У томатов, к примеру, кисти с плодами закладываются через каждые два-три междоузлья, поэтому использование НЛВД для освещения рассады даст нежелательный результат: в дальнейшем на растении высотой в 150-180 см вместо пяти-шести кистей будет две-три. Урожайность снизится.
Для НЛВД нужны специальные светильники с отражателями
А вот досвечивать взрослые растения в период вызревания плодов, либо цветения натриевыми лампами эффективно. Их свет способствует ускорению цветения и завязыванию плодов. Использование светильников с НЛВД позволяет собирать более высокие урожаи овощей, фруктов и трав, декоративные растения под таким освещением цветут более обильно.
По сравнению с лампами накаливания, имеющими сходную цветовую температуру, НЛВД имеют более продолжительный срок службы, их светоотдача больше в шесть раз на каждый Вт электроэнергии. В качестве дополнительного освещения НЛВД используют в теплицах средней полосы и в более южных регионах. В таких зонах недостаточный диапазон синего света растения получают естественным способом. В более северных областях недостаточность освещенности более длительная, поэтому НЛВД необходимо комбинировать с другими световыми источниками, чтобы обеспечить растения всем необходимым.
Свет НЛВД привлекает насекомых, как опылителей, так и вредителей. При их использовании необходимо контролировать температурный режим в культивационном сооружении, так как НЛВД излучают много тепла. Повышенная температура также способна вызывать вытягивание стеблей.
Высоту установки искусственно освещения необходимо рассчитывать
Для справки: производители ламп часто указывают такой параметр, как световой поток, используя единицу измерения люмен. Это количество света, которое дает источник света в общем, а какая его часть достигнет растений, зависит от того, насколько далеко от поверхности располагается светильник. Чтобы растения получали максимальное количество света, светильники с НЛВД располагают поближе к посадкам и используют рефлекторы, позволяющие направлять световое излучение. Поскольку натриевые лампы нагреваются при работе, расстояние слишком маленькое делать не стоит, чтобы растениям не было жарко.
Новые лампы светят оранжево-желтым светом, а в конце срока эксплуатации спектр смещается к темно-оранжевому, а затем к красному. Такие лампы эксплуатировать нельзя, их следует заменять на новые.
Ряд зарубежных и отечественных производителей выпускает специальные НЛВД для применения в тепличных хозяйствах и для домашней досветки растений.
- Компания Philips производит серию под названием ‘Son Т Agro’, подобные лампы есть и в ассортименте General Electric – ‘Lucalox’. Мощность стандартная 250, 400 или 1000 Вт. Например, лампы в 400 Вт – это довольно мощные источники света, которые можно применять в небольших оранжереях. Под воздействием их освещения стебли растений хорошо ветвятся. Срок службы ламп этих производителей 10000-12000 часов. Они дают световой поток 55000-65000 люменов.
- Натриевая лампа для растений Son Т Agro от Philips
- Лампы ДНаТ (дуговые натриевые трубчатые) выпускают многие производители, причем, существуют специально предназначенные для разведения растений: в их спектре свечения соединяются два пика (синего и красного цвета). Такие лампы могут использоваться во время всего цикла выращивания, а не только на стадии цветения, либо плодоношения.
- Фирма OSRAM разработала линейку натриевых ламп ‘Plantastar’ (мощность 250, 400 или 600 Вт) для использования в теплицах. Их изделия имеют повышенную прочность, благодаря применению металлокерамики в разрядной трубке. Лампы ‘Plantastar’ могут использоваться в условиях повышенной влажности. За 12000 часов работы световой поток не снижается ниже 90%. Есть серия OSRAM Plantastar 250W Inter, разработанная для бокового освещения взрослых растений, такие источники света подвешивают между рядами. Свет ламп стимулирует процесс цветения. Световой поток 55000-60000 люменов.
Натриевая лампа для теплиц – OSRAM Plantastar
Лампа ДНаТ: устройство и применение
Лампа ДНаТ — это источник освещения, работа которого основана на горении дуги в области высокого или низкого давления. Этот процесс происходит в специальной трубке (горелке), выполненной в виде цилиндра из окиси алюминия, заполненной парами натрия, ртути и газом ксеноном (необходим для зажигания). Лампа ДНаТ состоит также из стеклянного баллона, в котором размещена горелка, и резьбового цоколя Е-27 или Е-40 — в зависимости от мощности.
Устройство
Для разжигания и горения дуги необходимо дополнительное оборудование. Это пускорегулирующий аппарат (ПРА) и импульсное зажигающее устройство (ИЗУ). Некоторые фирмы выпускают лампы особой конструкции, которым не требуется ИЗУ. В последнее время чаще используется электронная пускорегулирующая аппаратура (ЭПРА) вместо ПРА. Применение её позволяет стабилизировать мощность потребления электрической энергии, что положительно влияет на продление срока службы лампы. ЭПРА увеличивает частоту тока, устраняя тем самым эффект мерцания 50 Гц. При работе лампа ДНаТ горит ярким оранжевым светом, это обусловлено наличием в ней паров натрия. Она может нагреваться до 300 градусов, поэтому патрон для неё применяется только керамический. Устанавливается в светильниках различного назначения. Запитывается от переменного напряжения 220 В.
Плюсы
Лампа ДНаТ обладает следующими положительными характеристиками:
- Мощный световой поток, в два с лишним раза превышающий поток лампы ДРЛ (этот параметр не ухудшается при длительной эксплуатации).
- Продолжительный срок службы. Он составляет около 20000 часов, тогда как альтернативные источники освещения прослужат максимум 10000 часов.
- Небольшие пусковые и рабочие токи, что даёт неплохую экономию электроэнергии.
- Применение в разнообразных климатических зонах.
- Надёжное зажигание при низких температурах окружающей среды.
- Высокий КПД, который достигает 30%.
Минусы
К недостаткам лампы ДНаТ можно отнести следующее:
- довольно длительное время выхода на рабочий режим, которое составляет около семи минут;
- слабая цветопередача (в ярком оранжевом свете очень плохо видны или искажены другие цвета).
Эти факторы существенно ограничивают её применение.
Область применения
Лампы натриевые ДНаТ в настоящее время имеют довольно обширную область применения как наиболее экономически выгодный и эффективный источник освещения. В основном их используют для наружного освещения дорог, пешеходных переходов, тротуаров, парков, производственных площадей, тоннелей и т. д. Водители транспортных средств знают о том, как приходится напрягаться в тёмное время суток, при выпадении осадков или при движении в тумане, когда освещение осуществляется с помощью ламп ДРЛ. Свет от натриевых источников устраняет эти негативные явления за счёт мощного светового потока, который увеличивает контрастность видимых предметов. Они используются и для освещения фасадов архитектурных сооружений. Натриевые лампы применяются в качестве источника дополнительного освещения в теплицах, оранжереях и т. д. Для этого выпускаются ДНаТ со специальным спектром светового излучения, полезным для растений.
У лампы ДНаТ цена выше, чем у альтернативной ДРЛ. Но она со временем окупится и в дальнейшем принесёт значительную экономию средств.
Натриевая лампа — это… Что такое Натриевая лампа?
- Натриевая лампа
Натриевые газоразрядные лампы используют газовый разряд в парах натрия для получения света. Дают ярко-оранжевый свет.
Натриевые газоразрядные лампы широко применяются для уличного освещения, где они постепенно заменяют менее эффективные и экологичные ртутные газоразрядные лампы. Причём следует заметить, что применение натриевых ламп низкого давления ограничено тем фактом, что их эффективность зависит от температуры окружающей среды (во время холодной погоды они светят хуже), а в большинстве натриевых ламп высокого давления в качестве наполнителя применяется амальгама натрия (соединение натрия со ртутью). Поэтому на вопрос о большей экологичности натриевых ламп по сравнению с ртутными однозначного ответа не существует.
Лампы светят желтым светом,в отличие от белого у ртутных ламп ДРЛ.
Существуют два принципиально различных типа натриевых ламп — лампы низкого давления и лампы высокого давления.
Натриевая лампа низкого давления
Натриевая лампа низкого давления мощностью 35 Ватт
Натриевая лампа низкого давления характеризуется максимальной эффективностью среди всех источников света — около 200 лм/Вт. Однако излучение натриевой лампы низкого давления является монохроматическим излучением — т.н. резонансным дублетом натрия. В связи с этим качество освещения, даваемого такой лампой, например индекс воспроизводимости цветов (color rendering index), имеет крайне низкое значение. Такие лампы применяются для освещения улиц,производственных и складских помещений (рекомендуется использовать лампы ДНаТ+ДРЛ).Применение их для других целей затруднительно, поскольку невозможно различать цвета предметов освещенных такими лампами. Так, при замене галогенных или ртутных ламп на натриевые в закрытом помещении искажается цветовосприятие предметов, например, зелёный цвет полностью превращается в чёрный или тёмно-синий, таким образом, например, многие станции метро часто теряют свой архитектурный облик.
Натриевая лампа высокого давления
Натриевые лампы высокого давления мощностью 150 W и 100 W Работа натриевой лампы высокого давления мощностью 250 WАббревиатура ДНаТ — Дуговая Натриевая Трубчатая лампа. Натриевая лампа высокого давления отличается тем, что в ней линии резонансного дублета натрия сильно уширены за счёт высокого давления паров натрия. Уширенные линии дают квази-непрерывный спектр в ограниченном диапазоне в желтой части спектра. Таким образом улучшается (хотя и не слишком сильно) качество излучения — становится возможным различать цвета. Одновременно с этим падает энергетическая эффективность лампы — примерно до 150 лм/Вт (что всё еще является высоким значением, по сравнению например с 13 лм/Вт у лампы накаливания).
Часто в качестве наполнителя ламп применяют смесь натрия и ртути, что даёт более качественное освещение.
Горелки ламп ДНаТ изготовляются из оксида алюминия.
Для зажигания обычных натриевых ламп необходим пробой межэлектродного пространства импульсом высокого напряжения. Для этого применяют импульсное зажигающее устройство — ИЗУ. Однако есть лампы, не требующие ИЗУ, в них около горелки имеется пусковая антенна. Чаще всего она имеет вид проволоки или ленты, обвитой вокруг горелки. Такие лампы называются ДНаС.
Wikimedia Foundation. 2010.
- Наторп Пауль Герхард
- Натриевая селитра
Смотреть что такое «Натриевая лампа» в других словарях:
Лампа — получить на Академике рабочий купон на скидку Технопарк или выгодно лампа купить с бесплатной доставкой на распродаже в Технопарк
Натриевая лампа — высокого давления (в светорассеивающей колбе): 1 разрядная трубка; 2 стеклянная внешняя колба; 3 рассеивающее покрытие; 4 бариевый газопоглотитель; 5 цоколь. НАТРИЕВАЯ ЛАМПА, газоразрядный источник света, в котором оптическое излучение возникает… … Иллюстрированный энциклопедический словарь
НАТРИЕВАЯ ЛАМПА — газоразрядный источник света, в котором оптическое излучение возникает при дуговом электрическом разряде в парах Na. Натриевая лампа низкого давления дает чисто желтый свет. Световая отдача 100 170 лм/Вт, срок службы 5 7 тыс. ч., используется… … Большой Энциклопедический словарь
натриевая лампа — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики лампы, светильники, приборы и комплексы световые EN sodium vapor lampsodium vapor lamp … Справочник технического переводчика
НАТРИЕВАЯ ЛАМПА — газоразрядный источник света, в котором используется излучение, возникающее при электрическом разряде в парах натрия. Н. л. один из наиболее эффективных источников света, применяемый для наружного и внутреннего освещения. Н. л. низкого давления… … Большая политехническая энциклопедия
натриевая лампа — газоразрядный источник света, в котором оптическое излучение возникает при дуговом электрическом разряде в парах Na. Натриевая лампа низкого давления даёт чисто жёлтый свет. Световая отдача 100 170 лм/Вт, срок службы 5 7 тыс. ч, используется… … Энциклопедический словарь
натриевая лампа — natrio lempa statusas T sritis fizika atitikmenys: angl. sodium discharge lamp; sodium vapor lamp; sodium vapour lamp vok. Natriumdampflampe, f rus. натриевая лампа, f pranc. lampe à vapeur de sodium, f … Fizikos terminų žodynas
Натриевая лампа — газоразрядный источник света (См. Газоразрядные источники света), в котором излучение оптического диапазона возникает при электрическом разряде в парах Na. Н. л. низкого давления представляет собой заполненную парами Na и смесью… … Большая советская энциклопедия
НАТРИЕВАЯ ЛАМПА — газоразрядный источник света, в к ром оптич. излучение возникает при дуговом электрич. разряде в парах натрия. Н. л. низкого давления даёт чисто жёлтый свет, обеспечивая хорошую видимость и высокую разрешающую способность глаза при низких уровнях … Большой энциклопедический политехнический словарь
натриевая лампа высокого давления — Натриевая лампа, парциальное давление паров в которой при установившемся режиме имеет значение порядка 104 Па. [ГОСТ 15049 81] Тематики лампы, светильники, приборы и комплексы световые EN High Pressure Sodium lampHPS lamp … Справочник технического переводчика
натриевая лампа низкого давления — Натриевая лампа, парциальное давление паров в которой при установившемся режиме не превышает 102 Па. [ГОСТ 15049 81] Тематики лампы, светильники, приборы и комплексы световые … Справочник технического переводчика
Использование ламп ДНАТ для растений
Лампы типа ДНАТ, светят в два раза эффективнее, чем лампы дневного света той же мощности – это объясняется маленькими размерами излучателя, свет от которого гораздо легче направляется в нужную сторону и прочими особенностями конструкции. Поскольку ЛДС излучает по всей поверхности, сконструировать для них достаточно эффективный отражатель сложнее. Научным путем был проведен расчет площади освещения подтверждающий, что с помощью ДНАТ создать значительно большую площадь освещения проще.
ДНАТ использовать гораздо выгоднее и с экономической стороны, рекомендуется производить замену раз в полгода, а одна ДНаТ 400 ватт – заменяет 15..20 ЛДС по 40 ватт. Еще стоит отметить, что 1 большой балласт – гораздо удобнее чем с пятнадцать маленьких необходимых для ЛДС. Электроэнергия используется ДНАТ вдвое эффективнее чем ЛДС при том же результате.
Принципы работы ламп ДНАТ
Внутри внешнего стеклянного баллона ДНаТ’а находится «горелка» – трубка из алюминиевой керамики заполненная разреженным газом, в котором между двух электродов создается электрический разряд (дуга). В горелку также вводится ртуть и натрий (в ДРИ вместо натрия применяются галиды различных металлов, и горелка делается из кварцевого стекла) Для ограничения тока дуги используется специальный индуктивный (дроссель) или электронный балласт. Для зажигания холодной лампы напряжения сети недостаточно, поэтому необходимо использовать специальное импульсное зажигающее устройство – ИЗУ. Сразу же после включения оно генерирует импульсы напряжением несколько тысяч вольт, которые гарантированно пробивают лампу и создают дугу. «Натриевыми» лампы ДНаТ называют за то, что основной поток излучения генерируется ионами натрия, поэтому их свет имеет характерную желтую окраску. При работе «горелка» разогревается до 1300 °C, поэтому для сохранения ее в целости из внешнего баллона откачан воздух. Внимание: у всех без исключения дуговых ламп температура баллона при работе превышает 100 °С! Без принудительного охлаждения температура рефлектора будет ненамного меньше. Сразу после возникновения дуги лампа светит очень слабо, вся энергия расходуется на прогрев горелки. Яркость ламп стабилизируется после 5-10 минут работы.
Как правильно расположить ДНАТ?
На основании многолетнего опыта западные садоводы утверждают, что горизонтальное положение лампы является более эффективным чем вертикальное, поскольку основной поток света лампа излучает в стороны. По этой же причине лампа должна располагаться посреди оранжереи, причем ее ось должна быть направлена поперек (перпендикулярно длинной стороне) – таким образом обеспечивается наиболее равномерная освещенность всех растений.
Пока растения маленькие, нет необходимости держать их в верхней границе «оптимального диапазона», но по мере их роста необходимо максимизировать интенсивность света на более нижних участках, и будет нужно поместить их вблизи или у верхних границ «оптимального диапазона».
Учитывайте тепловое излучение лампы. Высота подвешивания выбирается экспериментальным путем, но будьте осторожны – если вы слишком опустите лампу она может сжечь верхушки растений! На более близком расстояние от лампы может потребоваться вентилятор обдувающий верхушки растений, также необходим отражатель с воздушным охлаждением лампы.
Безопасное подключение ДНАТ
Если вы собирали светильник сами – трижды убедитесь что схема подключения ДНАТ абсолютна правильна! Последствия ошибки могут быть катастрофическими, начиная с выгорания любого из трех элементов схемы и заканчивая взрывом лампы.
Все электрические соединения выполняются толстым проводом, пайки и клеммы должны быть надежными. Винты в соединительных колодках затягиваются плотно, но чтоб не сломать колодку.
Для надёжного подключения, избежания плохого контакта, предотвращения пожара и повышения безопасности:
– надо использовать медные провода и кабели
– многожильные проводники надо опрессовывать специальными наконечниками или залудить паяльником, иначе винты в клеммах перережут большую часть жил, что может вызвать перегрев контакта, оплавление, замыкание с соседними контактами и возгорание
– одножильные проводники не надо опрессовывать наконечниками, в этом случае наконечник не нужный, а значит – лишний элемент, который уменьшает надёжность контакта
– медь не должна торчать из клемм, зачищенная часть провода должна полностью заходить в изоляцию клеммы, иначе появляется вероятность короткого замыкания или поражения током.
Если на лампе имеется грязь, жир или отпечатки то из-за неравномерного нагрева лампа может взорваться сразу же после прогрева! Поэтому избегайте прикасаться к лампе руками и после установки ее в патрон на всякий случай протрите спиртом. Попадание капель воды или других жидкостей на включенную лампу вызывает взрыв со 100% вероятностью! При использовании вентилятора убедитесь что он вращается и дует поток воздух куда нужно.
Необходимо полностью исключите возможность попадания на балласт или дроссель – воды, уберите его подальше или подвесьте как можно выше. Провода должны иметь целую изоляцию. В момент зажигания лампы ИЗУ вырабатывает импульсы очень высоко напряжения – будьте предельно внимательны во избежание поражения током.
В процессе работы светильника хотя бы раз в месяц нужно стирать пыль с лампы и рефлектора и проверять загрязненность вентилятора. Лампы рекомендуется менять раз в 4–6 месяцев, поскольку к концу срока службы у них сильно падает светоотдача. Опускайте лампу слишком низко не рекомендуется, проверьте рукой температуру на уровне макушек растений – сильного обжигать не должно!
Если лампа не работает ?
По мере старения натриевые лампы приобретают мерзкую привычку «мигать» т.е. лампа включается, разогревается как обычно, потом вдруг гаснет и через минуту все повторяется. Если вы заметили за ней такое поведение – попробуйте поменять лампу. В случае если смена лампы не помогает – нежно измерить напряжение в сети, оно может быть ниже обычного… Если мигание происходит нерегулярно – возможно виноват плохой контакт или скачки напряжения в сети. Самая неприятная возможность – это замыкание между витками обмотки в балласте, тогда придется его менять. Иногда «мигают» и новые лампы, но у них это через несколько часов проходит.
Бывает, что после включения светильника слышно как трещит ИЗУ (т.е. напряжение есть), но лампа даже не пытается зажечься. Чаще всего это случается из-за пробоя с проводе, идущем от ИЗУ к лампе или говорит о полностью выгоревшей лампе, реже бывает виноват обрыв провода между балластом и фонарем или подгоревшее ИЗУ. Попробуйте сменить провод между ИЗУ и лампой. Обратите внимание на состояние контактов ИЗУ. Если не поможет – попробуйте поменять лампу. Если не помогает – отключите ИЗУ (иначе своими импульсами оно может сжечь вольтметр!) и померяйте напряжение на патроне лампы – у ДНаТ оно должно соответствовать сетевому. Если напряжение на патроне есть – меняйте ИЗУ.
Если же светильник вообще не подает признаков жизни: ИЗУ не жужжит, лампа не светится – скорее всего или выбило предохранитель или нарушен контакт в сетевом шнуре. Возможно виновато сгоревшее ИЗУ или обрыв обмотки в балласте – проверьте балласт как описано ниже, если он целый – меняйте ИЗУ.
Балласт проверяется обычным Ом метром. В норме сопротивление у них порядка 1–2 Ом. Если сопротивление значительно больше – значит или обрыв в обмотке или нарушен контакт между выводами обмотки и соединительной колодкой (попробуйте подтянуть винты). При межвитковом замыкании все сложнее – на сопротивление постоянному току оно влияет очень мало из-за чего трудно обнаруживается, при этом мощность на лампу поступает гораздо большая чем надо. Когда на лампе превышение по мощности – она быстро перегревается и гаснет, в результате наблюдается все то же «мигание».