Напряжение на участке цепи.
Под напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка.
На рис. 13 изображен участок цепи, на котором есть резистор сопротивлением и нет ЭДС. Крайние точки этого участка обозначены буквами a и b. Пусть ток течет от точки a к точке b.
Рис. 13. Участок электрической цепи
На
участке без ЭДС ток течет от более
высокого потенциала к более низкому.
Следовательно, потенциал
.
В соответствии с определением, напряжение между точками a и b
. (8)
Другими словами, напряжение на резисторе равно произведению тока, протекающего по резистору, на величину сопротивления этого резистора.
В электротехнике разность потенциалов на концах резистора принято называть либо «напряжением на резисторе», либо «падением напряжения». В литературе встречаются оба этих определения.
Рассмотрим теперь вопрос о напряжении на участке цепи, содержащем не только резистор, но и источник ЭДС.
На рис. 14 а и б показаны участки некоторых цепей, по которым протекает ток .. Найдем напряжение между точками a и c для этих участков.
а) б)
Рис. 14. Участки электрической цепи
По определению
. (9)
Выразим потенциал точки a через потенциал точки
. (10)
На рис. 14,б при перемещении от точки c к точке b идем согласно ЭДС и потому потенциал точки b оказывается больше, чем потенциал точки c на величину ЭДС , т.е.
. (11)
Ранее говорилось, что на участке цепи без ЭДС ток течет от более высокого потенциала к более низкому. Поэтому в обеих схемах рис. 14 потенциал точки a выше, чем потенциал точки b на величину падения напряжения на резисторе сопротивлением :
. (12)
Таким образом, для рис. 14,а имеем
, или
.
И для рис. 14, б имеем
, или
. (14)
Положительное направление напряжения указывают на схемах стрелкой. Стрелка должна быть направлена от первой буквы индекса ко второй. Так, положительное направление напряжения изобразится стрелкой, направленной от a к c.
Из самого определения напряжения следует также, что . Поэтому . Другими словами, изменение чередования индексов равносильно изменению знака этого напряжения. Из изложенного ясно, что напряжение может быть и положительной, и отрицательной величиной.
Закон Ома для участка цепи, не содержащего эдс.
Закон Ома устанавливает связь между током и напряжением на некотором участке цепи. Так, применительно к участку цепи, изображенному на рис. 13 имеем
или
. (15)
Закон Ома для участка цепи, содержащего эдс.
Закон Ома для участка цепи, содержащего ЭДС, позволяет найти ток этого участка по известной разности потенциалов на концах этого участка и имеющейся на этом участке ЭДС . Так из уравнения (13) имеем для схемы рис. 14, а
. (16)
Аналогично из уравнения (14) для схемы рис. 14, б следует
. (17)
Уравнения (16) и (17) выражают собой закон Ома для участка цепи, содержащего ЭДС, для разных случаев включения ЭДС .
Падение напряжения — это… Что такое Падение напряжения?
Строительный словарь.
- Ощутимый ток
- Пакетный выключатель
Смотреть что такое «Падение напряжения» в других словарях:
Падение напряжения — Падение напряжение на участке цепи с двумя резисторами. Падение напряжения постепенное уменьшение напряжения вдоль проводника, по которому течёт электрический ток, обу … Википедия
ПАДЕНИЕ НАПРЯЖЕНИЯ — разность потенциалов на участке электрической цепи, обтекаемой током. П. Н. равно произведению силы тока на сопротивление участка цепи. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь
ПАДЕНИЕ НАПРЯЖЕНИЯ — разность между напряжением у источника тока и напряжением на зажимах приемника, затрачиваемая на преодоление сопротивления проводника при прохождении по нему электр. тока. П. н. измеряется в вольтах. Согласно закону Ома П. н. (в вольтах)… … Технический железнодорожный словарь
Падение напряжения — 92 Падение напряжения Напряжение на участке электрической цепи или ее элементе Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа Смотри также родственные тер … Словарь-справочник терминов нормативно-технической документации
падение напряжения — 1 падение напряжения [IEV number 151 15 08] EN voltage drop (1) tension drop (1) voltage between the terminals of a resistive element being part of an electric circuit due to the electric current through that element [IEV number 151 15 08] FR… … Справочник технического переводчика
падение напряжения — įtampos krytis statusas T sritis fizika atitikmenys: angl. voltage drop vok. Spannungsabfall, m; Spannungsfall, m rus. падение напряжения, n pranc. chute de tension, f … Fizikos terminų žodynas
падение напряжения — Разность между действующими значениями напряжения (как вектора), по концам элемента электрической системы … Политехнический терминологический толковый словарь
падение напряжения на интегральной микросхеме — падение напряжения Разность между входным и выходным напряжением интегральной микросхемы в заданном режиме. Обозначение Uпд [ГОСТ 19480 89] Тематики микросхемы Синонимы падение напряжения … Справочник технического переводчика
падение напряжения (в процентах) (в УЗИП) — ∆U=[(Uвход Uвых)/Uвход]х100, где Uвход, Uвых входное и выходное напряжения соответственно, измеренные одновременно при подключенной полной активной нагрузке. Данный параметр применяют исключительно для двух вводных УЗИП. [ГОСТ Р 51992 2011 (МЭК… … Справочник технического переводчика
падение напряжения в активном сопротивлении — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN resistance dropresistive drop … Справочник технического переводчика
ПАДЕНИЕ НАПРЯЖЕНИЯ — это… Что такое ПАДЕНИЕ НАПРЯЖЕНИЯ?
- ПАДЕНИЕ НАПРЯЖЕНИЯ
- ПАДЕНИЕ НАПРЯЖЕНИЯ
разность между напряжением у источника тока и напряжением на зажимах приемника, затрачиваемая на преодоление сопротивления проводника при прохождении по нему электр. тока. П. н. измеряется в вольтах. Согласно закону Ома П. н. (в вольтах) равняется произведению сопротивления проводника (в омах) на силу проходящего по нему тока (в амперах). В цепях переменного тока, в к-рых кроме активного сопротивления имеются индуктивное и емкостное сопротивления, имеют место активное, индуктивное и емкостное П. н.
Технический железнодорожный словарь. — М.: Государственное транспортное железнодорожное издательство. Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941.
.
- ПАВОДОК
- ПАДЕНИЕ СЛОЕВ
Смотреть что такое «ПАДЕНИЕ НАПРЯЖЕНИЯ» в других словарях:
Падение напряжения — Падение напряжение на участке цепи с двумя резисторами. Падение напряжения постепенное уменьшение напряжения вдоль проводника, по которому течёт электрический ток, обу … Википедия
ПАДЕНИЕ НАПРЯЖЕНИЯ — разность потенциалов на участке электрической цепи, обтекаемой током. П. Н. равно произведению силы тока на сопротивление участка цепи. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь
Падение напряжения — 92 Падение напряжения Напряжение на участке электрической цепи или ее элементе Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа Смотри также родственные тер … Словарь-справочник терминов нормативно-технической документации
падение напряжения — 1 падение напряжения [IEV number 151 15 08] EN voltage drop (1) tension drop (1) voltage between the terminals of a resistive element being part of an electric circuit due to the electric current through that element [IEV number 151 15 08] FR… … Справочник технического переводчика
падение напряжения — įtampos krytis statusas T sritis fizika atitikmenys: angl. voltage drop vok. Spannungsabfall, m; Spannungsfall, m rus. падение напряжения, n pranc. chute de tension, f … Fizikos terminų žodynas
падение напряжения — Разность между действующими значениями напряжения (как вектора), по концам элемента электрической системы … Политехнический терминологический толковый словарь
Падение напряжения — English: Voltage fall Напряжение на участке электрической цепи или ее элементе (по ГОСТ 19880 74) Источник: Термины и определения в электроэнергетике. Справочник … Строительный словарь
падение напряжения на интегральной микросхеме — падение напряжения Разность между входным и выходным напряжением интегральной микросхемы в заданном режиме. Обозначение Uпд [ГОСТ 19480 89] Тематики микросхемы Синонимы падение напряжения … Справочник технического переводчика
падение напряжения (в процентах) (в УЗИП) — ∆U=[(Uвход Uвых)/Uвход]х100, где Uвход, Uвых входное и выходное напряжения соответственно, измеренные одновременно при подключенной полной активной нагрузке. Данный параметр применяют исключительно для двух вводных УЗИП. [ГОСТ Р 51992 2011 (МЭК… … Справочник технического переводчика
падение напряжения в активном сопротивлении — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN resistance dropresistive drop … Справочник технического переводчика
Закон Ома для участка цепи. Где мне найти в инете такой? Бесплатно
Я вот радиоэлектронщик, но кроме формулы напряжение равно силе тока, умноженному на сопротивление ничего не «конспективится».
Закон Ома Три основные электрические величины — ток, сопротивление и напряжение — связаны между собой зависимостью, выражен¬ной законом Ома, который формулируется следующим образом: сила тока в замкнутой цепи прямо пропорциональна электродви¬жущей силе источника и обратно пропорциональна сопротивлению всей цепи. Ток в цепи возникает под действием ЭДС; чем больше ЭДС источника энергии, тем больше и сила тока в замкнутой цепи. Сопротивление цепи препятствует прохождению тока, следовательно, чем больше сопротивление цепи, тем меньше сила тока. Закон Ома может быть выражен так: I = E/R+ Ro, где R — сопротивление внешней части цепи. Ом; Ro — сопротивление внутренней части цепи, Ом; I — сила тока, А, Е — ЭДС, В. Закон Ома для участка цепи. Если участок цепи не содержит источника энергии, то положительные заряды на этом участке перемещаются из точки более высокого потенциала к точкам более низкого потенциала. Источник энергии затрачивает определенную энергию, поддерживая разность по-тенциалов между началом и концом этого участка. Эта разность потенциалов называется напряжением между началом и концом рассматриваемого участка. Ток на участке электрической цепи равен напряжению на зажимах этого участка, деленному на его сопротивление: I= U/R. где U — напряжение, В; I — сила тока, A; R — сопротивление, Ом. Сила тока в цепи измеряется амперметром (миллиамперметром) , а напряжение — вольтметром (милливольтметром) . Для включения амперметра цепь тока разрывается, и в месте разрыва концы проводов присоединяются к зажимам амперметра (рис. 2). В этом случае через амперметр проходит весь измеряе¬мый ток. Вольтметр показывает падение напряжения на данном участке. Если воль¬тметр подключить к началу внешней це¬пи — положительному полюсу источника энергии, то он покажет падение напряже¬ния во всей внешней цепи, которое будет в то же время напряжением на зажимах источников энергии. Напряжение на зажимах источника энергии равно разности между ЭДС и паде¬нием напряжения на внутреннем сопротив-лении этого источника, т. е. U == Е — IRo. Если уменьшить сопротивление внешней цепи R, то сопротивле-ние всей цепи R + Ro также уменьшится, а ток в цепи увеличит-ся. Рис. 2. Схема включе¬ния амперметра и воль¬тметра С увеличением тока падение напряжения внутри источника энергии (IRo) возрастает, так как внутреннее сопротивление Ro источника остается неизменным. Следовательно, с уменьшением сопротивления внешней цепи напряжение на зажимах источника энергии также уменьшается. При соединении зажимов источника энергии с проводником, сопротивление которого практически рав¬но нулю, ток в цепи I == E/Ro. Это выражение определяет наибольший ток, который может быть получен в цепи данного источника. Режим, при котором сопротивление внешней цепи практически равно нулю, называется коротким замыканием. Короткое замыка¬ние может возникнуть, например, из-за нарушения изоляции проводов, соединяющих приемник с источником энергии. Лишен¬ные изолирующего слоя металлические провода при взаимном соприкосновении образуют весьма малое сопротивление, которое по сравнению с сопротивлением приемника равно нулю. Для защиты электротехнической аппаратуры от токов коротко¬го замыкания применяют различные предохранительные устройст¬ва.
чему равен общий ток цепи и напряжение на участке при последовательном соединение???
Общее сопротивление при последовательном соединении равно сумме сопротивлений Rсумм=R1+R2+R3… Ток через все сопротивления протекает один ( I ). Поэтому ток вычисляешь как Отношение напряжения источника U к Rсумм. I=U/Rсумм Мощность P=U*I или P=I*I*R (так как U=I*R). тогда, P1=I*I*R1 P2=I*I*R2 P3=I*I*R3
исходные данные где?
1) сумма 2)напряжение на участке цепи умножить на ток. При том ток, при последовательном соединении одиноковй в любой точке цепи
Сумма токов в узле равна нулю. Выход равен входу. 1) сложить. 2)сумме мощностей элементов цепи.
При последовательном соединении узлов нет. Ток цепи определяется делением приложенного напряжения в вольтах (V) на сопротивление цепи в омах (R). I=V : R. Падение напряжения на участке будет равнятся сопротивлению участка помноженному на ток. Общее сопротивление равно сумме всех сопротивлений. Мощность участка равняется падению напряжения на участке помноженному на ток. Это Закон Ома. А вообще-то это все в школьном учебнике физики в разделе-Электричество.
ЭДС и напряжение в электрической цепи
Многие люди (в то числе и некоторые электрики) путают понятие электродвижущей силы (ЭДС) и напряжения. Хотя эти понятия имеют отличия. Несмотря на то, что они незначительные, не специалисту сложно в них разобраться. Не маловажную роль в этом играет единица измерения. Напряжение и ЭДС измеряются в одних единицах – Вольтах. На этом отличия не заканчиваются, подробно обо всем мы рассказали в статье!
Что такое электродвижущая сила
Подробно этот вопрос мы рассмотрели в отдельной статье: https://samelectrik.ru/chto-takoe-eds-obyasnenie-prostymi-slovami.html
Под ЭДС понимается физическая величина, характеризующая работу каких-либо сторонних сил, находящихся в источниках питания постоянного или переменного тока. При этом, если имеется замкнутый контур, то можно сказать, что ЭДС равна работе сил по перемещению положительного заряда к отрицательному по замкнутой цепи. Или простыми словами, ЭДС источника тока представляет работу, необходимую для перемещения единичного заряда между полюсами.
При этом если источник тока имеющего бесконечную мощность, а внутреннее сопротивление будет отсутствовать (позиция А на рисунке), то ЭДС можно рассчитать по закону Ома для участка цепи, т.к. напряжение и электродвижущая сила в этом случае равны.
I=U/R,
где U – напряжение, а в рассмотренном примере — ЭДС.
Однако, реальный источник питания имеет конечное внутреннее сопротивление. Поэтому такой расчет нельзя применять на практике. В этом случае для определения ЭДС пользуются формулой для полной цепи.
I=E/(R+r),
где E (также обозначается как «ԑ») — ЭДС; R – сопротивление нагрузки, r – внутреннее сопротивление источника электропитания, I – ток в цепи.
Однако, эта формула не учитывает сопротивление проводников цепи. При этом необходимо понимать, что внутри источника постоянного тока и во внешней цепи, ток течет в разных направлениях. Разница заключается в том, что внутри элемента он течет от минуса к плюсу, то во внешней цепи от плюса к минусу.
Это наглядно представлено на ниже приведенном рисунке:
При этом электродвижущая сила измеряется вольтметром, в случае, когда нет нагрузки, т.е. источник питания работает в режиме холостого хода.
Чтобы найти ЭДС через напряжение и сопротивление нагрузки нужно найти внутреннее сопротивление источника питания, для этого измеряют напряжение дважды при разных токах нагрузки, после чего находят внутреннее сопротивление. Ниже приведен порядок вычисления по формулам, далее R1, R2 — сопротивление нагрузки для первого и второго измерения соответственно, остальные величины аналогично, U1, U2 – напряжения источника на его зажимах под нагрузкой.
Итак, нам известен ток, тогда он равен:
I1=E/(R1+r)
I2=E/(R2+r)
При этом:
R1=U1/I1
R2=U2/I2
Если подставить в первые уравнения, то:
I1=E/( (U1/I1)+r)
I2=E/( (U2/I2)+r)
Теперь разделим левые и правые части друг на друга:
(I1/I2)= [E/( (U1/I1)+r)]/[E/( (U2/I2)+r)]
После вычисления относительно сопротивления источника тока получим:
r=(U1-U2)/(I1-I2)
Внутреннее сопротивление r:
r= (U1+U2)/I,
где U1, U2 — напряжение на зажимах источника при разном токе нагрузки, I — ток в цепи.
Тогда ЭДС равно:
E=I*(R+r) или E=U1+I1*r
Что такое напряжение
Электрическое напряжение (обозначается как U) – это физическая величина, которая отражает количественную характеристику работы электрического поля по переносу заряда из точки А в точку В. Соответственно напряжение может быть между двумя точками цепи, но в отличии от ЭДС оно может быть между двумя выводами какого-то из элементов цепи. Напомним, что ЭДС характеризует работу, выполненную сторонними силами, то есть работу самого источника тока или ЭДС по переносу заряда через всю цепь, а не на конкретном элементе.
Это определение можно выразить простым языком. Напряжение источников постоянного тока – это сила, которая перемещает свободные электроны от одного атома к другому в определенном направлении.
Для переменного тока используют следующие понятия:
- мгновенное напряжение — это разность потенциалов между точками в данный промежуток времени;
- амплитудное значение – представляет максимальную величину по модулю мгновенного значения напряжения за промежуток времени;
- среднее значение – постоянная составляющая напряжения;
- среднеквадратичное и средневыпрямленное.
Напряжение участка цепи зависит от материала проводника, сопротивления нагрузки и температуры. Так же как и электродвижущая сила измеряется в Вольтах.
Часто для понимания физического смысла напряжения, его сравнивают с водонапорной башней. Столб воды отождествляют с напряжением, а поток с током.
При этом столб воды в башне постепенно уменьшается, что характеризует понижение напряжения и уменьшения силы тока.
Так в чем же отличие
Для лучшего понимания, в чем состоит разница электродвижущей силы от напряжения, рассмотрим пример. Имеется источник электрической энергии бесконечной мощности, в котором отсутствует внутреннее сопротивление. В электрической цепи смонтирована нагрузка. В этом случае будет справедливо утверждение, что ЭДС и напряжение тождественно равны, т.е между этими понятиями отсутствует разница.
Однако, это идеальные условия, которые в реальной жизни не встречаются. Эти условия используют исключительно при расчетах. В реальной жизни учитывается внутреннее сопротивление источника питания. В этом случае ЭДС и напряжение имеют отличия.
На рисунке представлено, какая разница будет в значениях электродвижущей силы и напряжении в реальных условиях. Вышеприведенная формула закона Ома для полной цепи описывает все процессы. При разомкнутой цепи на клеммах батарейки будет значение 1,5 Вольта. Это значение ЭДС. Подключив нагрузку, в данном случае это лампочка, на ней будет напряжение 1 вольт.
Разница от идеального источника заключается в наличии внутреннего сопротивления источника питания. На этом сопротивлении и происходит падение напряжения. Эти процессы описывает закон Ома для полной цепи.
Если измерительный прибор на зажимах источника электроэнергии показывает значение 1,5 Вольта, это будет электродвижущая сила, но повторим, при условии отсутствия нагрузки.
При подключении нагрузки на клеммах будет заведомо меньшее значение. Это и есть напряжение.
Вывод
Из вышесказанного можно сделать вывод, что основная разница между ЭДС и напряжением состоит:
- Электродвижущая сила зависит от источника питания, а напряжение зависит от подключенной нагрузки и тока, протекающего по цепи.
- Электродвижущая сила это физическая величина, характеризующая работу сторонних сил неэлектрического происхождения, происходящих в цепях постоянного и переменного тока.
- Напряжение и ЭДС имеет единую единицу измерения – Вольт.
- U -величина физическая, равная работе эффективного электрического поля, производимой при переносе единичного пробного заряда из точки А в точку В.
Таким образом, кратко, если представить U в виде столба воды, то ЭДС можно представить что это насос, поддерживающий уровень воды на постоянном уровне. Надеемся, после прочтения статьи Вам стало понятно основное отличие!
Материалы по теме: