Posted on

Содержание

Синхронный и асинхронный генераторы. Отличия

Генератор — устройство, преобразующее один вид энергии в другой.
В данном случае рассматриваем преобразование механической энергии вращения в электрическую.

Различают два типа таких генераторов. Синхронные и асинхронные.

Синхронный генератор. Принцип действия

Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:

n = f / p

где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:

n = 60·f / p

На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток.

В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.

Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC

, которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.

C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи IA, IB, IC , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе

e = 2Blwv = 2πBlwDn

Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w – количество витков;
v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с;

D – внутренний диаметр сердечника статора, м.

Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = Bmax sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.

Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δmax (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора

f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)

f = pn

где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями

В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока

В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь

ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Асинхронный генератор. Отличия от синхронного

Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s — скольжение.

s = (n — n r )/n

здесь:
n — частота вращения магнитного поля (частота ЭДС).
n r — частота вращения ротора.

Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота.

В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.

Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусственной коммутацией вентилей.

Асинхронные генераторы можно классифицировать по способу возбуждения, характеру выходной частоты (изменяющаяся, постоянная), способу стабилизации напряжения, рабочим областям скольжения, конструктивному выполнению и числу фаз.
Последние два признака характеризуют конструктивные особенности генераторов.
Характер выходной частоты и методы стабилизации напряжения в значительной степени обусловлены способом образования магнитного потока.
Классификация по способу возбуждения является основной.

Можно рассмотреть генераторы с самовозбуждением и с независимым возбуждением.

Самовозбуждение в асинхронных генераторах может быть организовано:
а) с помощью конденсаторов, включенных в цепь статора или ротора или одновременно в первичную и вторичную цепи;
б) посредством вентильных преобразователей с естественной и искусственной коммутацией вентилей.

Независимое возбуждение может осуществляться от внешнего источника переменного напряжения.

По характеру частоты самовозбуждающиеся генераторы разделяются на две группы. К первой из них относятся источники практически постоянной (или постоянной) частоты, ко второй переменной (регулируемой) частоты. Последние применяются для питания асинхронных двигателей с плавным изменением частоты вращения.

Более подробно рассмотреть принцип работы и конструктивные особенности асинхронных генераторов планируется рассмотреть в отдельных публикациях.

Асинхронные генераторы не требуют в конструкции сложных узлов для организации возбуждения постоянным током или применения дорогостоящих материалов с большим запасом магнитной энергии, поэтому находят широкое применение у пользователей передвижных электроустановок по причине своей простоты и неприхотливости в обслуживании. Используются для питания устройств, не требующих жёсткой привязки к частоте тока.
Техническим достоинством асинхронных генераторов можно признать их устойчивость к перегрузкам и коротким замыканиям.
С некоторой информацией по мобильным генераторным установкам можно ознакомиться на странице:
Дизель-генераторы.
Асинхронный генератор. Характеристики.
Асинхронный генератор. Стабилизация.


Замечания и предложения принимаются и приветствуются!

Асинхронный двигатель как генератор — суть процесса, его плюсы и минусы

В электротехнике существует так называемый принцип обратимости: любое устройство, которое преобразует электрическую энергию в механическую, может делать и обратную работу. На нем основан принцип действия электрических генераторов, вращение роторов которых вызывает появление электрического тока в обмотках статора.

Теоретически можно переделать и использовать любой асинхронный двигатель в качестве генератора, но для этого надо, во-первых, понять физический принцип, а во-вторых, создать условия, обеспечивающие это превращение.

Вращающееся магнитное поле – основа схемы генератора из асинхронного двигателя

вращающееся магнитное полеВ электрической машине, изначально создающейся как генератор, существуют две активные обмотки: возбуждения, размещенная на якоре, и статорная, в которой и возникает электрический ток. Принцип её работы основан на эффекте электромагнитной индукции: вращающееся магнитное поле порождает в обмотке, которая находится под его воздействием, электрический ток.

Магнитное поле возникает в обмотке якоря от напряжения, обычно подаваемого с аккумулятора, ну а его вращение обеспечивает любое физическое устройство, хотя бы и ваша личная мускульная сила.

Конструкция электродвигателя с короткозамкнутым ротором (это 90 процентов всех исполнительных электрических машин) не предусматривает возможности подачи питающего напряжения на обмотку якоря. Поэтому, сколько бы вы ни вращали вал двигателя, на его питающих клеммах электрического тока не возникнет.
Тем, кто хочет заняться переделкой асинхронного двигателя в генератор, надо создавать вращающееся магнитное поле самостоятельно.

Создаем предусловия для переделки

асинхронный двигатель в режиме генератораДвигатели, работающие от переменного тока, называют асинхронными. Все потому, что вращающееся магнитное поле статора чуть опережает скорость вращения ротора, оно как бы тянет его за собой.

Используя тот же принцип обратимости, приходим к выводу, что для начала генерации электрического тока вращающееся магнитное поле статора должно отставать от ротора или даже быть противоположным по направлению. Создать вращающееся магнитное поле, которое отстает от вращения ротора или противоположно ему, можно двумя способами.

Затормозить его реактивной нагрузкой. Для этого в цепь питания электродвигателя, работающего в обычном режиме (не генерации), надо включить, например, мощную конденсаторную батарею. Она способна накапливать реактивную составляющую электрического тока – магнитную энергию. Этим свойством в последнее время широко пользуются те, кто хочет сэкономить киловатт-часы.

Если быть точным, то фактической экономии электроэнергии не происходит, просто потребитель немного обманывает электросчетчик на законной основе.
Накопленный конденсаторной батареей заряд находится в противофазе с тем, что создается питающим напряжением и «подтормаживает» его. В результате электродвигатель начинает генерировать ток и отдавать его обратно в сеть. как подключить трехфазный электродвигатель в сеть 220вИспользование высокомощных моторов в домашних условиях при наличии исключительно однофазной сети требует определенных знаний в том, как подключить трехфазный электродвигатель в сеть 220в.

Для одновременного подключения потребителей электроэнергии к трех фазам служит специальное электромеханическое устройство — магнитный пускатель, об особенностях правильной установки которых можно прочитать здесь.

На практике этот эффект применяется в транспорте на электрической тяге. Как только электровоз, трамвай или троллейбус идут под уклон, к цепи питания тягового электродвигателя подключается конденсаторная батарея и происходит отдача электрической энергии в сеть (не верьте тем, кто утверждает, что электротранспорт дорог, он почти на 25 процентов обеспечивает энергией сам себя).

Такой способ получения электрической энергии не есть чистая генерация. Чтобы перевести работу асинхронного двигателя в режим генератора, надо использовать метод самовозбуждения.

Самовозбуждение асинхронного двигателя и переход его в режим генерации может возникнуть из-за наличия в якоре (роторе) остаточного магнитного поля. Оно очень мало, но способно породить ЭДС, заряжающее конденсатор. После возникновения эффекта самовозбуждения конденсаторная батарея подпитывается от произведенного электрического тока и процесс генерации становится непрерывным.

Секреты изготовления генератора из асинхронного двигателя

переделка асинхронного двигателя в генераторЧтобы превратить электромотор в генератор надо использовать неполярные конденсаторные батареи. Электролитические конденсаторы для этого не годятся. В трехфазных двигателях конденсаторы включаются звездой или треугольником. Соединение «звездой» позволяет начать генерацию на меньших оборотах ротора, но величина напряжения на выходе будет несколько ниже, чем при соединении «треугольником».

Также можно сделать генератор из однофазного асинхронного двигателя. Но для этого годятся лишь те, которые имеют короткозамкнутый ротор, а для запуска используют фазосдвигающий конденсатор. Коллекторные однофазные двигатели для переделки в генератор не годятся.

Рассчитать в бытовых условиях величину потребной емкости конденсаторной батареи не представляется возможным. Поэтому домашний мастер должен исходить из простого соображения: общий вес конденсаторной батареи должен быть равен или немного превышать вес самого электродвигателя.
На практике это приводит к тому, что создать достаточно мощный асинхронный генератор почти невозможно, поскольку чем меньше номинальные обороты двигателя, тем он больше весит.

Оцениваем уровень эффективности — выгодно ли это?

Как видите, заставить электродвигатель генерировать ток можно не только в теоретических измышлениях. Теперь надо разобраться, насколько оправданы усилия по «изменению пола» электрической машины.
генератор из асинхронного двигателя схема
Во многих теоретических изданиях главным преимуществом асинхронных генераторов представляют их простоту. Честно говоря, это лукавство. Устройство двигателя ничуть не проще устройства синхронного генератора. Конечно, в асинхронном генераторе нет электрической цепи возбуждения, но она заменена на конденсаторную батарею, которая сама по себе является сложным техническим устройством.

Зато конденсаторы не надо обслуживать, а энергию они получают как бы даром – сначала от остаточного магнитного поля ротора, а потом – от вырабатываемого электрического тока. Вот в этом и есть главный, да и практически единственный плюс асинхронных генераторных машин – их можно не обслуживать. Такие источники электрической энергии применяются в домашних автономных электростанциях, приводимых в действие силой ветра или падающей воды.

Еще одним преимуществом таких электрических машин является то, что генерируемый ими ток почти лишен высших гармоник. Этот эффект называется «клирфактор». Для людей далеких от теории электротехники его можно объяснить так: чем ниже клирфактор, тем меньше тратится электроэнергии на бесполезный нагрев, магнитные поля и прочее электротехническое «безобразие».

У генераторов из трехфазного асинхронного двигателя клирфактор обычно находится в пределах 2%, когда традиционные синхронные машины выдают минимум 15. Однако учет клирфактора в бытовых условиях, когда к сети подключены разные типы электроприборов (стиральные машины имеют большую индуктивную нагрузку), практически невозможен.

асинхронный двигатель в качестве генератораВсе остальные свойства асинхронных генераторов являются отрицательными. К ним относится, например, практическая невозможность обеспечить номинальную промышленную частоту вырабатываемого тока. Поэтому их почти всегда сопрягают с выпрямительными устройствами и используют для зарядки аккумуляторных батарей.

Кроме того, такие электрические машины очень чувствительны к перепадам нагрузки. Если в традиционных генераторах для возбуждения используется аккумулятор, имеющий большой запас электрической мощности, то конденсаторная батарея сама забирает из вырабатываемого тока часть энергии.

Если нагрузка на самодельный генератор из асинхронного двигателя превышает номинал, то ей не хватит электричества для подзарядки и генерация прекратится. Иногда используют емкостные батареи, объем которых динамически меняется в зависимости от величины нагрузки. Однако при этом полностью теряется преимущество «простоты схемы».

Нестабильность частоты вырабатываемого тока, изменения которой почти всегда носят случайный характер, не поддаются научному объяснению, а потому не могут быть учтены и компенсированы, предопределило малую распространенность асинхронных генераторов в быту и народном хозяйстве.

Функционирование асинхронного двигателя как генератора на видео

Асинхронный электрический генератор.Возбуждение асинхронного генератора

Принцип работы асинхронного электрического генератора

Во всех случа­ях асинхронная электрическая машина потребляет из сети реактивную мощность, необходимую для создания магнитного поля. При автономной работе асинхронной электрической машины в генераторном режиме магнитное поле в воздушном зазоре создается в результате взаимодействия магнитной движущийся силы магнитной силы всех фаз и магнитной движущийся силы обмотки ротора. Характер распределения магнитной движущийся силы точ­но такой же, как и в асинхронном электрическом двигателе(АД) , он также определяет характер распределения магнитного поля на полюсном делении. В асинхронном генераторе этот поток весьма близок к си­нусоидальному и при вращении ротора индуцирует в фазах статора и в обмотке ротора ЭДС Е| и Е2, которые можно принять синусоидальными.
В отличие от асинхронного электрического двигателя в  асинхронном электрическом генераторе в данном случае ЭДС Е1 и Е2 являются активными, поддерживают ток в соответствующих цепях и в нагрузке, подклю­ченной к выходным зажимам.

В установившемся режиме работы основные соотношения для асинхронного электрического генератора с самовозбуждением определя­ются из схемы замещения. Основное отличие только в том, что к ее выводам подключено сопро­тивление нагрузки 2Н = Кн +]ХН и конденсаторы для обеспечения само­возбуждения и регулирования на­пряжения при изменении нагрузки асинхронного электрического генератора  с сопротивлениями Хс = 1/соС и Хск = 1/соСк.
Как видно, напряжение при работе под нагрузкой изменяется как за счет падения напряжения на сопротивлениях r1 и х1, так и за счет сни­жения магнитного потока Фот , связанного с размагничивающим действи­ем магнитной движущийся силы  ротора. Если магнитная цепь асинхронного электрического генератора выполнена с достаточно силь­ным насыщением, то поток Фот остается почти постоянным и напряжение U1 при увеличении нагрузки изменяется в меньшей степени, а его внешняя характеристика получается более «жесткой».

Способы регулирования напряжения автономного асинхронного генератора. Самовозбуждение асинхронного электрического генератора

Особенности самовозбуждения асинхронного генератора. Асинхронный элетродвигатель, под­ключенный к трехфазной сети переменного тока, при частоте вращения ротора, больше, чем частота вращения поля статора, переходит в генера­торный режим и отдает в сеть активную мощность, потребляя из сети ре­активную мощность, необходимую для создания вращающегося магнитно­го поля взаимной индукции. Тормозной электромагнитный момент, дейст­вующий на роторе, преодолевается приводным двигателем — дизелем, гид­ротурбиной, ветродвигателем и т.п.
Для возбуждения  асинхронного электрогенератора необходимо наличие источника реактивной мощности — батареи конденсаторов или синхронно­го компенсатора, подключенных к обмотке статора. При этом почти есте­ственной представляется работа асинхронного генератора  при сверх синхронном скольжении, ко­гда скорость вращения ротора выше скорости вращающегося магнитного поля. Однако практически асинхронный генератор может возбуждаться при частоте вращения ротора, значительно меньшей синхронной, причем значения напряжения и частоты тока оказываются пропорциональными частоте вращения ротора и, кроме того, зависящими от схемы соединения конденсаторов. Так, в эксперименте ( по опытным данным гл. инж. Штефана А.М. (НК ЭМЗ, г. Н.Каховка)) конденсаторный асинхронный мотор-редуктор типа АИРУ112-М2 при соединении бата­реи конденсаторов емкостью 3×120 мкФ в «звезду» возбуждается при ско­рости пр= 2133 об/мин с напряжением ГГф = 60 В и током фазы 1ф = 0,8 А, а при соединении тех же конденсаторов в «треугольник» напряжение  =52 В и ток 1ф = 1,4А возникают при скорости пр= 1265 об/мин.

Весьма интересное явление наблюдалось в асинхронном генераторе серии А ИМН 90-L4 при включении емкости 40 мкФ только в одну из трех фаз. В этом случае возбуждение асинхронного генератора наступило при скорости п2 = 1369 об/мин с параметрами U1ф = =209 В, I = 1,29 А, Г = 44 Гц. При емкости С = 60 мкФ, включенной в одну из фаз, параметры возбуждения асинхронного электрогенератора были равны: п2 — 1300 об/мин, U = 500 В, I = 6,4 А, Г = 124 Гц. При увеличении частоты вращения ротора до син­хронной (1500 об/мин) наблюдалось увеличение частоты тока до 400Гц. В некоторых случаях, наоборот, не удавалось добиться устойчивого возбуж­дения асинхронного генератора  даже при сверх синхронной частоте вращения ротора. Например, для намагниченных гладких стального массивного и шихтованного рото­ров самовозбуждения не возникало при любых величинах присоединенной емкости.

Для массивного стального ротора с тонким экраном из меди, а также для массивного стального зубчатого ротора с торцовыми медными конца­ми АГ устойчиво возбуждается при расчетном значении емкости. Асин­хронная машина с гладкими роторами из меди или алюминия возбуждает­ся без каких-либо дополнительных воздействий извне.

Таким образом, физические процессы самовозбуждения асинхронного генератора с пол­ным основанием можно отнести к недостаточно изученным, что связано, по нашему мнению, с преимущественным использованием до настоящего времени АМ в качестве двигателя, с разработкой для него теории, расчет­ных методик и проектирования, а для генераторного режима эти машины проектировались и выпускались достаточно редко.
В маломощных системах генерирования применяются, как правило, АМ, предназначенные для работы в двигательном режиме с конденсатор­ным возбуждением.

Описание процесса самовозбуждения на принципе остаточной намагниченности магнитной цепи.

Современные работы по са­мовозбуждению АГ с помощью статических конденсаторов по­строены на трех подходах. Один из них базируется на принципе остаточной намагниченности маг­нитной цепи машины, начальная ЭДС от которой затем усиливает­ся емкостным током в статоре . Рассмотрим этот подход.

Автономная работа асинхронного генератора в режиме самовозбуждения от потока остаточного намагничивания возмож­на, если к выводам обмотки статора подключить конденсаторы, необходи­мые как источник реактивной мощности от для возбуждения магнитного поля асинхронного электрогенератора, а при его работе на активно-индуктивную нагрузку эти конденсаторы должны служить источником реактивной мощности 0Н и для нагруз­ки.

Понравилось это:

Нравится Загрузка…

Похожее

Синхронный или асинхронный генератор: какой выбрать?

При выборе бензогенератора для дома, или покупки дизельного генератора для работы, предприятия, любой, рационально мыслящий покупатель, естественно, обращает внимание на мощность электрогенератора, подробно и обстоятельно рассчитывая ее. И это верно. Но следует помнить и о том, что выбор генератора – вопрос сложный и разноплановый, наподобие геометрического многогранника – стоит упустить из виду хоть одну грань, и фигура развалится.
Для того, чтобы электроэнергия от генератора поступала качественная и без сбоев, нужно помнить об одном важном факторе: тип встроенного альтернатора. Звучит довольно сложно, но на самом деле, это простой выбор между двумя видами: щеточный или бесщеточный.

Содержание статьи:

СТАТИСТИКА ПРОДАЖ ГЕНЕРАТОРОВ ПО ТИПУ АЛЬТЕРНАТОРА
 

ЧТО ТАКОЕ АЛЬТЕРНАТОР

Когда–то давно, на заре своего возникновения, устройство для выработки электрического тока так и называлось – альтернатор.  То есть, это устаревшее название генератора переменного тока. Позже его стали называть генератором, подразумевая под этим всю конструкцию: альтернатор и двигатель, размещенные на открытой раме или в корпусе.
Альтернатор в отдельности – самая важная часть генератора, именно он выполняет главную функцию – преобразовывает механическую энергию вращения вала двигателя в электрическую энергию переменного тока. В нем есть два стандартных элемента: вращающийся ротор и статор — неподвижная часть генератора.

принцип работы и описание устройства, ампераж

Чтобы преобразовать механическую силу в электрическую энергию, используется генератор напряжения. При рассмотрении устройства важно затронуть тему принципа работы и технических характеристик. Учитываются типы установок и схема генератора.

Описание устройства

Простейший генератор тока представляет собой установку с проволочной катушкой. Ветки между собой пересекаются и во время движения электроны начинают перемещаться. Действие элементов производится относительно полюсов магнитов. Основная задача — индицирование электрического тока. Если обратиться к истории, ранее существовали такие разновидности:

  • динамо-машина Йедлика;
  • диск Фарадея;
  • динамо-машина;
  • электрические модули с вращением.

Динамо-машина

Базовый принцип работы

Для примера рекомендуется рассмотреть асинхронный генератор, который состоит из следующих элементов:

  • ротор;
  • подвижный якорь;
  • встроенный статор;
  • обмотка;
  • прочный стержень;
  • кольца;
  • корпус;
  • пластины;
  • сердечник ротора.

Принцип работы построен на преобразовании механической энергии. Уровень электрического тока зависит от скорости вращения генератора. Процесс начинается с вращения ротора. На модуль действует магнитное поле и приводится в действие пластина, а также обмотка статора. Катушка испытывает нагрузки, и в цепи появляется ток.

Катушка в цепи

Основная задача на этом этапе — повышение выходной мощности. При увеличении скорости повышается показатель магнитной индукции. Она влияет на коэффициент полезного действия устройства.

Дополнительная информация! К катушке подведены контакты статора, есть возможность подключить проводники.

Технические характеристики

Рассматривая простой генератор напряжения, нужно учитывать следующие показатели:

  • номинальная мощность;
  • частота;
  • токовая перегрузка;
  • количество полюсов.

Если рассматривать генераторы, специалисты обращают внимание на амперы. Чтобы им управлять, используются регуляторы мощности. В отечественных автомобилях показатель находится на отметке 55 ампер.

Замер напряжения

Скорость вращения генератора

Скорость вращения генератора в синхронном, асинхронном двигателе зависит от следующих факторов:

  • число полюсов;
  • частота.

Если взять модификацию на два полюса, при частоте 50 герц обеспечивает обороты 3000. Модификация на 6 полюсов при той же частоте дает обороты 1000. Устройство на 16 полюсов с частотой 50 герц обеспечивает обороты 375.

Виды и применение

Разделение устройств, происходит в зависимости от сети:

  • постоянного тока;
  • переменного тока.

Если рассматривать устройства переменного тока, они делятся на подгруппы:

  • синхронные;
  • асинхронные.

Асинхронный тип

Разделение модулей в зависимости от количества фаз:

  • однофазные;
  • трехфазные.

Генераторы постоянного тока производятся с дополнительной обмоткой, предрасположены к большим нагрузкам. Они используются в металлургической промышленности. Установки функционируют по принципу электромагнитной индукции. К основным параметрам относят:

  • количество оборотов;
  • мощность;
  • индуктивность;
  • частота.

В установках используются катушки возбуждения. У них различная пропускная способность, учитывается количество контактов. Если разбирать мощные установки, у них имеется несколько колец, которые изолированы между собой. Для контроля электрического напряжения, применяется выпрямитель.

Выпрямитель в цепи

У якоря используются щётки, которые не соприкасаются между собой. При работе отслеживается уровень напряжения на контуре. В нормальном состоянии показатель имеет нулевое значение. Отдельный вопрос — выбор полярности. К второстепенным показателям приписывают синусоидальное напряжение.

Особенности якоря:

  • функционирует на холостом ходу;
  • выдерживает значительную нагрузку;
  • создаёт собственное магнитное поле;
  • является компактным;
  • при вращении элемента образуется магнитное поле.

Есть установки с несколькими якорями, которые поставляются с магнитными проводами. Основной показатель демонстрирует насыщенность напряжения в цепи. Если требуется определить электродвижущую силу, берётся в расчёт количество оборотов, а также полюсов.

Важно! Дополнительно в формуле рассчитывается показатель индуктивности. Есть варианты с параллельным и последовательным соединением элементов.

Последовательное подключение

Обмотка на якоре может быть одинарной либо двойной, многое зависит от количества проводников. С целью расчета средней электродвижущей силы определяется мощность и частота. Это физическая величина, которая может быть определена лишь в квазистационарных цепях. Учитывается полезная мощность и максимальный уровень напряжения.

Виды генераторов постоянного тока:

  • параллельные;
  • последовательного возбуждения;
  • смешанный тип.

Установки с параллельным возбуждением могут называться шунтами. Они отличаются небольшой мощностью. У элементов широкая сфера применения. Модули с последовательным возбуждением могут называться сериесными и поставляются для промышленных предприятий. У них используется постоянный магнит и нет проблем с нагрузкой.

Установки способны работать на холостом ходу, есть возможность регулировать электрическую нагрузку. При рассмотрении генераторов с независимым возбуждением учитываются следующие показатели:

  • ток нагрузки;
  • холостой ход;
  • максимальная мощность;
  • частота;
  • электродвижущая сила;
  • сопротивление.

К основным преимуществам генераторов постоянного тока стоит приписать независимое возбуждение. К минусам относят зависимость от источника питания. В 2019 году установки могут применяться в сильноточных агрегатах.

Сильноточные агрегаты

Если рассматривать регулировочные характеристики генераторов, учитывается тип нагрузки и постоянство частоты. Модификации с параллельным возбуждением имеют следующие особенности:

  • не боятся коротких замыканий;
  • быстрый прогрев якоря;
  • питание установок;
  • подходят для сварочных аппаратов.

Устройства переменного тока функционируют за счет вращения ротора. Модели используются в морских судах и частично в общественном транспорте. Синхронные модификации поставляются с блоками пусковой перегрузки. Элементы встречаются в персональных компьютерах и прочей электронике.

Рассматривая асинхронный генератор, принцип работы и устройство, можно заметить, что по конструкции он являются простым. Агрегаты устанавливаются на сварочную технику. Однофазные функционируют при напряжении 220 вольт, а трехфазные поставляются с параметром 380 вольт.

Интересно! Установки востребованы на промышленных объектах, где требуются модули высокой мощности.

Схема генератора переменного тока

Схема генератора переменного тока включает следующие элементы:

  • центральный шкив;
  • вентиляторы;
  • ротор;
  • обмотка держателя;
  • контакты;
  • щеткодержатель;
  • элемент выпрямитель.

Меры безопасности

Осуществляя диагностику модуля, рекомендуется придерживаться правил:

  • не замыкать контакты;
  • не допускать попадания воды;
  • отдельно хранить аккумулятор;
  • следить за герметичностью конструкции;
  • проверять уровень напряжения.

Во время снятия генератора проверяются комплектующие. Уделяется внимание правилам эксплуатации по инструкции. Установки функционируют в определенных режимах, оцениваются основные характеристики. Модули боятся соли и жидкостей. Установка генератора должна производиться специалистом.

Если подключать генератор к автомобилю, нужно проверить силовой выпрямитель. Необходимо вывести обмотки возбудителя, а также фазу. Отдельно проверяется регулятор напряжения. При установке запрещается производить проверку до момента полного подключения.

Выше подробно описано понятие генератора напряжения. Расписан базовый принцип работы и характеристики. Учитывается ампераж, скорость вращения и схема подключения.

Асинхронный электродвигатель в качестве генератора | Полезные статьи

Рисунок 1. Трехфазная асинхронная электрическая машина Асинхронные электродвигатели были разработаны еще в конце 19-го века М. О. Доливо-Добровольским и с тех пор не претерпели каких-либо действительно значительных изменений. Тем не менее именно такие электрические машины, особенно их модификации с короткозамкнутым ротором, получили наибольшее распространение практически во всех отраслях человеческой деятельности, что объясняется их универсальностью, надежностью и на порядок более низкой ценой в сравнении с двигателями постоянного тока.

С учетом приведенных выше качеств выглядит вполне логичным преимущественное использование именно асинхронных электродвигателей в качестве генераторов. Причем по сугубо экономическим соображениям это делается не только тогда, когда необходимо получить переменный, но и постоянный ток.

 

Генератор 380 В на базе трехфазной асинхронной электрической машины

Рисунок 2. Стандартная схема подключения асинхронного электродвигателя в качестве генератора Трехфазный генератор 380 В на базе асинхронного электродвигателя переменного тока получают путем отключения питающей сети и подсоединения его рабочего вала к валу механического двигателя. Такая конфигурация благодаря принципу обратимости электрических машин позволяет при достижении синхронной частоты вращения снять с зажимов статорной обмотки некоторую ЭДС, генерируемую остаточным магнитным полем. Если при этом к зажимам статорной обмотки подключить конденсаторную батарею, то в соответствующих обмотках потечет емкостной ток, выполняющий в данном случае роль намагничивающего фактора.

Критическим параметром всей установки является емкость конденсаторной батареи, которая должна превышать некоторое пороговое значение С0 — только при выполнении данного условия возможно самовозбуждение генератора и установление на обмотках его статора симметричной трехфазной системы напряжений.

Нетрудно догадаться, что конденсаторная батарея, точнее — ее емкость, играющая ключевую роль во всей схеме, является самым уязвимым местом. Дело в том, что поддержание заданного напряжения при увеличении нагрузки на генератор, особенно ее реактивной составляющей, для поддержания необходимого напряжения требуется постоянно наращивать емкость конденсаторной батареи путем увеличения подключенных конденсаторов. В цифрах картина выглядит следующим образом:

 

Стоит отметить, что некоторого смягчения воздействия реактивной составляющей позволяют достигнуть компенсаторы реактивной мощности серий КМ1/КМ2. При желании их аналоги можно изготовить и самостоятельно на основе конденсаторов МБГТ/ МБГП/ МБГО и др. за исключением электролитических.

Однофазный генератор 220 В на базе асинхронного электродвигателя переменного тока

Рисунок 3. Схема подключения однофазного генератора 220 В на базе асинхронного электродвигателя переменного тока Как уже отмечалось выше, трехфазные генераторы используются далеко не только для получения переменного напряжения. Еще одним распространенным способом использования асинхронного электродвигателя в качестве генератора является подключение, подразумевающее использование конденсаторной батареи в тандеме только с одной обмоткой. Такой ход позволяет уменьшить емкость конденсаторов и снизить нагрузку на первичный механический двигатель, что, в свою очередь, позволяет сэкономить недешевое природное топливо, однако и вырабатываемая мощность значительно падает. Экономический эффект наиболее ощутим при частой работе генератора в режиме холостого хода, что особенно актуально для бытового использования.

Емкость используемых в данной схеме конденсаторов напрямую зависит от характера нагрузки: активная нагрузка (СВЧ, освещение помещений, паяльные станции) требует меньшей емкости, индуктивная (телевизоры, холодильники, стиральные машины) — большей.

 

Асинхронный генератор. Большая энциклопедия техники

Асинхронный генератор

Асинхронный генератор – это особый тип генераторов, основой действия которого является преобразование механической энергии вращения в электрическую энергию переменного тока. Относится к генераторам переменного тока.

Асинхронный генератор переменного тока как бесколлекторный, так и коллекторный мало распространен. Асинхронный бесколлекторный генератор представляет собой асинхронную электрическую машину, ротор которой движется быстрее магнитного поля. Это меняет активность тока в цепи ротора и направление активного тока статора. Если ротор вращается медленнее поля, асинхронная машина потребляет из сети активную мощность. В генераторном режиме при вращении ротора быстрее поля активная мощность направляется в сеть. Поэтому при увеличении скорости вращения ротора возрастает мощность генератора. Возбуждение асинхронного генератора реактивным переменным током осуществляется за счет сети, которая располагает источником реактивной мощности в виде синхронной машины или статического конденсатора.

В коллекторных асинхронных генераторах возбуждение магнитного поля происходит благодаря переменному току заданной частоты и фазы, в результате чего на щетках коллектора возникают те же частота и фаза. Амплитуда частоты и фазы пропорциональна амплитуде магнитного потока возбуждения и скорости вращения якоря. Асинхронные генераторы переменного тока находят применение в системе рекуперации энергии и в установках электропривода с широким изменением числа оборотов.

Асинхронные генераторы использовались в советский период в России в тепловых и гидроэлектрических станциях.

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *