Автомат на 40 ампер сколько киловатт выдержит
Выбор защитных автоматических выключателей производится не только в ходе установки новой электрической сети, но и при модернизации электрощита, а также при включении в цепь дополнительных мощных приборов, повышающих нагрузку до такого уровня, с которым старые устройства аварийного отключения не справляются. И в этой статье речь пойдет о том, как правильно производить подбор автомата по мощности, что следует учитывать в ходе этого процесса и каковы его особенности.
Непонимание важности этой задачи может привести к очень серьезным проблемам. Ведь зачастую пользователи не утруждают себя, производя выбор автоматического выключателя по мощности, и берут в магазине первое попавшееся устройство, пользуясь одним из двух принципов – «подешевле» или «помощнее». Такой подход, связанный с неумением или нежеланием рассчитать суммарную мощность устройств, включенных в электросеть, и в соответствии с ней подобрать защитный автомат, зачастую становится причиной выхода дорогостоящей техники из строя при коротком замыкании или даже пожара.
Для чего нужны защитные автоматы и как они работают?
Современные АВ имеют две степени защиты: тепловую и электромагнитную. Это позволяет обезопасить линию от повреждения в результате длительного превышения протекающим током номинальной величины, а также короткого замыкания.
Основным элементом теплового расцепителя является пластина из двух металлов, которая так и называется – биметаллической. Если на нее в течение достаточно длительного времени воздействует ток повышенной мощности, она становится гибкой и, воздействуя на отключающий элемент, вызывает срабатывание автомата.
Наличием электромагнитного расцепителя обусловлена отключающая способность автоматического выключателя при воздействии на цепь сверхтоков короткого замыкания, выдержать которые она не сможет.
Расцепитель электромагнитного типа представляет собой соленоид с сердечником, который при прохождении сквозь него тока высокой мощности моментально сдвигается в сторону отключающего элемента, выключая защитное устройство и обесточивая сеть.
Это позволяет обеспечить защиту провода и приборов от потока электронов, величина которого намного выше расчетной для кабеля конкретного сечения.
Чем опасно несоответствие кабеля сетевой нагрузке?
Правильный подбор защитного автомата по мощности – очень важная задача. Неверно выбранное устройство не защитит линию от внезапного возрастания силы тока.
Но не менее важно правильно подобрать по сечению кабель электропроводки. В противном случае, если суммарная мощность превысит номинальную величину, которую способен выдерживать проводник, это приведет к значительному росту температуры последнего. В итоге изоляционный слой начнет плавиться, что может привести к возгоранию.
Чтобы более наглядно представить, чем грозит несоответствие сечения проводки суммарной мощности включенных в сеть устройств, рассмотрим такой пример.
Новые хозяева, купив квартиру в старом доме, устанавливают в ней несколько современных бытовых приборов, дающих суммарную нагрузку на цепь, равную 5 кВт. Токовый эквивалент в этом случае будет составлять около 23 А. В соответствии с этим в цепь включается защитный автомат на 25 А. Казалось бы, выбор автомата по мощности сделан верно, и сеть готова к эксплуатации. Но через некоторое время после включения приборов в доме появляется задымление с характерным запахом горелой изоляции, а через некоторое время возникает пламя. Автоматический выключатель при этом не будет отключать сеть от питания – ведь номинал тока не превышает допустимого.
Если хозяина в этот момент не окажется поблизости, расплавленная изоляция через некоторое время вызовет короткое замыкание, которое, наконец, спровоцирует срабатывание автомата, но пламя от проводки может уже распространиться по всему дому.
Причина в том, что хотя расчет автомата по мощности был сделан правильно, кабель проводки сечением 1,5 мм² был рассчитан на 19 А и не мог выдержать имеющейся нагрузки.
Чтобы вам не пришлось браться за калькулятор и самостоятельно высчитывать сечение электропроводки по формулам, приведем типовую таблицу, в которой легко найти нужное значение.
Защита слабого звена электроцепи
Итак, мы убедились, что расчет автоматического выключателя должен производиться, исходя не только из суммарной мощности включенных в цепь устройств (независимо от их количества), но и из сечения проводов. Если этот показатель неодинаков на протяжении электрической линии, то выбираем участок с наименьшим сечением и производим расчет автомата, исходя из этого значения.
Требования ПУЭ гласят, что выбранный автоматический выключатель должен обеспечивать защиту наиболее слабого участка электроцепи, или иметь номинал тока, который будет соответствовать аналогичному параметру включенных в сеть установок. Это также означает, что для подключения должны использоваться провода, поперечное сечение которых позволит выдержать суммарную мощность подключенных устройств.
Как выполняется выбор сечения провода и номинала автоматического выключателя – на следующем видео:
Если нерадивый хозяин проигнорирует это правило, то в случае аварийной ситуации, возникшей из-за недостаточной защиты наиболее слабого участка проводки, ему не стоит винить выбранное устройство и ругать производителя – виновником сложившейся ситуации будет только он сам.
Как рассчитать номинал автоматического выключателя?
Допустим, что мы учли все вышесказанное и подобрали новый кабель, соответствующий современным требованиям и имеющий нужное сечение. Теперь электропроводка гарантированно выдержит нагрузку от включенных бытовых приборов, даже если их достаточно много. Теперь переходим непосредственно к выбору автоматического выключателя по номиналу тока. Вспоминаем школьный курс физики и определяем расчетный ток нагрузки, подставляя в формулу соответствующие значения: I=P/U.
Здесь I – величина номинального тока, P – суммарная мощность включенных в цепь установок (с учетом всех потребителей электричества, в том числе и лампочек), а U – напряжение сети.
Чтобы упростить выбор защитного автомата и избавить вас от необходимости браться за калькулятор, приведем таблицу, в которой указаны номиналы АВ, которые включаются в однофазные и трехфазные сети, и соответствующие им мощности суммарной нагрузки.
Эта таблица позволит легко определить, сколько киловатт нагрузки какому номинальному току защитного устройства соответствуют. Как мы видим, автомату 25 Ампер в сети с однофазным подключением и напряжением 220 В соответствует мощность 5,5 кВт, для АВ на 32 Ампера в аналогичной сети – 7,0 кВт (в таблице это значение выделено красным цветом). В то же время для электрической сети с трехфазным подключением «треугольник» и номинальным напряжением 380 В автомату на 10 Ампер соответствует мощность суммарной нагрузки 11,4 кВт.
Наглядно про подбор автоматических выключателей на видео:
Заключение
В представленном материале мы рассказали о том, для чего нужны и как работают устройства защиты электрической цепи. Кроме того, учитывая изложенную информацию и приведенные табличные данные, у вас не вызовет затруднения вопрос, как выбрать автоматический выключатель.
При выборе автоматов постоянно допускается одна и та же ошибка — не учитывается температура окружающей среды.Номинальный ток автомата назначается по ПУЭ при температуре в + 30 градусов Цельсия,а номинальный ток кабеля или провода назначается по ПУЭ при температуре в + 25 ,а эксплуатироваться автомат и кабель будут при комнатной температуре,допустим в + 18 градусов Цельсия.Если номинальный ток двухжильного или трехжильного, с защитным проводником, кабель — провода сечением 2.5 миллиметра квадратного по меди в однофазной сети равно 25 ампер ( 27 ампер это для кабелей с дополнительной изоляцией в виде ПЭТ ленты или композитного стекломиканита или стеклоленты,заполнением пространства под общей оболочкой мелованной резиной и т. д.),то при + 18 градусов Цельсия это уже номинальный ток в 27 ампер,а номинальный ток автомата на 16 ампер уже фактически равен 18.3 ампера,если учесть что при токах в 1.13 номинального тока автомат не отключается гарантированного в течении более одного часа,то реальный предельный рабочий ток провода уже 20.7 амер,то есть автомат на 16 ампер превращается уже в автомат на 20 ампер,при этом ,согласно DIN стандарту на модульные автоматы ,изготовленные по этому стандарту,номинальный ток кабеля или провода должен быть в полтора раза больше номинального тока автомата или 20. 2.
Электромонтажные работы проводимые нами всегда качественные и доступные.
Мы сможем помочь в расчете мощности автоматов (автоматических выключателей) и в их монтаже.
Как выбрать автомат?
Что нужно учитывать?
- первое, при выборе автомата его мощность,
определяется суммарная мощность подключаемых на постоянной основе к защищаемой автоматом проводке/сети нагрузок. Полученная суммарная мощность увеличивается на коэффициент потребления, определяющий возможное временное превышение потребляемой мощности за счет подключения других, первоначально неучтенных электроприборов.
Пример того как можно просчитать нагрузку в кухни
- электрочайник (1,5кВт),
- микроволновки (1кВт),
- холодильника (500 Ватт),
- вытяжки (100 ватт).
Суммарная потребляемая мощность составит 3,1 кВт. Для защиты такой цепи можно применить автомат 16А с номинальной мощностью 3,5кВт. Теперь представим, что на кухню поставили кофе машину (1,5 кВт) и подключили к этой же электропроводке.
Суммарная мощность снимаемая с проводки при подключении всех указанных электроприборов в этом случае составит 4,6кВт, что больше мощности 16 Амперного авто выключателя, который, при включении всех приборов просто отключится по превышению мощности и оставит все приборы без электропитания, Включая холодильник.
Выбор автоматов по мощности и подключению
Вид подключения | Однофазное | Однофазн. вводный | Трехфзн. треуг-ом | Трехфазн. звездой | |
Полюсность автомата | Однополюсный автомат | Двухполюсный автомат | Трехполюсный автомат | Четырех-сный автомат | |
Напряжение питания | 220 Вольт | 220 Вольт | 380 Вольт | 220 Вольт | |
V | V | V | V | ||
Автомат 1А | 0.2 кВт | 0.2 кВт | 1.1 кВт | 0.7 кВт | |
Автомат 2А | 0.4 кВт | 0.4 кВт | 2.3 кВт | 1.3 кВт | |
Автомат 3А | 0.7 кВт | 0.7 кВт | 3.4 кВт | 2.0 кВт | |
Автомат 6А | 1.3 кВт | 1.3 кВт | 6.8 кВт | 4.0 кВт | |
Автомат 10А | 2.2 кВт | 2.2 кВт | 11.4 кВт | 6.6 кВт | |
Автомат 16А | 3.5 кВт | 3.5 кВт | 18.2 кВт | 10.6 кВт | |
Автомат 20А | 4.4 кВт | 4.4 кВт | 22.8 кВт | 13.2 кВт | |
Автомат 25А | 5.5 кВт | 5.5 кВт | 28.5 кВт | 16.5 кВт | |
Автомат 32А | 7.0 кВт | 7.0 кВт | 36.5 кВт | 21.1 кВт | |
Автомат 40А | 8.8 кВт | 8.8 кВт | 45.6 кВт | 26.4 кВт | |
Автомат 50А | 11 кВт | 11 кВт | 57 кВт | 33 кВт | |
Автомат 63А | 13.9 кВт | 13.9 кВт | 71.8 кВт | 41.6 кВт |
Лучше обратится к специалистам чем допустить ошибку
На все виды услуг мы предоставляем гарантию.
Вызов электрика в городе Черкассы, все виды электромонтажа.
тел. (067)473-66-78
тел. (093)251-57-61
тел. (0472)50-19-75
Станьте нашим клиентом и вы убедитесь в качестве наших услуг.
Для расчета мощности номинала трехфазного автомата необходимо суммировать всю мощность электроприборов, которые будут подключены через него. Например, нагрузка по фазам одинакова:
L1 5000 W + L2 5000 kW + L3 5000W = 15000 W
Полученные ваты переводим в киловатты:
15000 W / 1000 = 15 kW
Полученное число умножаем на 1,52 и получаем рабочий ток А.
15 kW * 1,52 = 22,8 А.
Номинальный ток автомата должен быть больше рабочего. В нашем случае рабочий ток 22,8 А, поэтому мы выбираем автомат 25 А.
Номинал автоматов по току: 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100.
Уточняем сечение жил кабеля на соответствие нагрузке здесь.
Данная формула справедлива при одинаковой нагрузке по трем фазам. Если потребление по одной из фаз значительно больше, то номинал автомата подбирается по мощности этой фазы:
Например, нагрузка по фазам: L1 5000 W; L2 4000 W; L3 6000 W.
Ваты переводим в киловатты для чего 6000 W / 1000 = 6 kW.
Теперь определяем рабочий ток по этой фазе 6 kW * 4,55 = 27,3 А.
Номинальный ток автомата должен быть больше рабочего в нашем случае рабочий ток 27,3 А мы выбираем автомат 32 А.
В приведенных формулах 1,52 и 4,55 – коэффициенты пропорциональности для напряжений 380 и 220 В.
Материалы, близкие по теме:
Расчет мощности трехфазного автомата
Для расчета мощности номинала трехфазного автомата необходимо суммировать всю мощность электроприборов, которые будут подключены через него. Например, нагрузка по фазам одинакова:
L1 5000 W + L2 5000 kW + L3 5000W = 15000 W
Полученные ваты переводим в киловатты:
15000 W / 1000 = 15 kW
Полученное число умножаем на 1,52 и получаем рабочий ток А.
15 kW * 1,52 = 22,8 А.
Номинальный ток автомата должен быть больше рабочего. В нашем случае рабочий ток 22,8 А, поэтому мы выбираем автомат 25 А.
Номинал автоматов по току: 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100.
Уточняем сечение жил кабеля на соответствие нагрузке здесь.
Данная формула справедлива при одинаковой нагрузке по трем фазам. Если потребление по одной из фаз значительно больше, то номинал автомата подбирается по мощности этой фазы:
Например, нагрузка по фазам: L1 5000 W; L2 4000 W; L3 6000 W.
Ваты переводим в киловатты для чего 6000 W / 1000 = 6 kW.
Теперь определяем рабочий ток по этой фазе 6 kW * 4,55 = 27,3 А.
Номинальный ток автомата должен быть больше рабочего в нашем случае рабочий ток 27,3 А мы выбираем автомат 32 А.
В приведенных формулах 1,52 и 4,55 – коэффициенты пропорциональности для напряжений 380 и 220 В.
Материалы, близкие по теме:
Калькулятор перевода силы тока в мощность
Мощность в электрической цепи представляет собой энергию, потребляемую нагрузкой от источника в единицу времени, показывая скорость ее потребления. Единица измерения Ватт [Вт или W]. Сила тока отображает количество энергии прошедшей за величину времени, то есть указывает на скорость прохождения. Измеряется в амперах [А или Am]. А напряжение протекания электрического тока (разность потенциалов между двумя точками) измеряется в вольтах. Сила тока прямо пропорциональна напряжению.
Чтобы самостоятельно рассчитать соотношение Ампер / Ватт или Вт / А, нужно использовать всем известный закон Ома. Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Определяется одним из трех равенств: P = I * U = R * I² = U²/R.
Следовательно, чтобы определить мощность источника потребления энергии, когда известна сила тока в сети, нужно воспользоваться формулой: Вт (ватты) = А (амперы) x I (вольты). А чтобы произвести обратное преобразование, надо перевести мощность в ваттах на силу потребления тока в амперах: Ватт / Вольт. Когда же имеем дело с 3-х фазной сетью, то придется еще и учесть коэффициент 1,73 для силы тока в каждой фазе.
Сколько Ватт в 1 Ампере и ампер в вате?
Чтобы перевести Ватты в Амперы при переменном или постоянном напряжении понадобится формула:
I = P / U, где
I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтахесли сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз.
Корень из трех приблизительно равен 1,73.
То есть, в одном ватте 4,5 мАм (1А = 1000мАм) при напряжении в 220 вольт и 0,083 Am при 12 вольтах.Когда же необходимо перевести ток в мощность (узнать, сколько в 1 ампере ватт), то применяют формулу:
P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.
А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт). В промышленном оборудовании, питающемся от 380 Вольт, целых 657 Ватт.
Таблица перевода Ампер – Ватт:
6 | 12 | 24 | 220 | 380 | Вольт | |
5 Ватт | 0,83 | 0,42 | 0,21 | 0,02 | 0,008 | Ампер |
6 Ватт | 1,00 | 0,5 | 0,25 | 0,03 | 0,009 | Ампер |
7 Ватт | 1,17 | 0,58 | 0,29 | 0,03 | 0,01 | Ампер |
8 Ватт | 1,33 | 0,67 | 0,33 | 0,04 | 0,01 | Ампер |
9 Ватт | 1,5 | 0,75 | 0,38 | 0,04 | 0,01 | Ампер |
10 Ватт | 1,67 | 0,83 | 0,42 | 0,05 | 0,015 | Ампер |
20 Ватт | 3,33 | 1,67 | 0,83 | 0,09 | 0,03 | Ампер |
30 Ватт | 5,00 | 2,5 | 1,25 | 0,14 | 0,045 | Ампер |
40 Ватт | 6,67 | 3,33 | 1,67 | 0,13 | 0,06 | Ампер |
50 Ватт | 8,33 | 4,17 | 2,03 | 0,23 | 0,076 | Ампер |
60 Ватт | 10,00 | 5,00 | 2,50 | 0,27 | 0,09 | Ампер |
70 Ватт | 11,67 | 5,83 | 2,92 | 0,32 | 0,1 | Ампер |
80 Ватт | 13,33 | 6,67 | 3,33 | 0,36 | 0,12 | Ампер |
90 Ватт | 15,00 | 7,50 | 3,75 | 0,41 | 0,14 | Ампер |
100 Ватт | 16,67 | 8,33 | 4,17 | 0,45 | 0,15 | Ампер |
200 Ватт | 33,33 | 16,67 | 8,33 | 0,91 | 0,3 | Ампер |
300 Ватт | 50,00 | 25,00 | 12,50 | 1,36 | 0,46 | Ампер |
400 Ватт | 66,67 | 33,33 | 16,7 | 1,82 | 0,6 | Ампер |
500 Ватт | 83,33 | 41,67 | 20,83 | 2,27 | 0,76 | Ампер |
600 Ватт | 100,00 | 50,00 | 25,00 | 2,73 | 0,91 | Ампер |
700 Ватт | 116,67 | 58,33 | 29,17 | 3,18 | 1,06 | Ампер |
800 Ватт | 133,33 | 66,67 | 33,33 | 3,64 | 1,22 | Ампер |
900 Ватт | 150,00 | 75,00 | 37,50 | 4,09 | 1,37 | Ампер |
1000 Ватт | 166,67 | 83,33 | 41,67 | 4,55 | 1,52 | Ампер |
Зачем нужен калькулятор
Онлайн калькулятор позволит быстро перевести ток в мощность. Он позволяет пересчитать потребляемую силу тока 1 Ампер в Ватт мощности, какого-либо потребителя при напряжении 12 либо 220 и 380 Вольт.
Такой перевод мощности используют как при подборе генератора для потребителей тока в бортсети автомобиля 12 Вольт с постоянным током, так и в бытовой электронике, при прокладывании проводки.
Поэтому калькулятор перевода мощности в амперы или силу тока в ватты потребуется абсолютно всем электрикам или тем, кто занимается ею и хочет быстро перевести эти единицы. Но все же калькулятор главным образом предназначен для автовладельцев. С его помощью можно посчитать каждый электрокомпонент в автомобиле и использовать полученную сумму, чтобы понять, сколько электричества должен вырабатывать генератор или какой емкостью поставить аккумулятор.
Как пользоваться
Чтоб воспользоваться быстрым переводом и пересчитать Ампер в мощность Ватт необходимо будет:
- Ввести значение напряжения, которое питает источник.
- В одной ячейке указать значение потребляемого тока (в списке можно выбрать Ампер либо мАм).
- В другом поле сразу появится результат пересчета “ток в мощность” (по умолчанию отображается в Ватт, но есть возможность установить и кВт, тогда значение автоматически пересчитается в киловатты мощности).
Преобразование можно сделать как с амперов в ватты, так и на оборот с W в A, достаточно просто сразу ввести мощность потребителя, и тогда в другой ячейке отобразится сила потребляемого тока в сети с конкретно указанным напряжением.
Часто задаваемые вопросы
Сколько Ватт в Ампере?
Если речь об автомобильной сети, то в одном ампере 12 Ватт при напряжении 12В. В бытовой электросети 220 Вольт, сила тока в 1 ампер будет равна мощности потребителя на 220 Ватт, но если речь идет о промышленной сети 380 Вольт, то 657 Ватт в ампере.
12 ампер сколько ватт?
Сколько ватт мощности при 12 амперах потребления тока будет зависеть от того в сети с каким напряжением работает сам потребитель. Так 12А это может быть: 144 Ватт в автомобильной сети 12V; 2640 Ватт в сети 220V; 7889 Ватт в электросети 380 Вольт.
220 ватт сколько ампер?
Сила тока потребителя мощностью 220 Ватт будет отличаться зависимо от сети, в которой он работает. Это может быть: 18A при напряжении 12 Вольт, 1A если напряжение 220 Вольт либо 6A, когда потребление тока происходит в сети 380 Вольт.
5 ампер сколько ватт?
Чтобы узнать сколько Ватт потребляет источник на 5 ампер достаточно воспользоваться формулой P = I * U. То есть если потребитель включен в автомобильную сеть где всего 12 Вольт, то 5А будет 60W. При потреблении 5 ампер в сети 220V означает что мощность потребителя составляет 1100W. Когда потребление пяти ампер происходит в двухфазной сети 380V, то мощность источника составляет 3290 Ватт.
Калькулятор перевода силы тока в мощность (амперы в киловатты)
Мощность — энергия, потребляемая нагрузкой от источника в единицу времени (скорость потребления, измеряется в Ватт). Сила тока — количество энергии, прошедшей за величину времени (скорость прохождения, измеряется в амперах).
Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения.
Чтобы перевести Ватты в Амперы, понадобится формула: I = P / U, где I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтах.
Если сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз. Корень из трех приблизительно равен 1,73. Чтобы перевести ток в мощность (узнать, сколько в 1 ампере ватт), надо применить формулу:
P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.
Таблица перевода Ампер – Ватт:
220 В | 380 В |
| |
100 Ватт | 0,45 | 0,15 | Ампер |
200 Ватт | 0,91 | 0,3 | Ампер |
300 Ватт | 1,36 | 0,46 | Ампер |
400 Ватт | 1,82 | 0,6 | Ампер |
500 Ватт | 2,27 | 0,76 | Ампер |
600 Ватт | 2,73 | 0,91 | Ампер |
700 Ватт | 3,18 | 1,06 | Ампер |
800 Ватт | 3,64 | 1,22 | Ампер |
900 Ватт | 4,09 | 1,37 | Ампер |
1000 Ватт | 4,55 | 1,52 | Ампер |
Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Для удобства расчетов принимаем cosФ за единицу. Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.
Сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Если полная мощность двигателя 5,5 киловатт, то потребляемая активная мощность 5,5*0,87= 4,7 киловатта. Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.
Расчёт сечения кабеля провода по мощности току 220
Ток Амп | 220 Вольт | 380 Вольт | Сечение mm2 |
1 А | 0,22 кВт | 0,66 кВт | 0.5 mm2 |
2 А | 0,44 кВт | 1,3 кВт | 0.5 mm2 |
3 А | 0,66 кВт | 1,97 кВт | 0.75 mm2 |
4 А | 0,88 кВт | 2,63 кВт | 0.75 mm2 |
5 А | 1,1 кВт | 3,3 кВт | 1.0 mm2 |
6 А | 1,32 кВт | 3,9 кВт | 1.0 mm2 |
10 А | 2,2 кВт | 6,6 кВт | 1.5 mm2 |
16 А | 3,52 кВт | 10,5 кВт | 1.5 mm2 |
25 А | 5,5 кВт | 16,45 кВт | 2.5 mm2 |
35 А | 7,7 кВт | 23,03 кВт | 4.0 mm2 |
42 А | 9,2 кВт | 27,6 кВт | 6.0 mm2 |
55 А | 12.1 кВт | 36.19 кВт | 10 mm2 |
75 А | 16,5 кВт | 49,36 кВт | 16 mm2 |
95 А | 20,9 кВт | 62.52 кВт | 25 mm2 |
120 А | 26.4 кВт | 78.98 кВт | 35 mm2 |
145 А | 31,9 кВт | 95,43 кВт | 50 mm2 |
180 А | 39,6 кВт | 118,4 кВт | 70 mm2 |
220 А | 48,4 кВт | 144.7 кВт | 95 mm2 |
260 А | 57,2 кВт | 171.1 кВт | 120 mm2 |
305 А | 67.1 кВт | 200,7 кВт | 150 mm2 |
350 А | 77 кВт | 230.3 кВт | 185 mm2 |
***
Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность в однофазной сети можно вычислить по формуле: P = I * U.
Например рассчитать мощность: ток I — 16 Амп умножаем на напряжение U — 220 Вольт и получаем мощность P — 3.520 ватт или 3.52 кВт.
Например рассчитать силу тока по формуле I = P / U: Мощность P — 8800 Ватт или 8.8 кВт делим на напряжение U — 220 Вольт и получаем силу тока I — 40 Амп.
Значит в квартире в однофазной сети с напряжением 220 Вольт и сечением кабеля 6 mm2, на 40 Амперный автомат можно подключить электрооборудования не более 8.8 кВт.
Mощность в трехфазной сети можно вычислить по формуле: P = 1.732 * U * I
Например рассчитать мощность: Корень из 3 или 1.732 умножаем на напряжение U — 380 Вольт и умножаем на ток I — 25 Амп получаем мощность P — 16.45 кВт или 16450 ватт.
Например рассчитать силу тока в трёхфазной сети по формуле I = P / (1.732 * U): Мощность p — 16 кВт или 16000 ват делим на значение в скобках (Корень из 3 или 1.732 умножить на U — 380 Вольт)
Ток I = Мощность P — 16000 делим на U — 658.1793 и получаем силу тока I — 24.3 Амп.
***
1. Эл. щит в магазине
В результате проверки было выявлено следующее (небольшой перекос по фазам A B C).
На фотографии выше, показано стрелками, подключение кабеля Головной станции к автомату 32 амп., и произведены замеры тока по фазам, которые составляют — фаза А — 17.3 амп., фаза В — 9.1 амп., фаза С — 19.4 амп. (Показания Соответствуют Рабочим Параметрам)
На фотографии ниже , стрелками показано подключение к автомату 50 амп. в ВРУ дома (вводное распределительное устройство дома), и сделаны замеры тока полной нагрузки по фазам. Они составляют фаза А -17 амп. фаза В — 11 амп. фаза С -26 амп. (Показания Соответствуют Рабочим Параметрам )
Данные показания соответствуют рабочим параметрам и не считаются аварийными. Сечение кабеля в эл. щите соответствует заявленным параметрам нагрузки.
На фотографии выше также указана аварийная фаза с обгоревшей изоляцией. Это могло произойти от послабления в местах соединения, плохого контакта, замыкания, повышенной нагрузки. На данный момент нагрузка соответствует нормам.
Также на фотографии сверху показано где можно дополнительно снять нагрузку.
Пояснение: Нет смысла снимать нагрузку в полтора киловатта с фазы С, которая питает некоторые комнаты магазина. А вот если добавить на Головной станции дополнительный кондиционер двух киловаттный, на фазу В, то нагрузка по фазам примерно станет равномерная, по 20 — 25 АМП. на одну фазу. И в обязательном порядке провести ППР(Планово-предупредительный ремонт) электрооборудования. Протяжку болтовых соединений. осмотр автоматических пускателей, контактов.
***
2. ВРУ в доме
Выбор автомата по мощности нагрузки и сечению провода
Содержание статьи
Выбор автомата по мощности нагрузки
Для выбора автомата по мощности нагрузки необходимо рассчитать ток нагрузки, и подобрать номинал автоматического выключателя больше или равному полученному значению. Значение тока, выраженное в амперах в однофазной сети 220 В., обычно превышает значение мощности нагрузки, выраженное в киловаттах в 5 раз, т.е. если мощность электроприемника (стиральной машины, лампочки, холодильника) равна 1,2 кВт., то ток, который будет протекать в проводе или кабеле равен 6,0 А(1,2 кВт*5=6,0 А). В расчете на 380 В., в трехфазных сетях, все аналогично, только величина тока превышает мощность нагрузки в 2 раза.
Можно посчитать точнее и посчитать ток по закону ома I=P/U — I=1200 Вт/220В =5,45А. Для трех фаз напряжение будет 380В.
Можно посчитать еще точнее и учесть cos φ — I=P/U*cos φ.
Коэффициент мощности
это безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Численно коэффициент мощности равен косинусу этого фазового сдвига или cos φ
Косинус фи возьмем из таблицы 6.12 нормативного документа СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
Таблица 1. Значение Cos φ в зависимости от типа электроприемника
Тип электроприемника | cos φ |
Холодильное оборудование предприятий торговли и общественного питания, насосов, вентиляторов и кондиционеров воздуха при мощности электродвигателей, кВт: | |
до 1 | 0,65 |
от 1 до 4 | 0,75 |
свыше 4 | 0,85 |
Лифты и другое подъемное оборудование | 0,65 |
Вычислительные машины (без технологического кондиционирования воздуха) | 0,65 |
Коэффициенты мощности для расчета сетей освещения следует принимать с лампами: | |
люминесцентными | 0,92 |
накаливания | 1,0 |
ДРЛ и ДРИ с компенсированными ПРА | 0,85 |
то же, с некомпенсированными ПРА | 0,3-0,5 |
газосветных рекламных установок | 0,35-0,4 |
Примем наш электроприемник мощностью 1,2 кВт. как бытовой однофазный холодильник на 220В, cos φ примем из таблицы 0,75 как двигатель от 1 до 4 кВт.
Рассчитаем ток I=1200 Вт / 220В * 0,75 = 4,09 А.
Теперь самый правильный способ определения тока электроприемника — взять величину тока с шильдика, паспорта или инструкции по эксплуатации. Шильдик с характеристиками есть почти на всех электроприборах.
Автоматические выключатели EKFОбщий ток в линии(к примеру розеточной сети) определяется суммированием тока всех электроприемников. По рассчитанному току выбираем ближайший номинал автоматического автомата в большую сторону. В нашем примере для тока 4,09А это будет автомат на 6А.
ВАЖНО!
Очень важно отметить, что выбирать автоматический выключатель только по мощности нагрузки является грубым нарушением требований пожарной безопасности и может привести к возгоранию изоляции кабеля или провода и как следствие к возникновению пожара. Необходимо при выборе учитывать еще и сечение провода или кабеля.
По мощности нагрузки более правильно выбирать сечение проводника. Требования по выбору изложены в основном нормативном документе для электриков под названием ПУЭ (Правила Устройства Электроустановок), а точнее в главе 1.3. В нашем случае, для домашней электросети, достаточно рассчитать ток нагрузки, как указано выше, и в таблице ниже выбрать сечение проводника, при условии что полученное значение ниже длительно допустимого тока соответствующего его сечению.
Выбор автомата по сечению кабеля
Рассмотрим проблему выбора автоматических выключателей для домашней электропроводки более подробно с учетом требований пожарной безопасности.Необходимые требования изложены главе 3.1 «Защита электрических сетей до 1 кВ.», так как напряжение сети в частных домах, квартирах, дачах равно 220 или 380В.
Расчет сечения жил кабеля и провода
Напряжение 220В.
– однофазная сеть используется в основном для розеток и освещения.
380В. – это в основном сети распределительные – линии электропередач проходящие по улицам, от которых ответвлением подключаются дома.
Согласно требованиям вышеуказанной главы, внутренние сети жилых и общественных зданий должны быть защищены от токов КЗ и перегрузки. Для выполнения этих требований и были изобретены аппараты защиты под названием автоматические выключатели(автоматы).
Автоматический выключатель «автомат»
это механический коммутационный аппарат, способный включать, проводить токи при нормальном состоянии цепи, а также включать, проводить в течение заданного времени и автоматически отключать токи в указанном аномальном состоянии цепи, таких, как токи короткого замыкания и перегрузки.
Короткое замыкание (КЗ)
э- лектрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также, коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.
Ток перегрузки
– превышающий нормированное значение длительно допустимого тока и вызывающий перегрев проводника.Защита от токов КЗ и перегрева необходима для пожарной безопасности, для предотвращения возгорания проводов и кабелей, и как следствие пожара в доме.
Кабели ВВГнг с медными жилами
Длительно допустимый ток кабеля или провода
– величина тока, постоянно протекающего по проводнику, и не вызывающего чрезмерного нагрева.
Величина длительно допустимого тока для проводников разного сечения и материала представлена ниже.Таблица представляет собой совмещенный и упрощенный вариант применимый для бытовых сетей электроснабжения, таблиц № 1.3.6 и 1.3.7 ПУЭ.
Сечение токо- проводящей жилы, мм | Длительно допустимый ток, А, для проводов и кабелей с медными жилами. | Длительно допустимый ток, А, для проводов и кабелей с алюминиевыми жилами. |
1,5 | 19 | — |
2,5 | 25 | 19 |
4 | 35 | 27 |
6 | 42 | 32 |
10 | 55 | 42 |
16 | 75 | 60 |
25 | 95 | 75 |
35 | 120 | 90 |
50 | 145 | 110 |
Выбор автомата по току короткого замыкания КЗ
Выбор автоматического выключателя для защиты от КЗ (короткого замыкания) осуществляется на основании расчетного значения тока КЗ в конце линии. Расчет относительно сложен, величина зависит от мощности трансформаторной подстанции, сечении проводника и длинны проводника и т.п.
Из опыта проведения расчетов и проектирования электрических сетей, наиболее влияющим параметром является длинна линии, в нашем случае длинна кабеля от щитка до розетки или люстры.
Т.к. в квартирах и частных домах эта длинна минимальна, то такими расчетами обычно пренебрегают и выбирают автоматические выключатели с характеристикой «C», можно конечно использовать «В», но только для освещения внутри квартиры или дома, т.к. такие маломощные светильники не вызывают высокого значения пускового тока, а уже в сети для кухонной техники имеющей электродвигатели, использование автоматов с характеристикой В не рекомендуется, т.к. возможно срабатывание автомата при включении холодильника или блендера из-за скача пускового тока.
Выбор автомата по длительно допустимому току(ДДТ) проводника
Выбор автоматического выключателя для защиты от перегрузки или от перегрева проводника осуществляется на основании величины ДДТ для защищаемого участка провода или кабеля. Номинал автомата должен быть меньше или равен величине ДДТ проводника, указанного в таблице выше. Этим обеспечивается автоматическое отключение автомата при превышении ДДТ в сети, т.е. часть проводки от автомата до последнего электроприемника защищена от перегрева, и как следствие от возникновения пожара.
Провода ПУГНП и ШВВППример выбора автоматического выключателя
Имеем группу от щитка к которой планируется подключить посудомоечную машину -1,6 кВт, кофеварку – 0,6 кВт и электрочайник – 2,0 кВт.
Считаем общую нагрузку и вычисляем ток.
Нагрузка = 0,6+1,6+2,0=4,2 кВт. Ток = 4,2*5=21А.
Смотрим таблицу выше, под рассчитанный нами ток подходят все сечения проводников кроме 1,5мм2 для меди и 1,5 и 2,5 по алюминию.
Выбираем медный кабель с жилами сечением 2,5мм2, т.к. покупать кабель большего сечения по меди не имеет смысла, а алюминиевые проводники не рекомендуются к применению, а может и уже запрещены.
Смотрим шкалу номиналов выпускаемых автоматов — 0.5; 1.6; 2.5; 1; 2; 3; 4; 5; 6; 8; 10; 13; 16; 20; 25; 32; 40; 50; 63.
Автоматический выключатель для нашей сети подойдет на 25А, так как на 16А не подходит потому что рассчитанный ток (21А.) превышает номинал автомата 16А, что вызовет его срабатывание, при включении всех трех электроприемников сразу. Автомат на 32А не подойдет потому что превышает ДДТ выбранного нами кабеля 25А., что может вызвать, перегрев проводника и как следствие пожар.
Сводная таблица для выбора автоматического выключателя для однофазной сети 220 В.
Номинальный ток автоматического выключателя, А. | Мощность, кВт. | Ток,1 фаза, 220В. | Сечение жил кабеля, мм2. |
16 | 0-2,8 | 0-15,0 | 1,5 |
25 | 2,9-4,5 | 15,5-24,1 | 2,5 |
32 | 4,6-5,8 | 24,6-31,0 | 4 |
40 | 5,9-7,3 | 31,6-39,0 | 6 |
50 | 7,4-9,1 | 39,6-48,7 | 10 |
63 | 9,2-11,4 | 49,2-61,0 | 16 |
80 | 11,5-14,6 | 61,5-78,1 | 25 |
100 | 14,7-18,0 | 78,6-96,3 | 35 |
125 | 18,1-22,5 | 96,8-120,3 | 50 |
160 | 22,6-28,5 | 120,9-152,4 | 70 |
200 | 28,6-35,1 | 152,9-187,7 | 95 |
250 | 36,1-45,1 | 193,0-241,2 | 120 |
315 | 46,1-55,1 | 246,5-294,7 | 185 |
Сводная таблица для выбора автоматического выключателя для трехфазной сети 380 В.
Номинальный ток автоматического выключателя, А. | Мощность, кВт. | Ток, 1 фаза 220В. | Сечение жил кабеля, мм2. |
16 | 0-7,9 | 0-15 | 1,5 |
25 | 8,3-12,7 | 15,8-24,1 | 2,5 |
32 | 13,1-16,3 | 24,9-31,0 | 4 |
40 | 16,7-20,3 | 31,8-38,6 | 6 |
50 | 20,7-25,5 | 39,4-48,5 | 10 |
63 | 25,9-32,3 | 49,2-61,4 | 16 |
80 | 32,7-40,3 | 62,2-76,6 | 25 |
100 | 40,7-50,3 | 77,4-95,6 | 35 |
125 | 50,7-64,7 | 96,4-123,0 | 50 |
160 | 65,1-81,1 | 123,8-124,2 | 70 |
200 | 81,5-102,7 | 155,0-195,3 | 95 |
250 | 103,1-127,9 | 196,0-243,2 | 120 |
315 | 128,3-163,1 | 244,0-310,1 | 185 |
400 | 163,5-207,1 | 310,9-393,8 | 2х95* |
500 | 207,5-259,1 | 394,5-492,7 | 2х120* |
630 | 260,1-327,1 | 494,6-622,0 | 2х185* |
800 | 328,1-416,1 | 623,9-791,2 | 3х150* |
* — сдвоенный кабель, два кабеля соединенных паралельно, к примеру 2 кабеля ВВГнг 5х120
Итоги
При выборе автомата необходимо учитывать не только мощность нагрузки, но и сечение и материал проводника.
Для сетей с небольшими защищаемыми участками от токов КЗ, можно применять автоматические выключатели с характеристикой «С»
Номинал автомата должен быть меньше или равен длительно допустимому току проводника.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Понравилась статья?
Поделиться с друзьями:
Подпишитесь на новые
Автомат c40 — характеристики, маркировка, применение, бренд, цена
Автоматический выключатель — автомат c40 служит для защиты электрической линии от короткого замыкания и токов перегрузки. Вдобавок ко всему прочему, он является коммутационным аппаратом, то-есть им можно включать и отключать нагрузку
Как правило, цена на автомат c20 складывается из его характеристик, количества полюсов и “раскручености” бренда. Как можно увидеть, перейдя по ссылке, цены на автоматы C20 одного бренда и с одинаковым количеством полюсов различаются, в зависимости от коммутационной отключающей способности автомата.
Модульный автомат C40
В этой статье рассматривается модульный автомат C40. Модульным автомат называется из-за того, что каждый его полюс — это отдельный стандартный модуль. По существу, изготовление многополюсных автоматов осуществляется соединением нескольких однополюсных модулей друг с другом. Таким образом, модульный автомат отличаются от других видов автоматов методом изготовления корпуса и его сборкой. Например, автомат в литом корпусе представляет собой цельный монолитный прибор. Его нельзя разобрать на отдельные полюса. Соответственно, из нескольких однополюсных автоматов нельзя собрать автомат многополюсный.
Как правило, ширина модуля обычно 18 мм. Впрочем, у некоторых компаний производителей ширина модуля автомата может различаться. Например, у ABB ширина модуля автомата 17,5мм. А вот у Siemens модуль автомата 17,6мм.
В некоторых сериях специализированные модульные однополюсные автоматы могут быть нестандартной ширины. Однако, они все равно измеряются в стандартных модулях компании производителя. К примеру, автомат может быть шириной 0,5 модуля или 1,5 модуля.
Как обычно, с задней стороны модульного автоматического выключателя расположена защёлка. Защелка позволяет крепить автоматы на DIN рейки, расположенные в электрощите.
В принципе, серии модульных автоматических выключателей выпускают на номинальный ток до 125 ампер. В свою очередь, бытовые серии автоматов изготавливаются на ток до 63 ампер.
Общие характеристики автоматического выключателя c40, их маркировка
При любом количестве полюсов автомат c40 имеет следующие общие характеристики: номинальный ток, коммутационная способность, класс токоограничения. Кроме того, значение этих характеристик промаркированы на автоматическом выключателе.
Номинальный ток автомата c40
Номинальный ток In автомата c40 равен 40 амперам. То есть, автомат может длительное время не отключаясь пропускать через себя ток силой 40 ампер, или меньше, при средней температуре 30°C. Однако, стоит учитывать температурные изменения. С одной стороны, при снижении температуры номинальный ток будет увеличиваться. С другой стороны, в случае увеличения температуры номинальный ток будет снижаться.
Коммутационная или отключающая способность автомата c40
Коммутационная или номинальная отключающая способность Icn — это возможность автомата отключатся при токе короткого замыкания (КЗ) определенной силы. Естественно, автоматический выключатель должен при отключении остаться работоспособным. Как правило, маркировка силы тока указана в прямоугольной рамке на корпусе автомата. Бытовые модульные автоматы обычно имеют коммутационную способность 4500A (4,5 kA), 6000A (6 kA). На некоторых сериях может указываться без рамки.
На промышленных сериях автоматов может быть обозначена также Icu (capacity ultimate) — предельная способность. Грубо говоря, предельная отключающая способность — это сила тока КЗ при которой автомат должен отключиться дважды и не выйти из строя. И кроме того, может быть нанесена маркировка Ics (capacity service) — рабочая (отключающая) способность — сила тока КЗ при которой автомат должен отключиться трижды и остаться работоспособным. Иногда Ics показана в процентном соотношении от Icu.
Кстати, коммутационная способность зависит от напряжения сети, в которой применяется автомат. При меньшем напряжении коммутационная способность автомата C40 будет выше. Соответственно, при большем напряжении, у того же автомата, способность будет меньше. Чем коммутационная способность больше, тем автомат качественней и дороже.
Класс токоограничения автомата c40
По определению, во время короткого замыкания автомат отключается, разрывая контакты. Натурально, ток короткого замыкания может достигать несколько тысяч ампер. Понятное дело, между контактами образуется электрическая дуга. Помимо всего прочего, дуга имеет высокую температуру. Следовательно, данное обстоятельство может привести к выходу автомата из строя. Значит, дуга должна быть как можно быстрее погашена. Гасится она с помощью дугогасительной камеры.
Класс токоограничения автоматического выключателя показывает, за какое время происходит гашение дуги. Соответственно, существует три класса токоограничения автоматических выключателей. Третий класс токоограничения означает, что дуга гасится за 3-6 миллисекунд (0,003-0,006 секунды). В свою очередь, при втором классе гашение дуги происходит за 10 миллисекунд (0,01 секунды). На первый класс ограничение не установлены и гашение происходит более, чем 10 миллисекунд.
Маркировка класса токоограничения нанесена на автомат в виде квадратной рамки с цифрами 3 или 2. По обыкновению, она расположена под прямоугольной рамкой коммутационной способности или рядом с ней. В частности, если маркировки нет, то это автомат с первым классом токоограничения.
Времятоковые характеристики электромагнитного и теплового расцепителей автомата C40
Каждый автомат имеет два расцепителя — тепловой (биметаллическая пластина) и электромагнитный (реле максимального тока). По сути, при помощи этих расцепителей происходит автоматическое отключение. По замыслу, тепловой расцепитель отключает автомат при длительном превышении мощности на участке сети, защищенного этим автоматом. С другой стороны, электромагнитный расцепитель отключает автомат при коротком замыкании. Однако, может быть и наоборот. Такое может произойти при установке автомата, с неверно подобранными характеристиками. Параметры силы тока, при котором происходит отключение, и времени, за которое отключение происходит, называются времятоковыми характеристиками автомата.
Времятоковые характеристики электромагнитного и теплового расцепителей автомата C40 промаркированы на автомате в виде буквы C. Соответственно, эта буква изображена перед числом, обозначающим номинальный ток. Например, в данном случае перед числом 40.
Времятоковые характеристики теплового расцепителя для автомата c40
Несомненно, чем больше мощность нагрузки подключеной к автомату, тем больше сила тока проходящая через автомат. Соответственно, слишком большая сила тока способна повредить кабель, идущий от автомата к электроприбору. Значит, задача автомата отключить ток до того, как его сила достигнет величин, способных повредить кабель.
Времятоковые характеристики теплового расцепителя для автомата c40 составляют интервал от 1,13 In до 1,45 In. Строго говоря, при прохождении через тепловой расцепитель автомата C40 тока, равному 1,13 от номинального, он выключится за время, равное или более часа. Во время прохождения тока 1,45 от номинального выключится менее, чем за час.
Так или иначе, автомат c40 выключится тепловым расцепителем в течении часа или более при токе 45,2 Ампер (1,13 × 40A = 45,2A). И выключится за время менее часа при токе 58 Ампер (1,45 × 40A =58A).
При повышении силы тока более 58 Ампер время отключения автомата будет уменьшаться. Наконец, если сила тока достигнет значений достаточных для отключения электромагнитного расцепителя, то отключать автомат будет уже этот расцепитель.
Времятоковые характеристики электромагнитного расцепителя автомата C40
Автомат C40 будет отключаться электромагнитным расцепителем, когда сила тока, протекающая через автомат, станет в пять раз больше номинального тока автомата. Одновременно, время отключения составит более 0,1 секунды. При токе, превышающий номинальный в десять раз, автомат отключится за 0,1 секунды или менее.
При силе тока (40×5=200) 200 Ампер автомат c40 отключится за время более 0,1 секунды. Таким образом, когда сила тока достигнет (40×10=400) 400 Ампер — за 0,1 секунды или еще быстрее.
Сечение кабеля для автомата c40
Сечение кабеля для автомата c40 обусловлено времятоковыми характеристиками его теплового расцепителя. С одной стороны, через автомат c40 более, чем час времени может протекать ток 45,2 Ампер. Значит, сечение проводника, подключаемого после автомата, должно быть не менее 10 мм² меди. Кабель с медными жилами сечением 10 мм², в не лучших для себя условиях, может длительно выдерживать протекание тока силой около 55 Ампер. Понятное дело, что это зависит от количества жил, материала изоляции и условий прокладки кабеля.
С другой стороны, через автомат c40, примерно, в течении часа может протекать ток 58 Ампер. Бесспорно, что такой ток при неблагоприятных обстоятельствах уже может нагревать медный проводник сечением 10 мм². Очевидно, это не полезно для кабеля. Однако, кратковременно такой ток проводник выдержать сможет. Само собой разумеется, что такое повышение тока не должно быть частым явлением. Следовательно, не надо перегружать автомат и кабель подключением слишком большой нагрузки. Иначе, от постоянного перегрева кабель быстро выйдет из строя.
Несомненно, при применении алюминиевого проводника сечение жил должно быть увеличено. До и после автомата c40 сечение его должно составлять 16 мм². Но применять в быту кабели с алюминиевыми жилами не нужно. Алюминий обладает большой текучестью. Поэтому требует частого осмотра и обслуживания. Единственное исключение провод СИП от опоры до ввода в дом.
Другие характеристики для одно-1p(п) двух-2p(п) трех-3p(п) и четырехполюсного 4p(п) автомата c40
Некоторые характеристики автомата c40 изменяются в зависимости от количества фаз сети, в которой используется автомат. Точнее, изменяется номинальная напряжение и мощность подключаемой к автомату нагрузки.
Безусловно, для однофазной сети, где используются однополюсные или двухполюсные автоматы C40, характеристики будут иметь свои определенные значения. Для трехфазной сети, где используются трехполюсные или четырехполюсные автоматы C40, эти характеристики будут другими. Разумеется, изменяется также схема подключения автомата.
Итак, однополюсные и двухполюсные автоматы применяются в однофазной сети. Трехполюсные и четырехполюсные используются в трехфазной сети.
Бывает, что двухполюсные автоматы используются в двухфазной сети. Однако, в быту двухфазные сети обычно отсутствуют. Исключением могут быть признаны не заземленные выходы однофазного генератора и разделительного трансформатора.
Однополюсные и трехполюсные автоматы отключают фазные проводники, а нулевой оставляют не разомкнутым. С другой стороны, двухполюсные и четырехполюсные автоматы размыкают и фазные и нулевой проводник одновременно.
По сути, существуют две разновидности двухполюсных автоматов — 2п и 1п+n. Двухполюсные 2п автоматы состоят из двух одинаковых однополюсных автоматов, соединенных механически. Стало быть, в этом случае оба полюса имеют защиту.
Двухполюсные 1п+n состоят из однополюсного автомата и однополюсного рубильника, также механически соединенных. Иначе говоря, полюс размыкающий нулевой проводник не содержит автоматических расцепителей, а только механизм, размыкающий контакты. Контакты размыкаются с помощью механического привода при отключении автомата, размыкающего фазный проводник. Другими словами, полюс n защиты не имеет.
Соответственно, четырехполюсные автоматы 4п состоят из четырех полноценных однофазных автоматов, а автоматы 3п+n из трех однополюсных автоматов и однополюсного рубильника.
Номинальное напряжение автоматического выключателя C40
Во-первых, для автомата C40 на корпусе промаркировано Ue номинальное напряжение. Иначе говоря, такое напряжение при котором автомат длительно может пропускать через себя номинальный ток. Так, для однополюсных и двухполюсных автоматов оно обычно составляет 230 — 400 вольт. В свою очередь, для трехполюсных и четырехполюсных 400 вольт. Во-вторых, может быть промаркировано максимальное Umax и минимальное Umin напряжение при котором автомат сохраняет работоспособность. В-третьих, Ui номинальное напряжение изоляции.
Маркировка на автомате в виде волнистой линии ∼ или ≈ означает, что он предназначен для использования в цепи переменного тока. Нанесена маркировка обычно перед обозначением номинального напряжения. С другой стороны, для цепей постоянного тока применяются автоматы с немного другим устройством и маркировкой в виде прямой линии -.
Иногда на автомате указывается номинальное импульсное выдерживаемое напряжение Uimp в КилоВольтах. То есть, пиковое значение импульсного (чрезвычайно кратковременного) напряжения заданной формы и полярности, которое может выдержать аппарат без повреждений при определенных условиях.
Мощность нагрузки (На сколько киловатт автомат C40?)
Итак, мощность нагрузки автоматического выключателя c40 зависит от количества фаз сети. Очевидно, что в трехфазной сети к автомату можно подключить нагрузку большей мощности чем в однофазной.
Как полагается, однополюсный и двухполюсные автоматы c40 предназначены для однофазной сети. Напряжение в бытовой однофазной сети составляет 220-230 вольт. Соответственно, пользуясь простой формулой P=U×I, можно определить мощность нагрузки, которую можно подключить к автомату. P=220×40=8800 Ватт. P=230×40=9200 Ватт.
Мощность нагрузки для однополюсного и двухполюсного автоматов c40 равна 8800 — 9200 Ватт. Безусловно, лучше ограничить мощность подключенного к автомату c40 электроприбора в однофазной сети до 8,5 КилоВатт. Это позволит не перегревать кабель и не вызывать частое отключение автомата. Тем более, что ни говори, напряжение в сети обычно понижено. По новому госту напряжение однофазной сети должно быть 230 вольт ± 10%. Соответственно, в трехфазной сети 400 вольт ± 10%. Но обычно оно минус 10% или ниже и намного реже плюс.
Как принято, трехполюсные и четырехполюсные автоматы предназначены для трехфазной сети. Напряжение бытовой трехфазной сети составляет 380-400 вольт. По формуле P=U×I, таким образом, выясняем что мощность нагрузки для трех- и четырехполюсных автоматов c40 15200 — 16000 Ватт. Определенно, как и для однофазной сети лучше взять нижний предел. Соответственно, ограничить мощность электроприемника, подключенного к автомату C40 в трехфазной сети, до 15 КилоВатт.
Где применяется автомат c40
Само собой, в быту автомат C40 чаще всего применяется как вводной, до счетчика. Естественно, если выделенная мощность составляет 8,5кВт для однофазной сети или 15кВт для трехфазной. Количество полюсов вводного автомата определяется количеством фаз сети и требованиями энергоснабжающей компании.
Однополюсные и двухполюсные автоматы c40 могут быть применены как автоматы на отдельный электроприбор мощностью около 8,5килоВатт. Безусловно, только если вводной автомат выше по номинальному току.
Трехполюсные и четырехполюсные автоматы c40 также могут применяться для отдельного электроприемника мощностью 15КилоВатт.
Строго говоря, автомат c40 может применяться и для активной и для индуктивной нагрузки, а также и для других видов нагрузки. То есть, он может применяться как для защиты освещения и нагревательных приборов, так и для защиты двигателей, трансформаторов, а также различных электронных электроприборов. Однако, настоящее его применение — это сеть со смешанной нагрузкой.
По сути, автомат с обозначением буквы C имеет усредненные характеристики и предназначен для установки в сеть, к которой подключены разные виды нагрузок. С другой стороны, для более корректной защиты двигателя часто приходится применить автомат с характеристиками D, а для защиты нагревательного элемента с характеристиками B.
Схема подключения автомата c40
Как подключить автомат, сверху или снизу? По определению, питающий проводник подключается к неподвижному контакту автомата. Обычно, это означает подключение сверху. Но могут быть и исключения. Другими словами, нужно всегда смотреть схему подключения, нанесенную на корпус автомата.
Так, цифра 1 на схеме показывает, куда подключается вход первого фазного проводника. Цифра 2 показывает выход первого фазного проводника. Соответственно, 3 — вход, 4 — выход у двухполюсного автомата. Цифры 5 — вход, 6 — выход у трехполюсного; 7 — вход, 8 — выход у четырехполюсного.
В случае, если кроме цифр на схеме и (или) на контактах есть обозначение буквы N, то на эти контакты подключается нулевой проводник. Когда обозначения буквы N нет, то нулевой проводник подключается на контакты, обозначенные наибольшими цифрами. Если фазные проводники подключаются сверху, то и нулевой проводник подключается сверху же. С другой стороны, если фазные проводники подключаются снизу, то нулевой, соответственно, снизу.
Без всякого сомнения, автомат c40 используется в быту чаще всего в качестве вводного. Так, в бытовых условиях редко используются электроприборы с мощностью, которая бы потребовала автомата на номинальный ток 40 ампер. На выше расположенной схеме показано использование однополюсного автоматического выключателя C40 в качестве вводного автомата.
На данной схеме показано применение автомата c40 для отдельной цепи. Стоит обратить внимание, что вводной автомат должен быть минимум на два номинала больше нижестоящего автомата, для селективности по тепловой нагрузке. К тому же, счетчик электроэнергии должен быть рассчитан на номинальный ток не меньший, чем у вводного автомата.
Бренд — Компания производитель. Купить автоматический выключатель C40. Цена автомата c40
Наиболее известные зарубежные компании производящие модульные автоматические выключатели ABB, Schneider Electric, Legrand. Из отечественных КЭАЗ, IEK, EKF.
Безусловно, модульный автомат зарубежных брендов бытовой серии удовлетворяет нормам, предъявляемым к автоматам в быту. Но промышленные серии модульных автоматов, несомненно, качественнее, надежнее и удобнее для монтажа, чем бытовые.
Как водится, модульные автоматы отечественных компаний сделаны в Китае. К слову, это не признак их ненадежности. Грубо говоря, по качеству они не сильно отличаются от бытовых серий зарубежных компаний, а стоить могут дешевле и тоже удовлетворяют нормам для бытовых автоматов. Жаль, но они обычно не имеют серий, похожих на промышленные серии зарубежных брендов.
Среди отечественных производителей выделяется КЭАЗ. Факт, они действительно сами производят в России автоматы в литом корпусе. Модульные автоматы, как и все, заказывают в Китае. Но заказать производство товара и проконтролировать его качество тоже можно по разному. Их познание в практическом производстве автоматов дает надежду на более высокий уровень в этом плане.
УЗО и дополнительные приспособления для автомата C40
Выбирая автоматичекий выключатель, не стоит рассматривать его отдельно от других компонентов электрощита. Стоит отметить, что покупая автомат, надо иметь в виду, что он будет монтироваться вместе с УЗО. По совести, применять УЗО лучше не только одного производителя с автоматом, но и из одной серии с ним. В этом случае, можно быть точно уверенным в наилучшем их взаимодействии друг с другом.
К слову, УЗО отечественных производителей уступают по качеству зарубежным. И вообще, часто они не имеют в серии электромеханических УЗО и имеют намного меньшее разнообразие в характеристиках.
Так, применяя зарубежные автоматические выключатели промышленных серий, можно использовать различные вспомогательные приспособления. Это и разнообразные гребенки, дополнительные контакты и устройства автоматического включения. К огорчению, у отечественного производителя этих приспособлений или нет совсем, или ассортимент сильно ограничен. По чести говоря, бытовые серии зарубежных брендов тоже не предназначены для совместного использования с дополнительными устройствами.
Автомат c40 Выбор производителя
Среди зарубежных брендов рекомендовать к применению, безусловно, стоит компанию ABB. Как водится, все бренды стараются по возможности сэкономить и удешевить свою продукцию. Само собой, ABB не исключение. Но в пользу выбора именно этой компании говорит то, что они наименее подвержены этой тенденции. Например, в сериях их продукции вообще нет электронных УЗО. А как известно, электромеханическое УЗО лучше электронного тем, что защищает от удара током даже при обрыве нуля и пониженном напряжении. Несомненно, автоматы и сопутствующие им аксессуары этой фирмы удобны для монтажа и отличаются разнообразием. Также у них неплохо развита логистика. Другими словами, если чего то нет на местном складе в данный момент, всегда можно заказать с другого склада.
Безусловно, Schneider Electric и Legrand тоже имеют в ассортименте аппараты не уступающие по качеству ABB. Причем, многим людям удобнее использовать в монтаже продукцию этих компаний. Это дело личных предпочтений и привычки.
К сожалению, такие компании как Siemens, Hager, GE, часто не представлены на отечественном рынке в своем полном ассортименте. Вероятно, можно купить какие-то автоматы, но не найти в продаже УЗО, не говоря уже о дополнительных устройствах.
Без сомнения, речь идет только о промышленных сериях автоматов с коммутационной способностью от 6000 Ампер. В сущности, бытовые серии разных зарубежных производителей, примерно, на одно лицо и не представляют собой ничего выдающегося.
Автомат C40 — цена и где купить
Как правило, цена автомата c40 складывается из его характеристик, количества полюсов и «раскручености» бренда. Цены на автоматы C40 одного бренда и с одинаковым количеством полюсов различаются, в зависимости от коммутационной отключающей способности автомата.
Рекомендуем прочитать
Коммутационная или отключающая способность автоматического выключателя
Коммутационная или отключающая способность автомата – это возможность автомата отключатся определенное количество раз, при токе короткого замыкания (КЗ) определенной силы. Бытовые автоматы маркируются по стандарту IEC 23-3/EN 60898. Международный стандарт-“Выключатели автоматические для защиты от сверхтоков электроустановок бытового и аналогичного назначения”. Натурально, по правилам этого стандарта на автоматическом выключателе указывается номинальная наибольшая отключающая способность Icn Читать далее…
Класс токоограничения автоматического выключателя
Класс токоограничения автоматического выключателя определяется скоростью гашения электрической дуги, возникающей при отключении автомата в случае короткого замыкания.
По определению, во время короткого замыкания автомат разрывает контакты и соответственно, отключается. Факт, сила тока при коротком замыкании может достигать несколько тысяч ампер. Понятное дело, между размыкающимися контактами образуется электрическая дуга. Помимо всего прочего, дуга имеет высокую температуру. Следовательно, из-за данного обстоятельства автомат может выйти из строя. Значит, дуга должна быть как можно быстрее погашена. Гасится дуга с помощью дугогасительной камеры Читать далее…
Характеристики автоматических выключателей – обозначения на корпусе
Характеристики автоматических выключателей важный фактор при выборе защиты электроприборов в каждом конкретном случае.
Автоматический выключатель необходимо выбирать учитывая характеристики автоматических выключателей, обозначения которых нанесены на корпусе автомата Читать далее…
Ваш Удобный дом
Расчет одно- и трехфазных параметров
Вы можете спросить: «Что такое константа?» Пример постоянной, с которой вы хорошо знакомы, — это число пи (π), которое получается делением длины окружности на ее диаметр. Независимо от длины окружности и диаметра соответствующего круга, их соотношение всегда равно пи. Вы можете использовать константы, относящиеся к определенным одно- и трехфазным напряжениям, для расчета тока (I) и киловатт (кВт). Посмотрим, как это сделать.
Однофазные расчеты
Базовая электрическая теория говорит нам, что для однофазной системы
кВт = (В × I × PF) ÷ 1000.
Для простоты предположим, что коэффициент мощности (PF) равен единице. Таким образом, приведенное выше уравнение становится
.кВт = (В × I) ÷ 1000.
Решая относительно I, уравнение принимает вид
I = 1000 кВт ÷ В (Уравнение 1)
Теперь, если мы посмотрим на часть этого уравнения «1000 ÷ V», вы увидите, что, вставив соответствующее однофазное напряжение для «V» и разделив его на «1000», вы получите конкретное число (или постоянная), которую можно использовать для умножения «кВт», чтобы получить потребляемый ток этой нагрузки при соответствующем напряжении.
Например, константа для расчета 120 В составляет 8,33 (1000 ÷ 120). Используя эту константу, уравнение 1 становится
I = 8,33 кВт .
Итак, если у вас нагрузка 10 кВт, вы можете рассчитать потребляемый ток как 83,3 А (10 × 8,33). Если у вас есть оборудование, потребляющее 80 А, вы можете рассчитать относительный размер необходимого источника питания, который составляет 10 кВт (80 ÷ 8,33).
Таблица 1. Константы, используемые в однофазных системах
Используя ту же процедуру, но вставив соответствующее однофазное напряжение, вы получите следующие однофазные константы, как показано в Таблица 1 .
Трехфазные расчеты
Для трехфазных систем мы используем следующее уравнение:
кВт = (В × I × PF × 1,732) ÷ 1000.
Опять же, принимая единицу PF и решая это уравнение для «I», вы получаете:
I = 1000 кВт ÷ 1,732 В.
Таблица 2. Константы, используемые в трехфазных системах
Теперь, если вы посмотрите на часть этого уравнения «1000 4 1,732 В», вы увидите это, вставив соответствующее трехфазное напряжение для «V» и умножив его на 1.732, вы можете затем разделить это количество на «1000», чтобы получить конкретное число (или константу), которое вы можете использовать для умножения «кВт», чтобы получить ток, потребляемый этой трехфазной нагрузкой при соответствующем трехфазном напряжении. Таблица 2 перечисляет каждую 3-фазную постоянную для соответствующего 3-фазного напряжения, полученного из вышеуказанного расчета.
Ампер в Киловатт (кВт) Калькулятор преобразования электрической энергии
Введите ток и напряжение для преобразования ампер в ватты для одно- и трехфазных цепей постоянного и переменного тока.
Как преобразовать амперы в киловатты
Для преобразования ампер в киловатты можно использовать формулу мощности, которая гласит, что I = P ÷ E, учитывая, что P — мощность в ваттах, I — ток в амперах, а E — напряжение в вольтах.
Формула из ампер в киловатты, полученная из формулы мощности, выглядит следующим образом:
P (кВт) = I (A) × V (V) 1000
Таким образом, мощность P в киловаттах равна току I в амперах, умноженному на напряжение V в вольтах, разделенному на 1000.
Например, , давайте найдем мощность в киловаттах для цепи с током 12 ампер и напряжением 120 вольт.
мощность = ток × напряжение ÷ 1000
мощность = 12A × 120В ÷ 1000
мощность = 1,440 ÷ 1000
мощность = 1,44 кВт
Преобразование ампер однофазной цепи переменного тока в киловатты
Преобразование ампер в киловатты для однофазных цепей переменного тока с использованием коэффициента мощности может быть выполнено с помощью немного другой формулы.
P (кВт) = I (A) × V (V) × PF1,000
Таким образом, мощность P в киловаттах равна току I в амперах, умноженному на напряжение V, в вольтах, умноженному на коэффициент мощности PF, деленному на 1000.При необходимости попробуйте наш калькулятор коэффициента мощности, чтобы узнать коэффициент мощности.
Преобразование ампер трехфазного переменного тока в киловатты
Использование линейного напряжения
Формула для преобразования ампер в киловатты для трехфазных цепей переменного тока, в которых известно линейное напряжение, следующая:
P (кВт) = I (A) × V (V) × PF × √31,000
Таким образом, мощность P в киловаттах равна току I в амперах, умноженному на напряжение В, в вольтах, умноженному на коэффициент мощности PF, умноженный на квадратный корень из 3, разделенный на 1000.
Использование напряжения между фазой и нейтралью
Формула для преобразования ампер в киловатты для трехфазных цепей переменного тока, в которых известно напряжение между фазой и нейтралью, выглядит следующим образом:
P (кВт) = I (A) × V (V) × PF × 31 000
Таким образом, мощность P в киловаттах равна току I в амперах, умноженному на напряжение V, в вольтах, умноженному на коэффициент мощности PF, умноженному на 3 и разделенному на 1000.
Как преобразовать амперы и омы в киловатты
Также можно преобразовать амперы в киловатты, используя сопротивление цепи по следующей формуле:
P (кВт) = I (A) 2 × R (Ом) 1000
Таким образом, мощность P в киловаттах равна току I в амперах, умноженному на сопротивление R в Ом, деленному на 1000.
Возможно, вас заинтересует наш калькулятор ампер в ватт.
Эквивалентные амперы и киловатты при 120 В переменного тока
Текущий | Мощность | Напряжение |
---|---|---|
1 А | 0,12 Киловатт | 120 Вольт |
2 А | 0,24 Киловатт | 120 Вольт |
3 А | 0.36 Киловатт | 120 Вольт |
4 А | 0,48 Киловатт | 120 Вольт |
5 ампер | 0,6 Киловатт | 120 Вольт |
6 ампер | 0,72 Киловатт | 120 Вольт |
7 ампер | .084 Киловатт | 120 Вольт |
8 ампер | 0.90 Киловатт | 120 Вольт |
9 ампер | 1.08 Киловатт | 120 Вольт |
10 ампер | 1,2 Киловатт | 120 Вольт |
11 ампер | 1.32 Киловатт | 120 Вольт |
12 А | 1.44 Киловатт | 120 Вольт |
13 ампер | 1.56 Киловатт | 120 Вольт |
14 ампер | 1.68 Киловатт | 120 Вольт |
15 ампер | 1.8 киловатт | 120 Вольт |
20 ампер | 2.4 Киловатт | 120 Вольт |
25 ампер | 3 Киловатта | 120 Вольт |
30 ампер | 3,6 Киловатт | 120 Вольт |
35 А | 4,2 Киловатт | 120 Вольт |
40 А | 4.8 Киловатт | 120 Вольт |
45 А | 5.4 киловатта | 120 Вольт |
50 ампер | 6 Киловатт | 120 Вольт |
60 А | 7.2 Киловатт | 120 Вольт |
70 А | 8,4 Киловатт | 120 Вольт |
80 А | 9.6 Киловатт | 120 Вольт |
90 А | 10,8 Киловатт | 120 Вольт |
100 ампер | 12 Киловатт | 120 Вольт |
Эквивалентные амперы и киловатты при 240 В переменного тока
Текущий | Мощность | Напряжение | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 А | 0,24 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 А | 0,48 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 А | 0,72 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 А | 0.96 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 ампер | 1.2 киловатта | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 ампер | 1.44 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 ампер | 1.68 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 ампер | 1.92 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 ампер | 2,16 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 ампер | 2.4 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 ампер | 2.64 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 А | 2.88 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 ампер | 3.12 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
14 ампер | 3.36 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15 ампер | 3,6 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20 ампер | 4.8 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
25 ампер | 6 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
30 ампер | 7.2 киловатта | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
35 А | 8,4 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
40 А | 9.6 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
45 А | 10,8 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50 ампер | 12 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
60 А | 14,4 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
70 А | 16.8 киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
80 А | 19,2 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
90 А | 21.6 Киловатт | 240 Вольт | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
100 ампер | 24 Киловатта | 240 Вольт |
Ампер | Мощность в | Мощность в 230 В трехфазный (в кВА) | Мощность в |
16 | 3,7 | 6,4 | 11,1 |
20 | 4,6 | 8 | 13,9 |
25 | 5,8 | 10 | 17,3 |
32 | 7,4 | 12,7 | 22,2 |
40 | 9,2 | 15,9 | 27,7 |
50 | 11,5 | 19,9 | 34,6 |
63 | 14,5 | 25,1 | 43,6 |
Как я могу увеличить электрическую мощность моей установки?
Хотите увеличить электрическую мощность вашей установки? Пожалуйста, сначала посоветуйтесь со своим электриком .Он может предоставить вам дополнительную информацию о наиболее подходящем решении для ваших нужд. Есть 2 возможности :
- увеличение мощности счетчика (если ваша электрическая установка может с этим справиться) и сохранение однофазного тока.
- переключение на трехфазное питание и возможное увеличение мощности.
Для таких модификаций необходимо всегда связываться с Sibelga, оператором системы распределения природного газа и электроэнергии в Брюссельском столичном регионе.«Сибелга» отвечает за подключение к электросети независимо от поставщиков энергии.
Хотя вам будет выставлен счет за установку, это не повлияет на ваш ежемесячный счет, который не будет увеличиваться.
Электродвигатели— ток полной нагрузки
В качестве «практических правил» номинальную мощность в амперах можно оценить как
- 115 В двигатель — однофазный: 14 А / л.с.
- 230 В двигатель — однофазный: 7 ампер / л.с.
- 230 вольт двигатель — 3-фазный: 2.5 ампер / л.с.
- 460 вольт двигатель — 3-фазный: 1,25 ампер / л.с.
Всегда проверяйте информацию на паспортной табличке перед проектированием защитных устройств, проводки и коммутационного устройства.
Однофазные двигатели — л.с. и токи полной нагрузки
Ожидается, что двигатель данной номинальной мощности будет передавать это количество механической мощности на вал двигателя. Имейте в виду, что КПД двигателя не рассчитывается по приведенным ниже значениям для кВт и ампер.Необходимо учитывать КПД двигателя, чтобы избежать недостаточной мощности источника питания.
Мощность | Ток при полной нагрузке (А) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(л.с.) | (кВт) | 115 В | 208 В | 9010 230|||||||||||||||
1/6 | 0,13 | 4,4 | 2,4 | 2,2 | ||||||||||||||
1/4 | 0,19 | 5,8 | 3.2 | 2,9 | ||||||||||||||
1/3 | 0,25 | 7,2 | 4,0 | 3,6 | ||||||||||||||
1/2 | 0,38 | 9,8 | 5,4 | 4,9 | 5,4 | 4,9 | 5,4 | 4,9 | 0,56 | 13,8 | 7,6 | 6,9 | ||||||
1 | 0,75 | 16 | 8,8 | 8 | ||||||||||||||
1 1/2 | 1,1 | 1 1/21,1 | 2||||||||||||||||
2 | 1.5 | 24 | 13,2 | 12 | ||||||||||||||
3 | 2,3 | 34 | 18,7 | 17 | ||||||||||||||
5 | Прим. что большинство электродвигателей рассчитаны на работу при от 50% до 100% номинальной нагрузки, а максимальный КПД обычно составляет около 75% от номинальной нагрузки. Для двигателя мощностью 1 л.с. нагрузка обычно должна находиться в диапазоне от 1/2 до 1 л.с. с максимальной эффективностью при 3/4 л.с. Типичные диапазоны нагрузок:
Двигатель с сервисным фактором может быть случайным быть перегруженным. Перегрузка со временем снизит КПД двигателя. Трехфазные двигатели — л. Фактор | |||||||||||||||||
(л. В | 2300 В | |||||||||||||||||
1/2 | 0.38 | 4 | 2 | 1 | 0,8 | |||||||||||||
3/4 | 0,56 | 5,6 | 2,8 | 1,4 | 1,1 | 1,4 | 1,1 902 | 0,75 | 7,2 | 3,6 | 1,8 | 1,4 | ||||||
1 1/2 | 1,1 | 10.4 | 5,2 | 2,6 | 2,1 | |||||||||||||
2 | 1,5 | 13,6 | 6,8 | 3,4 | 2,7 | 2,3 | 9,6 | 4,8 | 3,9 | |||||||||
5 | 3,8 | 15,2 | 7,6 | 6.1 | ||||||||||||||
7 1/2 | 5,6 | 22 | 11 | 9 | ||||||||||||||
10 | ||||||||||||||||||
10 | 141311 | 14219|||||||||||||||||
15 | 11 | 42 | 21 | 17 | ||||||||||||||
20 | ||||||||||||||||||
20 | 20 | 20 | 902 19 | |||||||||||||||
25 | 19 | 68 | 34 | 27 | 53 | 26 | 21 | |||||||||||
30 | 902 902 902 | 63 | 32 | 26 | 40 | 30 | 104 | 52 | 41 | 83 | 41 | 33 | ||||||
50 | 38 | 38 | 13019 | 22052 | 42 | |||||||||||||
60 | 45 | 154 | 77 | 62 | 16 | 123 | 61 | 49 | 5620 902 | 12 902 192 | 96 | 77 | 20 | 155 | 78 | 62 | 15 | |
100 | 75 | 248 | 124 | 99219 902 | 81 | 20 |
- 1 л.с. (мощность в английских лошадиных силах) = 745.7 Вт = 0,746 кВт = 550 фут-фунт / с = 2545 БТЕ / ч = 33,000 фут-фунт / м = 1,0139 метрическая мощность в лошадиных силах ~ = 1,0 кВА
Двигатели постоянного тока — мощность и токи полной нагрузки
Мощность | Постоянный ток (A) | |||
---|---|---|---|---|
(л.с.) | (кВт) | 230 В | 440 В | |
1/4 | 0,190,81 | 0.42 | ||
1/3 | 0,25 | 1,1 | 0,56 | |
1/2 | 0,37 | 1,6 | 0,85 | |
3/4 | 0,56 2,4 | |||
1 | 0,75 | 3,2 | 1,7 | |
1 1/2 | 1,1 | 4,9 | 2,5 | |
2 | 1,5 | 6.5 | 3,4 | |
3 | 2,2 | 9,7 | 5,1 | |
5 | 3,7 | 16 | 8,5 | |
7 1/2 | 902 902 902||||
10 | 7,5 | 32 | 17 | |
15 | 11 | 49 | 25 | |
20 | 15 | 65 | 90297 | 51 |
50 | 37 | 162 | 85 | |
75 | 56 | 243 | 127 | |
10020 902 |
- для 115 В — мощность в два раза больше, чем для 230 В