Posted on

Содержание

Датчики движения для включения освещения: инфракрасные, наружные, порядок установки

Датчики движения находят широкое применение в качестве сигнализаторов, фиксирующих перемещения объектов с целью контроля окружающей обстановки или запуска в автоматическом режиме определенных действий в ответ на зарегистрированное перемещение. Наиболее распространенным типом датчиков движения является датчик движения для включения света (далее по тексту ДДС), используемый для того, чтобы включить осветительный прибор без применения традиционного выключателя (заняты руки, или нет возможности на ощупь разыскивать кнопку выключателя).

Автоматическое включение освещения при появлении человека

Автоматическое включение освещения при появлении человека

Принцип работы датчика движения

Датчик движения представляет собой устройство, отслеживающее изменение параметров акустических или электромагнитных колебаний, поступающих из окружающей среды в зоне действия датчика. При изменении контролируемого показателя, фиксируемого детектором, датчик срабатывает, замыкая контур электроцепи для автоматического совершения определенного запрограммированного действия, например, включения звуковой сигнализации, освещения или кондиционера.

Разновидности ДДС

В зависимости от частотного диапазона сканируемых колебаний, ДДС подразделяют на несколько типов:

  1. Акустические или ультразвуковые устройства, реагирующие на изменения параметров звукового сигнала:
  • по уровню громкости – в диапазоне слышимости звука;
  • по изменению частотных характеристик ультразвуков, не различаемых человеком.
Ультразвуковой ДДС

Ультразвуковой ДДС

  1. Инфракрасные приборы, отслеживающие характеристики теплового излучения, создаваемого людьми и животными.
  2. Микроволновые детекторы, реагирующие на коротковолновое излучение.

Дополнительная информация. Промышленностью также производятся датчики движения, работающие в оптическом диапазоне (фотоэлектрические датчики) и радиоволновой области волнового спектра (томографические приборы). В бытовом и промышленном применении они не востребованы. Фотоэлектрические системы всем знакомы по турникетам метрополитенов. Томографические комплексы используют в медицине для диагностики.

Ультразвуковые ДДС

Для того чтобы включать свет при появлении человека на улице или в квартире, в ультразвуковых датчиках используется принцип эхолокации. УЗ-датчик движения для освещения оснащен генератором звуковых волн, генерирующим акустические колебания частотой в диапазоне 20-60 кГц (в зависимости от модели и производителя), не уловимые для человеческого слуха. Методика обнаружения движения состоит в следующем:

  • излучаемые УЗ-волны отражаются от предметов, располагающихся в зоне их действия, и улавливаются приемным устройством;
  • в случае перемещения облучаемого объекта в соответствии с эффектом Доплера частота отраженной УЗ-волны изменяется;
  • приемник регистрирует это изменение и подает команду для включения светодиодного светильника над входом в подъезд дома или около гаража, лампы в кладовке или иного осветительного прибора.
Принцип работы ультразвукового ДДС

Принцип работы ультразвукового ДДС

Ультразвуковые бытовые ДДС выпускаются следующих видов:

  1. Наружные настенные, контролирующие внешнее освещение:
  • уличное – около дома или на придомовой территории;
  • наружное – по периметру ограждения дома.

Уличные модели УЗ-аппаратуры поставляются в прочном корпусе, защищающем ДДС от:

  • попадания в элементы схемотехники влаги и пыли;
  • возможного вандализма.

Дополнительно для защиты линзы от механических повреждений используется каленое стекло повышенной прочности.

  1. Внутренние УЗ-контроллеры, работающие внутри помещений. Их классифицируют по месту и способу установки следующим образом:
  • внутренние настенные приборы;
  • угловые модели;
  • потолочные модели.

В отличие от уличных модификаций, ДДС не оснащаются серьезной защитой, поскольку в ней нет необходимости.

Важно! УЗ-волны человеческий слух не улавливает, однако домашние животные «слышат» ультразвук и испытывают сильнейший дискомфорт, находясь неподалеку от задействованной УЗ-аппаратуры.

Инфракрасные ДДС

Простейший датчик света для дома представлен двумя чувствительными элементами, фиксирующими уровень ИК-излучения. Перед каждым элементом, называемым пироэлементом, установлена отдельная линза, предназначенная для фокусировки на него падающих тепловых лучей. Окружающая обстановка разделена между обеими линзами на две зоны ответственности. ИК-излучение из каждой зоны проецируется через «свою» линзу на соответствующий пироэлемент.

Алгоритм обнаружения движения следующий:

  • в обычных стационарных условиях параметры теплового фона, попадающего на оба пироэлемента, практически одинаковы;
  • появляющийся в зоне сканирования человек, как тепловой объект, попадает поначалу в поле зрения только одного чувствительного элемента;
  • показания обоих элементов начинают отличаться, что дает информацию датчику о наличии движения.

В реальности ДДС на двух линзах слишком грубый для сопоставления теплового фона от движущегося человека и окружающей обстановки. На практике ИК-детекторы оснащаются несколькими десятками спаренных линз Френеля, образуя ячеистую структуру рабочего полупрозрачного окна, за которым размещены пироэлементы.

Инфракрасный ДДС

Инфракрасный ДДС

Микроволновые ДДС

По принципу работы микроволновый датчик включения света идентичен ультразвуковому ДДС, только его рабочая частота находится в пределах 5,8 ГГц при длине волны в диапазоне 1,0 мм – 1,0 метр. Поэтому микроволновые датчики движения нередко называют СВЧ-датчиками.

Благодаря высокой проницаемости СВЧ-излучения, детектирование движения осуществляется даже сквозь тонкие стены и деревянные двери. Микроволновые ДДС оснащены антенной, посылающей СВЧ-сигнал и принимающей его отраженным от окружающих объектов. При изменении параметров возвратившегося сигнала подается команда на включение светильника.

Обратите внимание! СВЧ-методика регистрация движения для приборов включения света считается более совершенной, по сравнению с УЗД-воздействием.

Микроволновый ДДС

Микроволновый ДДС

Комбинированные ДДС

Комбинированными или гибридными ДДС называют приборы, в корпусе которых размещены датчики, отслеживающие волновой фон каждый в своем частотном диапазоне. Например, при совмещении УЗД и СВЧ-датчиков одновременно регистрируются изменения ультразвукового и радиоволнового фонов. Совмещение параллельно работающих каналов позволяет нивелировать недостатки одних методов за счет достоинств других технологий, что обеспечивает аппаратуре высокую надежность работы.

Очевидным достоинством комбинированных ДДС считается снижение вероятности ложного срабатывания. Однако при этом снижается чувствительность аппаратуры. Прибор может не сработать, хотя должен был это сделать.

Тип питания ДДС

Датчики движения, управляющие включением света, производятся для систем питания напряжением:

  • 220 В сетевого переменного тока;
  • 12 В постоянного тока.

По типу соединения с источником питания ДДС подразделяют на:

  • проводные, запитываемые от электросети;
  • беспроводные, работающие от батареек или аккумуляторов.

Способ определения наличия движения

В зависимости от способности датчика движения самостоятельно генерировать электромагнитное излучение для последующего установления наличия движения, ДДС подразделяют на два типа:

  1. Датчики активного действия (активные датчики), состоящие из передатчика-излучателя и приемника. Активные датчики функционируют по радарной схеме, когда передатчик излучает волновые сигналы заданного частотного спектра, а приемник принимает отраженные сигналы от объектов в зоне сканирования. УЗД и СВЧ-датчики являются активными датчиками, поскольку в их конструкции присутствует генератор ультразвука или радиоволн.
  2. Датчики пассивного действия (пассивные датчики), называемые также PIR-датчиками, которые ничего не излучают, могут работать только в режиме приема.

ИК-датчики производятся двух видов:

  1. Активные ДДС, оснащенные излучателем инфракрасных лучей. Их задача – регистрация пересечения ИК-лучей человеком или другим движущимся объектом.
  2. Пассивные ДДС (PIR-датчики), излучателя не имеющие. Приборы этого типа предназначены для улавливания теплового излучения, исходящего от человека, и анализа изменения теплового фона на предмет наличия движения.
Светильник с ИК-датчиком на 220 В сетевого напряжения

Светильник с ИК-датчиком на 220 В сетевого напряжения

Технические характеристики ДДС

В перечень основных технико-эксплуатационных характеристик датчиков движения, управляющих включением осветительных приборов, входят следующие показатели:

  1. Угол обзора, характеризующий ширину максимального охвата для сканирования, которую может захватить ДДС. Для помещений, в которых имеется всего один вход, например, прихожая или туалет, величина угла обзора варьируется от 900 до 1200 . Если необходимо включать наружный фонарь, то детектор, закрепленный на столбе, должен иметь угол обзора в пределах 180-3600 .
  2. Дальность действия, указывающая величину максимального радиуса зоны отслеживания. Для ДДС, которые планируется устанавливать в помещениях, вполне достаточно 5-7 метров. Приборы, регулирующие освещенность во дворе, реагируют на появление человека на удалении до 50 метров.
  3. Мощность подключаемых светильников, учитывающая максимальную мощность нагрузки, на которую рассчитывался ДДС. Этот показатель особо важен при необходимости подключить сразу несколько лампочек или мощный прожектор.
  4. Способ установки ДДС, указывающий особенности монтажа данной модели в соответствии с конструктивным исполнением. По указанному производителем способу установки различают следующие модификации датчиков движения:
  • накладные ДДС, называемые также корпусными, предназначенные для крепления поверх стен или потолков при помощи резьбовых деталей или на кронштейнах;
  • датчики, закрепляемые в патронах без проведения монтажных работ;
  • встраиваемые сенсоры, конструктивно приспособленные к натяжным и навесным потолкам.
Встраиваемый датчик движения

Встраиваемый датчик движения

  1. Место установки датчика, дающее возможность выбрать модель «уличного» или домашнего исполнения. Основные различия между модификациями заключаются в следующих аспектах:
  • приборы, предназначенные для наружного размещения, выполняются в пыле,- и влагозащищенном варианте со степенью защиты IP44-IP65;
  • радиус зоны обнаружения у внешних датчиков много больше, чем у аналогов для внутреннего пользования;
  • модели домашних ДДС не приспособлены работать в условиях температурных перепадов или повышенной влажности.

Дополнительные функции ДДС

Практика применения датчиков движения предопределила необходимость оснащения некоторых моделей ДДС дополнительными функциями, полезными в определенных ситуациях:

  1. Включением света на улице или в комнате с окнами лишь в темное время суток. Регулятор контроля уровня освещенности, оснащенный фотореле, не позволяет датчику запускать освещение, если на улице еще светло.
  2. Задержкой выключения освещения. Датчик можно отрегулировать таким образом, чтобы свет горел еще некоторое время после того, как человек покинул зону действия.
  3. Защитой от срабатывания при появлении животных. Прибор с этой функцией рекомендуется устанавливать в домах с домашними животными. Если установить эту опцию, то количество ложных срабатываний на собак и кошек уменьшится.

Где разместить ДДС

Установка датчиков движения для подключения к осветительной системе дома или квартиры должна обеспечивать корректную работу светильников с минимальным риском ложных срабатываний. Для этого необходимо соблюдать следующие основные правила:

  1. Поблизости от детекторов не должны располагаться достаточно мощные осветительные и отопительные приборы.
  2. Если поставить датчик вблизи кондиционера или конвектора, то потоки теплого воздуха могут заставить ДДС перестать корректно реагировать на появление человека.
  3. В помещениях большой квадратуры ДДС желательно размещать на потолке в геометрическом центре горизонтальной проекции помещения. В этом случае «мертвая зона» будет минимальной.

Обратите внимание! При увеличении высоты размещения детектора возрастает ширина зоны обнаружения, однако одновременно понижается показатель чувствительности.

Уличный фонарь с датчиком движения

Уличный фонарь с датчиком движения

Схемы установки ДДС

Для подключения своими руками ДДС к бытовой сети на 220 В используют два варианта схемы установки:

  • подключение прибора напрямую к лампе;
  • подключение датчика через традиционный выключатель.

Прямое подключение датчика движения своими руками к бытовой электросети на 220 В необходимо выполнять в соответствии со схемой, которая в обязательном порядке указывается на корпусе изделия. Для включения в работу ДДС необходимо подать напряжение на клеммные выводы L (фазный провод) и N (нулевой провод). К выводу, обозначенному L со штрихом и стрелкой, подключается провод, направленный к светильнику. В соответствии с принятой цветовой маркировкой фазный провод имеет изоляционную оболочку коричневого цвета, нулевой провод – синий, провод к патрону светильника окрашен в красный цвет.

Важно! Фазировка подключения роли не играет. При некорректном подключении датчика детектор просто не сработает, на что укажет отсутствие индикации.

Соединение ДДС со светильником

Соединение ДДС со светильником

Подключение ДДС через обычный выключатель применяется в случаях, когда при включенном освещении не требуется реакция на движение. В этом случае датчик подключается параллельно с выключателем. При отключенном выключателе контроль освещения выполняет ДДС. Если выключатель работает в режиме «включен», ток на светильник подается по параллельной цепи. Такой вариант удобен для применения в жилых помещениях.

Регулировка и настройка ДДС

После установки датчик движения необходимо настроить с целью выставления оптимальных значений рабочих параметров, соответствующих условиям эксплуатации. На корпусе изделия имеются поворотные регуляторы, поворачивая которые можно изменять величину или уровень основных параметров. Обязательной регулировке подлежат:

  1. Угол наклона датчика, который подбирается в соответствии с высотой подвешивания и углом вертикального обзора данной модели.
  2. Чувствительность прибора, от правильного выставления которой зависит частота ложных срабатываний при появлении мелких домашних животных. Обычно сначала выставляется минимальная чувствительность, на которой проверяется срабатывание не только на животных, но и на людей невысокого роста. Понемногу чувствительность настраивается до оптимальной.
  3. Время задержки, выбираемое в промежутке от минимума до максимума для данной модели. Владельцу нужно включить светильник и замереть время до его отключения. Меняя положение регулятора-таймера, настраивается нужное время задержки.
  4. Для датчиков, в корпусе которых имеется встроенное фотореле, выполняется регулировка уровня освещенности, при котором должен уже включаться свет, хотя полная темнота еще не наступила.

Датчик движения для включения света позволяет существенно экономить электроэнергию для освещения тех мест, которые посещаются людьми периодически. Расходы на приобретение и установку ДДС в подъездах домов, на придомовых территориях и уличных фонарях многократно окупаются в процессе эксплуатации.

ДДС в подъезде

ДДС в подъезде

Видео

Типы инфракрасных датчиков и способы их подключения

Инфракрасным (ИК) датчиком (сенсором) называется электронное устройство, сигнализирующее  об изменении интенсивности инфракрасного излучения в определенном секторе обзора.

Разновидности и особенности

Существующие инфракрасные датчики бывают пассивные и активные.

Пассивные сенсоры обнаруживают объект при помощи пироэлектрического чувствительного элемента. С целью повышения чувствительности датчики оснащается оптической системой линз. В условиях перепадов температуры для повышения термостабильности обычно используется парный вариант соединения, при котором элементы включаются встречно.

В отличие от пассивных аналогов, активные датчики сами являются источником инфракрасного излучения и отслеживают отраженные инфракрасные волны. Они обладают большей достоверностью отсылаемого сигнала и меньшим числом ложных срабатываний, однако не столь энергоэффективны – потребляют электроэнергию от встроенного аккумулятора или электросети.

Извещатели скорости

Извещатели скорости осуществляют синхронизацию скоростей нескольких двигателей. Также в существующих системах охранной сигнализации с помощью извещателей скорости осуществляется контроль внутреннего объема помещений, с высокой эффективностью блокируется территория «на проход» человека, перемещающегося со скоростью 0,3–3,0 м в секунду. Он оперативно реагирует на перепады температур в секторах «нарезки» контролируемого объема (с помощью оптической детали со ступенчатой поверхностью, называемой линзой Френеля), если он находится в пределах зоны чувствительности.

Извещатель скорости

Детекторы PIR

PIR детекторами называют пассивные (не излучающие тепловые лучи) инфракрасные устройства, служащие для визуальной фиксации положения объекта. PIR детекторы обычно используются для контроля общественных помещений и автоматического открывания дверей.

Пироэлектрический чувствительный элемент представляет цилиндрическое устройство с кристаллом прямоугольным формы в центре, улавливающем ИК свет. Поскольку PIR детектор должен реагировать на движение объекта, излучающего тепло, одна половина датчика улавливает больший уровень излучения, чем другая. Вследствие этого на выходе будет генерироваться цифровой сигнал «high» (обычно напряжением 3В), когда есть движение, или «low, когда движение объекта отсутствует.

ПИР датчики используют в случае необходимости определить присутствие человека в пределах контролируемого пространства. Они не определяют расстояние и количество человек на территории.

Возможно ложное срабатывание на домашних питомцев и другие теплокровные объекты.

Детектор PIR

Извещатели температуры

ИК извещатель относится к наиболее распространенному типу извещателей температур, используемых для промышленного контроля температуры технологических процессов. Минимальная достаточная чувствительность пироэлектрического элемента обычно находится на уровне 0,1°С, для этого используется пироэлемент размером 1,0 х 2,0 мм и толщиной в несколько микрон.

Сенсоры объемные

Инфракрасные объемные сенсоры – пассивные экземпляры. Очень часто они используются для охраны автомобилей. Приспособления не излучают ничего, работая только «на прием», и реагируют на изменение распределения ИК лучей с раскрывом по вертикали/горизонтали порядка 90º, то есть являются объемными. Дальность действия разных моделей отличается, как правило, она составляет 6–12 метров.

В случае перемещении объекта с температурой отличной от окружающего фона, пироэлектрический сенсор генерирует электрический импульс. Этот импульс обрабатывается по определенному алгоритму: сначала повышается его помехоустойчивость (избирательность), затем формируется сигнал тревожного извещения. По проводам или беспроводной связи после усиления сигнал поступает на соответствующий пульт охраны, например, контрольную панель автостоянки.

Сенсор объемный

Принцип действия

Принцип действия инфракрасного датчика основывается на явлении пироэлектрики. Основой датчиков является  пироэлемент – искусственно синтезированный кристалл. По свойствам он аналогичен природным кварцу или турмалину, но обладает большей пироэлектрической чувствительностью, позволяющей  на большем расстоянии визировать инфракрасное свечение. Выступая в роли приемника квантов ИК излучения, элемент реагирует на тепловое (инфракрасное) излучение с длиной волны 0,74-2000 мкм. На металлических обкладках конденсатора, между которыми помещен сам кристалл, возникает электрический потенциал. Он прикладывается к участку затвор – исток встроенного в датчик полевого транзистора, запускающего работу электрической цепи.

Применение

ИК датчики составляют около 50% работающих сенсоров движения в мире. В быту высокочувствительный компонент используются в системах сигнализации. В комбинации с акустическими, ультразвуковыми и оптическими аналогами инфракрасный сенсор задействован в системах пожаротушения и охраны.

Радиационные термометры

Радиационный термометр (пирометр) – бесконтактный датчик температуры, действие которого основывается на зависимости температуры от количества передаваемой мощности теплового электромагнитного излучения. Они способны на расстоянии мерять температуру от -50ºС до +3000 ºС. В различных сферах деятельности применяют пирометры с показателем визирования 1:5 – 1:200.

Радиационные термометры

Анализаторы влажности

В одном распространенном способе измерения влажности используется облучение инфракрасным светом с длиной волн 1,1–2,7 мкм, которые поглощаются влажным объектом, и эталонными частотами. Отраженные излучения детектируются и сравниваются (анализируются). Полученное значение соотношения определяет процент влажности сыпучего вещества или твердотельного предмета. Современный инфракрасный анализатор влажности определяет содержание влаги с точностью от 0,1 до 0,01%.

Газовые анализаторы

Инфракрасные датчики применяются в промышленности в качестве газоанализаторов, также контролируют утечку бытового газа в доме/на даче и определяют содержание вредных веществ в выхлопе автомобилей. Контроль содержания метана в помещении, концентрации CO и CO2 в выхлопном газе с погрешностью ≤10% заключается в отслеживании способности проверяемого газа поглощать/снижать интенсивность ИК излучения при прохождении в измерительной камере с образцом.

Газовый анализатор СЗ САКЗ-МК 25

ИК-приемники

В отличие от стандартного ИК детектора, инфракрасный приемник не только принимает, но и производит цифровое преобразование инфракрасного сигнала. Образующиеся в приемнике импульсы фиксированной частоты определенной длительности защищают устройство от ложных срабатываний. Это особенно актуально в местах с высоким фоновым излучением и помех со стороны бытовых приборов в инфракрасном диапазоне.

Преимущества и недостатки

ИK датчики обладают рядом преимуществ, обеспечивших повсеместное использование этого вида:

  • избирательность по отношению к контролируемому объекту;
  • надежность канала передачи информации и неприхотливость в процессе эксплуатации;
  • способность современных моделей передавать тревожный сигнал самыми различным получателям: на панель охраны, компьютер, мобильный телефон через GSM модуль с SIM картой;
  • возможность наращивать систему за счет подключения дополнительных датчиков.

К недостаткам инфракрасных датчиков следует отнести:

  • игнорирование охранными датчиками человека, облаченного в плотную, не пропускающую наружу тепло, одежду;
  • возможность глушения радиосигнала 315 и 433 МГц беспроводных датчиков системами подавления.

Критерии выбора

При выборе ИК датчиков покупателей интересует внешний вид, эргономичность и оперативность срабатывания современных моделей. Существуют свойства товарных позиций, на которые покупателям следует в первую очередь обратить внимание.

Устойчивость к атмосферным осадкам

Атмосферные осадки могут негативно влиять на функционирование чувствительной электроники. Наилучшим способом защиты от дождя, снега и града считается размещение прибора в корпусе с высокой степенью пылевлагозащищенности IP66.

Доступные виды источников питания

В комплект поставки устройства обычно входит аккумуляторная батарея или аксессуары для подключения к источнику питания. Это может быть шлейф с разъемами, сетевой адаптер.

Инфракрасный датчик

Возможность подключения к центральной системе сигнализации

Инфракрасные сигнальные датчики адаптированы для взаимодействия с различными контрольно-приемными панелями. В ряде модификаций предусмотрена подача тестовых сигналов на центральный блок и сигналов о разряде батареи.

Возможность настройки чувствительности

Датчики с регулируемой настройкой чувствительности имеют преимущество перед моделями без такой регулировки. Настройка производится поворотом колесика регулятора из положения max (high или +) в сторону отметки min (low или -).

Параметр настраивается таким образом, чтобы устройство не реагировало на мелких животных, но срабатывало при обнаружении человека.

Возможность скрытой установки

Существуют охранные датчики скрытой установки, встраиваемые в потолок или стену. Корпус устройства утапливается в заранее подготовленное отверстие, снаружи видна только оптика пироэлектрического элемента, осуществляющая круговое обнаружение.

Инфракрасный датчик на синей плате

Сферы применения

Высокотехнологичные устройства в равной степени востребованы в промышленности и на транспорте в качестве элементов контроля. Особое место датчикам отводится в охранных системах и системах жизнеобеспечения типа «умный дом».

Охранные системы

Охранные датчики считаются своего рода «чувствительными рецепторами» систем охранной сигнализации. Они помогают обнаружить преступника в помещении или на контролируемой территории, формируют и передают сигнал тревоги на пульт, извещая о необходимости принятия мер реагирования.

Инфракрасные датчики движения для охраны периметра

Системы «умного дома»

Обычно инфракрасным датчикам, интегрированным в систему «умный дом», отводится роль важнейшего компонента системы интеллектуального включения/выключения света (сенсора присутствия). С его помощью включаются светильники в помещениях дома или уличные фонари при появлении теплокровного объекта.

Правила эксплуатации

Правила эксплуатации устройства производитель прописывает в руководстве по эксплуатации. В составе сопроводительной документацией оно передается покупателю при покупке товарной позиции.

Инфракрасный датчик движения: обзор, установка

 

Все мы стремимся к комфорту. А где его можно создать максимально отвечающим требованиям, как не дома? Самым частым неудобством, с которым сталкивается человек в своем доме, является система освещения и необходимость включения света в вечернее и ночное время суток. Современные технологии в лице сенсорных выключателей и датчиков движения позволят автоматизировать систему включения и управления света. Используя для включения света датчик движения, можно в разы повысить комфортность любого помещения в плане пребывание или перемещения по нему. Среди современных аппаратов наибольшей популярностью пользуются инфракрасные модели.

Инфракрасный датчик движения является специальным устройством, которое позволит вам своими руками создать в своем доме систему «умный свет». Но чтобы вопросы подключения к сети и осветительным приборам не ставили вас в тупик, нужна не только схема, но и знание особенностей данного изделия. Разобраться во всех этих вопросах и даже больше поможет сегодняшняя статья. После этого вы сможете своими руками проделать любые процедуры подключения.

Приступим к азам

Детектор движения представляет собой тепловой (инфракрасный) датчик. Он способен обнаружить в исследуемой зоне перемещение любых живых объектов и использовать полученные данные для включения или выключения света. Устройство и схема прибора практически ничем не отличается от других аналогичных аппаратов (микроволновых, комбинированных и ультразвуковых датчиков).

Обратите внимание! Различия между всеми возможными вариантами заключаются в принципе работы сенсора.

Устройство датчика

Строение ИК-датчика

В ИК-датчике сенсор представлен в виде пироэлектрического элемента, который основан на принципе повышения на его выходе напряжения в ситуации возрастания величины инфракрасного излучения по сравнении с фоновым.
Чтобы данное устройство могло использоваться для включения света, в него вмонтировано специальное реле. В результате получается, что инфракрасный датчик движения, применяемый для влечения света, представляет собой специальное электронное устройство, которое способно реагировать в зоне его действия на даже незначительные изменения интенсивности теплового фонового излучения.

Обратите внимание! Любой живой объект является источником теплового излучения. Поэтому при неправильной настройке, или если схема неисправна, датчик может срабатывать на появление в помещении не только людей, но и животных.

Принцип работы инфракрасного извещателя базируется на обнаружении в установленной зоне изменений в тепловом излучении объектов, находящихся в этой области.

Принцип работы ИК-датчика

Принцип работы ИК-датчика

Прибор, благодаря наличию в его устройстве специальных линз, а также сегментированных вогнутых зеркал, пропускает через них испускаемое инфракрасное излучение. Это излучение попадает внутрь приемника и регистрируется сенсором. При приеме неизменного сигнала датчик продолжает работать в пассивном режиме.
Этот принцип воплощается в следующем алгоритме функционирования ИК-устройства:

  • при перемещении объекта в зоне, которая контролируется прибором, происходит поочередное фокусирование инфракрасного излучения на системе линз сенсора. В различных моделях количество линз может варьироваться в пределах от 20 до 60 штук;

Обратите внимание! Чем большее число линз в устройстве, тем большей чувствительностью он будет обладать. Это следует помнить при выборе модели для организации системы автоматического включения света в доме или квартире. Также следует знать, что чем больше поверхностная площадь системы линз, тем шире будет зона обхвата прибора.

  • фокусирование излучения на линзах служит сигналом для перехода датчика в активное состояние;
  • при улавливании сигнала происходит срабатывание датчика. Здесь в работу вступает электронная схема устройства. В результате того, что схема была активирована и происходит передача сигнала на осветительный прибор, что сопровождается активацией света.

Инфракрасные излучатели могут подключаться и к другим электроприборам.

Область применения

Использовать ИК-датчик, установив его своими руками, можно для подключения самых разнообразных приборов. Наиболее часто они применяются для подключения разнообразных осветительных приборов. Также их можно использовать для подключения различных элементов охранной системы. К примеру, к ИК-извещателю можно подключить звуковую сигнализацию. Для подключения допускается даже одновременное подсоединение нескольких приборов для включения звуковой сигнализации и света.

Обратите внимание! В каждой ситуации имеется своя схема для подключения того или иного электроприбора. Схема иллюстрирует правильный вариант подключения, при котором прибор будет функционировать качественно и эффективно.

Вариант охранной системы

Охранная система

В результате того, что инфракрасные устройства для отслеживания движения в контролируемой зоне имеют доступную цену и простую установку, их монтаж может проводиться своими руками. Такие изделия на сегодняшний день широко используются в следующих областях:

Освещение на улице

Автоматическая подсветка улиц

  • создание системы «умный дом» в домашних условиях и своими руками;
  • автоматизация подсветки в помещениях общественного назначения: офисы, коридоры, лестничные проемы и т.д.;

Обратите внимание! Установка любого типа датчика движения наиболее эффективна в тех помещениях, где люди не задерживаются на длительный период времени.

  • подсветка улиц, парков, дорог и жилмассивов;
  • освещение промышленных и производственных объектов.

Стоит отметить, что в данной ситуации не существует принципиальных различий в том, где будет функционировать инфракрасный датчик, реагирующий на движение.

 

Недостатки модели

Все приборы обладают определенными недостатками. И их в обязательном порядке необходимо учитывать при выборе изделия для создания автоматизированной системы включения освещения в доме или на улице.
Обычно, превалирующее большинство недостатков базируются на конструкционных особенностях изделия, а также принципе его работы. При рассмотрении инфракрасных моделей к негативным сторонам их установки можно отнести:

  • наличие ложного срабатывания. Ложные срабатывания связаны с тем, что сенсор прибора способен воспринимать любые инфракрасные излучения. К примеру, ложное срабатывание может случиться от чрезмерно нагретого воздуха, который бывает на улице в жаркую погоду или поступает от кондиционера, батарей отопления, обогревателей и радиаторов;
Вариант датчика для помещения

Датчик внутри дома

Обратите внимание! Активация устройства может быть вызвана перемещением через контролируемую область домашних питомцев: собак и кошек. При этом маленькие дети также могут спровоцировать срабатывание включения света. Чтобы избежать этого, необходима точная настройка своими руками прибора. Схема настройки будет указана в инструкции к датчику.

  • снижена точность функционирования прибора при установке на улице. Такая особенность основана на том, что датчик может неправильно работать из-за разнообразных климатических условий: жары, осадков (снег, дождь, град) и т.д. Это следует учитывать при создании автоматической системы наружного освещения;
  • незначительный диапазон рабочей температуры;
  • наличие материалов, не пропускающих инфракрасное излучение.

Эти недостатки следует учитывать при выборе модели датчика движения. Здесь обязательно необходимо учитывать место размещения и предназначение прибора, а также то, что вы хотите получить от него в конечном счете.

Достоинства прибора

Инфракрасные датчики, помимо недостатков, обладают еще и достаточно внушительным перечнем достоинств. К ним следует отнести следующие моменты:

  • наличие возможности достаточно точной и тонкой настройки. Здесь можно своими руками настроить дальность действия, а также угол для обнаружения в контролируемой зоне движущихся объектов;
  • отлично подходит для эксплуатации в домашних условиях;
  • можно использовать вне дома, на улице. Но в данной ситуации необходимо учитывать все вышеперечисленные недостатки, чтобы избежать скорой порчи прибора или его неадекватной работы.

Отдельно необходимо отметить, что в отличие от остальных датчиков движения, применяемых для включения света в доме или на улице, инфракрасный извещатель не несет вреда здоровью человека. Это устройство безопасно не только для взрослых и детей, но и для домашних питомцев. Поэтому такой прибор можно спокойно устанавливать в детской комнате, спальне и другом домашнем помещении.

Виды датчиков

Несмотря на то, что инфракрасные детекторы сами являются подвидом датчиков движения, здесь есть над чем подумать при выборе. На сегодняшний день ИК-детекторы бывают:

  • для внутреннего размещения. Приборы подходят по своим техническим характеристикам для установки внутри помещений. Здесь нет необходимости в защите устройства от негативного влияния климатических условий;
Установленные датчики

Внутренний датчик

Датчик для уличной лампы

Наружный датчик с лампой

  • для наружного размещения. Такого рода приборы обладают определенной степенью защиты от негативных факторов окружающей среды.

Помимо этого инфракрасные модели бывают:

  • проводные. Это означает, что они для питания должны подключаться к электросети. Схема подключения здесь будет стандартной для всех моделей;
  • беспроводные. Это автономные устройства, которые работают на аккумуляторах и батарейках. Они не подключаются к общей электросети дома, что позволяет их более свободное размещение как в доме, так и на улице. Здесь, для подключения нужна схема, на которой отображено соединение датчика с любым осветительным прибором.

Помимо этого здесь следует указать о существовании комбинированных видов детекторов движения, к которым помимо инфракрасного сенсора будет размещен второй датчик (ультразвуковой или микроволновой).
Какой вид изделия вам нужен для той или иной деятельности. Поэтому делайте свой выбор взвешенно и обдуманно, чтобы не потратить деньги на ненужное приобретение.

Варианты установки

Подключение датчика инфракрасного типа может вестись по разнообразным схемам. Наиболее часто востребованы схемы, указывающие подключение изделия к осветительным приборам. Подключение ИК-датчика возможно двумя способами:

  • через распределительную коробку;
  • непосредственно в месте размещения.

Какой бы способ вы не выбрали, нужна специальная схема, отвечающая тем или иным вашим запросам.
Самым простым способом подключения данного типа детектора является установка его с помощью выключателя. В этой ситуации подключение лампы происходит на другую электрическую цепь. Здесь, если выключатель полностью снять, датчик сможет самостоятельно отвечать за включение и выключение света. Схема такого подключения приведена ниже.

Подключение датчика с выключателем

Схема подключения через выключатель

Можно подключить детектор непосредственно к проводке. Здесь следует определить провод, идущий к лампе. От него протягиваем новый и соединяем с красным контактом датчика. Схема подключения в такой ситуации имеет следующий вид.

Подключение датчика к проводке

Схема подключения к проводке

Для того чтобы датчик исправно работал, схема подключения должна соблюдаться неукоснительно.

Заключение

Для создания в доме системы «умный свет» инфракрасный датчик отлично подойдет. Он обладает массой преимуществ, которые позволят вам автоматизировать систему управления светом наилучшим образом, а также снизить собственные затраты на потребление электроэнергии. Кроме этого подобного рода устройства, установленные своими руками, вполне могут применяться и для создания наружного освещения. Здесь они отлично впишутся в охранные системы, обеспечив вас дополнительной безопасностью.

 

Добавим дачному свету органы чувств

Я недавно делал два обзора на разные светодиоды, которые применил в поделках по освещению дачи. Во всех этих решениях управление светом шло с телефона/компьютера, что далеко не всегда удобно… В этот раз принято решение снабдить полученные ранее светильники инструментом оценки ситуации, а контроллер механизмом принятия локальных решений. Помимо этого немного доработаем изготовленные ранее светильники. Любителей самоделок прошу под кат (осторожно много).

На муське уже был обзор данного датчика, мне хочется его немного дополнить и показать практическое применение. Помимо этого, мы затронем еще некоторые датчики, которые тоже внедрим в дачный свет.
Фото предмета обзора:

Описание продавца:
Цвет: белый + зеленый
Размер: 3.2 см x 2.4 см x 1.8 см (приблизительно)
Инфракрасный датчик контроля плате
Чувствительность и время проведения могут быть скорректированы
Рабочее напряжение Диапазон: DC 4.5 В-20 В
Потребляемый ток: <60ua
Выходное напряжение: высокий/низкий уровень сигнала: 3.3 В TTL выход
Расстояние обнаружения: 3-7М (можно отрегулировать)
Дальность обнаружения: <140 °
Время задержки: 5-200 S (может быть скорректирована, по умолчанию 5S +-3%)
Блокада время: 2.5 S (по умолчанию)
Триггер: l: Неповторяемые триггера H: Повторите Trigger (по умолчанию)
Рабочая температура: -20-+ 80 °C
Метод запуска: L неповторимый триггер/ч повторяемые триггера

Такие датчики часто называют PIR-sensor. PIR-sensor переводится с английского как Pyroelectric (Passive) InfraRed sensor — пироэлектрический (пассивный) инфракрасный сенсор. Пироэлектричество — это свойство генерировать определенное электрическое поле при облучении материала инфракрасными (тепловыми) лучами. Поэтому PIR датчики позволяют обнаруживать движение людей в контролируемой зоне, так как тело человека излучает тепло. Такие датчики малы по размеру, недороги, имеют низкое энергопотребление. Они просты в использовании и не изнашиваются. По этим причинам они применяются в большинстве промышленных датчиков движения. Специально подчеркну, чтобы избежать вопросы связанные с этим — датчик пассивный — а значит ничего не излучает, а только улавливает тепло объектов вокруг.

Не стоит располагать PIR-датчики в местах, где быстро меняется температура. Это приведет к тому, что датчик не сможет обнаруживать появление человека в контролируемой зоне, и будет много ложных срабатываний.

Пластиковый колпачок, являющийся линзой для расширения угла обзора сенсора, легко снимается, внутри выглядит так:

обратная сторона:

В обзоре этого устройства — тут, приведена принципиальная схема датчика и рассказано, где и чего нужно перепаять чтобы изменить режим его работы. Чуть поясню:
Датчик способен работать в двух режимах H и L (в данной версии для изменения необходимо хирурго-паяльное вмешательство для коммутации дорожек):

По умолчанию замкнуты контакты обеспечивающие режим H (в нашей поделке его и оставим).
Режимы:
Режим H — в этом режиме при срабатывании датчика несколько раз подряд на его выходе (на OUT) остается высокий логический уровень.
Режим L — в этом режиме на выходе при каждом срабатывании датчика появляется отдельный импульс.
Если Вам требуется режим L, нужно перерезать дорожку на H и кинуть перемычку на L.

С внешним (электрическим) миром датчик взаимодействует через 3 контакта:

VCC — питание (от 4.5 до 20 Вольт)
OUT — собственно выход обнаружения движения, при обнаружении движения формируется логический уровень 3,5 Вольта (независимо от питания)
GND — заземление

У датчика есть две крутилки (потенциометры меняющие параметры работы):

Первая обозначается Sx и определяет чувствительность прибора (грубо говоря расстояние на котором движение будет обнаружено).
Вторая — Tx — определяет промежуток времени, в течении которого на выходе OUT будет логическая 1 при обнаружении движения.

Помимо этого, к датчику можно подключить дополнительно фоторезистор и терморезистор, места подключения тут:

Датчик может работать без контроллера, просто подключив на его выход OUT транзистор и реле, либо иное решение коммутации. Но гораздо интереснее его использовать в связке с контроллером, появляются дополнительные возможности анализа и расширенное управление нагрузкой.

Так как датчик поставляется без корпуса, очень важны его размеры:



Я провел ряд экспериментов и выяснил:
— максимальная дальность обнаружения движения под прямым углом к сенсору составила 6,7 метров
— под углом в 160 градусов — 5 метров
— крутилка Sx — меняет расстояние обнаружения под прямым углом с 2,8 до 6.7 метров
— крутилка Tx — меняет время удержания 1 на выходе OUT c 6 до 290 секунд

Этих данных думаю достаточно для большинства поделок.

Теперь собственно к применению… В обзоре про освещение веранды я остановился на управлении через сеть (с телефона или компа), при этом написал что планирую подключить датчики движения, и даже проложил для них телефонные провода, выглядело это так:

На деревянном выступе, ближе к дому, просто просверлил дырки и вытащил сантиметров по 50 провода. Так как размеры веранды больше зоны покрытия одного датчика, то нам потребуется их 2. Я отступил с каждого торца веранды по 1,5 метра, расположив там место подключения датчиков.

Помимо информации о движении нам нужна информация о необходимости света, то есть показатель освещенности. Я писал выше, что предмет обзора имеет места пайки фоторезистора, но я предпочел подключить его к контроллеру независимо. Пайка фоторезистора на PIR сенсор целесообразна, наверное только при автономной его работе (без контроллера).

В 4-х жильном телефонном кабеле два проводка задействуем для питания, один для распознавания яркости внешнего света и еще один для PIR-сенсора.

Нашему гибридному датчику нужен корпус, я решил поместить все это в распаячную коробку, купленную в леруа:

тем более, что цвет оказался очень близким к цвету пропитки дерева веранды. На самом деле, коробка немного великовата для нашей задачи, но в данном случае не критично, да и меньшая коробка того же типа имеет крепеж в виде сквозного самореза по центру — что совсем не позволит разместить наш датчик.

Диаметр шарика-линзы 23 мм, у меня было перьевое сверло только на 22 мм, поэтому высверливал отверстие им, предварительно просверлив тонким сверлом дырочку в размеченном месте. Конечно же шарик не захотел входить туда до упора, поэтому доработал отверстие надфилем, после доработки стало все нормально.

с противоположенного торца просверлил две дырочки для фоторезистора:

Место для фоторезистора следует выбирать так, чтобы как можно меньше на него попадал искусственный свет, иначе он будет вводить в заблуждение контроллер, сообщая что уже светло, основываясь на свете от управляемых контроллером источников света. Мой фоторезистор:

Примеряем наш датчик и фоторезистор:

Убедившись, что все хорошо собираем устройство:

Проводки питания и земли нужны и фоторезистору и PIR-датчику, поэтому их раздваиваем. Сигнальный провод, землю и питание напрямую подаем на PIR датчик. Сигнальный провод идущий к фоторезистору необходимо подтянуть к земле резистором в 10 кОм и подать на первый вывод фоторезистора, на второй подается питание (5 Вольт в данном случае).

По просьбам нарисовал схемку в том, что попалось под руки, главное все понятно:

Тестируем работу на макете и делаем точно такое же второе устройство.

Теперь монтируем коробочки на приготовленные для них места, коммутируем проводки в ящике с контроллером и выходим на этап отладки программы. Я принял решение использовать следующий алгоритм:
— Датчики освещенности постоянно опрашиваются (их у меня 2 для устранения возможных фонариков или еще каких нежелательных эффектов, смотрят они в разные стороны) и если освещенность выраженная безразмерным числом превысит заданную для обоих датчиков, то начинают проверяться датчики движения. Если хоть один из них выдал 1, то если свет не был включен — он включается, и, независимо от включения света, запоминается время последней активности. Если в течении заданного интервала времени не было ни одного движения свет выключится. Интервал я выбрал 10 минут, моргания при отходе за дровами или по другим недолгим делам мне не хотелось, в то же время, сложно предположить что человек в темное время суток сумеет сидеть на веранде неподвижно более 10 минут, даже если предположить такое — вряд ли ему помешает отключение света. Порог освещенности подобрал экспериментально — 100.

Тестируем и наслаждаемся автоматическим управлением светом на веранде. Вот так выглядят коробочки на потолке:


Ну и свет — не менялся с фотки прошлого обзора (так как мы здесь добавили только управление):

Справа на потолке видны наши новые коробочки.

Конечно же я предусмотрел возможность отключить с телефона всю автоматику, переведя управление светом в ручной режим. Например, если в зале спят люди и мне не хочется им мешать светом с веранды, я могу: отключить автоматику, включить одну лампу над дверью и выйти по своим делам, возможна и куча других вариантов.

Помимо освещения веранды, у меня совсем недавно был обзор светодиодов, которые легли в основу настольной лампы. При этом настольная лампа также включалась с компьютера или телефона, что далеко не всегда удобно… Я планировал сделать кнопки… Но что-то мне совсем расхотелось, что-то нажимать :). Я решил применить ультразвуковой измеритель расстояния, для такого благого дела как включение и выключение лампы. Брал я этот датчик тут.

это наверное самый дешевый и популярный датчик измерения расстояния.

Этот прибор определяет расстояние до объектов точно так же, как это делают дельфины или летучие мыши. Он генерирует звуковые импульсы на частоте 40 кГц и слушает эхо. По времени распространения звуковой волны туда и обратно можно однозначно определить расстояние до объекта.

Основное его достоинство перед инфракрасными определителями расстояния: отсутствие влияния засветок от солнца или ошибки в определении расстояния при разных цветах предмета. Недостатки: пушистые предметы поглощают волны и могут не определиться, размеры предметов должны быть сравнительно крупными.

В контексте нашего применения, я решил разместить прибор сбоку полки-светильника, чтобы если провести рукой рядом с полкой — светильник изменит свое состояние на противоположенное… Руки у меня и у моей семьи особой пушистостью не отличаются, соломинками включать также не планируем — то есть подходит.

Прибор имеет 4 вывода:
VCC — питание
TRIG — цифровой вход для инициализации измерений
ECHO — цифровой выход для получения результата (длительность единичного сигнала пропорциональна расстоянию до объекта)
GND — земля

Для arduino есть библиотека, которая делает взаимодействие с прибором очень простым.

Размеры:

Диаметр сенсора 16мм.

Благодаря вашим комментариям, я решил доработать немного полку-светильник. А именно, покрасить внутреннюю часть в белый цвет для большей отдачи света. Однако сунувшись за остатками белой краски в сарай, обнаружил там кристаллизовавшуюся массу… Но зато нашел металлизированный скотч, которым и оклеил всю внутреннюю поверхность светильника:

Справа видны отверстия под ультразвуковой сенсор. Собираем конструкцию:

Вставляем наш сенсор и собираем полностью, крепим к стене.

Вид не отличается от прошлого обзора, только сбоку добавились две дырочки:

Свет после доработки (слева), прежний справа:

фотик как-то выравнивает и показывает меньше света чем есть, по ощущениям рост порядка 20%.

В программе я задал, что если расстояние до предмета менее 15 см, то лампа изменит состояние на противоположенное (была включена — выключится, была выключена включится). Чтобы избежать мгновенных переключений туда-сюда (биений из-за скорости опроса), поставил задержку смены состояния — 2 секунды. Протестировал — очень удобно: провел рукой рядом с лампой — она включится, еще раз провел выключится. Лампа при этом не пачкается, а я могу там разные штуки делать и руки не всегда чистые. Сенсор я расположил таким образом, чтобы всячески исключить ложные срабатывания.

Далее собираем все в нашем ящичке:

Там уже состояние близкое к бардаку, но я еще не креплю проводки, когда будет к финишу по функционалу — тогда и займусь, так как проводки крепятся стяжками к пятачкам, то при любом добавлении потребуется все срезать — хочется делать это не так часто. Выбранная мега несмотря на нагрузку имеет еще очень много свободных ресурсов, на которые впрочем у меня конечно есть планы.

Читатели любят видеть код этапа и я его конечно тут выложу, но предупрежу что пока это только работающий набросок, по нормальному все причешу немного позже. Собственно код.

Спасибо тем кто дочитал до конца! Надеюсь я не сильно Вас утомил, и обзор окажется кому-то полезным!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *