Posted on

Содержание

Основы регулирования системы отопления

Данная статья открывает цикл материалов, который буден посвящен различным аспектам регулирования систем отопления — проектированию, расчетам, используемому оборудованию и сферам его применения. В этой статье остановимся на целях, общих принципах и особенностях регулирования систем водяного отопления.

Задачи регулирования в системах отопления.

Основной целью регулирования отопления является поддержание заданной температуры в помещении при изменяющихся внешних условиях. То есть, вне зависимости от уличной температуры, силы ветра, влажности и прочих условий, в нашем доме должен поддерживаться заданный тепловой комфорт.

Упрощенно, понятие процесса регулирования системы отопления можно охарактеризовать следующим образом:

Регулирование системы отопления – это комплекс мер по максимальному приближению теплоотдачи отопительных приборов к текущей потребности объекта в тепле для поддержания требуемой внутренней температуры при постоянном изменении внешних условий.

Так как в системах водяного отопления нужную нам температуру, как правило, обеспечивают приборы отопления (радиаторы, конвекторы, водяные теплые полы и т.д.), то для поддержания заданной температуры теплоотдача отопительных приборов должна иметь возможность изменяться в зависимости от изменений внешних условий. Если не рассматривать механическое ограничение теплоотдачи отопительного прибора, которое до сих пор иногда применяется в конструкции конвекторов (воздушная заслонка на конвекторе с кожухом), основными способами изменения теплоотдачи являются изменение расхода теплоносителя через прибор и/или изменение температуры теплоносителя.

Таким образом, главная цель регулирования — поддержание требуемой температуры в помещении трансформируется в две основные частные задачи:
— обеспечение расчетного расхода теплоносителя через приборы отопления;
— задание требуемой температуры теплоносителя.

Кроме того, нужно иметь в виду, что в процессе регулирования, как правило, меняются гидравлические режимы работы системы, что может приводить к нарушению стабильности работы и появлению нежелательных шумов. Поэтому в системе регулирования должны быть предусмотрены меры по предотвращению этих негативных явлений.

Суть процесса регулирования отопления.

В общих чертах, процесс регулирования заключается в том, что величина регулируемого параметра находится под постоянным контролем и сравнивается с каким-то заданным значением этого параметра или величиной другого параметра. И в зависимости от их значения подвергается регулированию. Назовем совокупность элементов и алгоритмов регулирования, участвующих в этом процессе регулировочным контуром. Стоит сразу отметить, что таких контуров в системе отопления может быть достаточно много. Примерами таких регулировочных контуров являются поддержание температуры в помещении с помощью отопительного прибора по комнатному термостату или с помощью термостатического клапана на радиаторе отопления, регулирование котловой температуры теплоносителя в зависимости от температуры наружного воздуха, поддержание заданной температуры теплоносителя в водяном теплом поле и так далее.

Замкнутый регулировочный контур 

Рассмотрим простейший замкнутый регулировочный контур, состоящий из прибора отопления, комнатного термостата, выполняющего функции измерительного устройства и контроллера, а также сервопривода с термостатическим клапаном, в качестве исполнительного устройства.

Рис. Замкнутый процесс регулирования в системе отопления

В рассматриваемом контуре регулируемый параметр – температура воздуха в помещении (х), которая формируется под воздействием прибора отопления и некого возмущающего воздействия, например, открытого окна. Для примера, заданное на термостате значение температуры (w) примем равным 23°С, а значение временно сформировавшейся температуры – равным 21°С. Температура воздуха постоянно контролируется измерительным устройством, в качестве которого может служить датчик температуры, встроенный в комнатный термостат. Результат измерения передается на контроллер, который в нашем примере также встроен в термостат. Контроллер сравнивает измеренное значение (21°С) с заданным (23°С) и при наличии рассогласования, подаёт управляющий сигнал на сервопривод на открытие, либо закрытие термостатического клапана. Исполнительное устройство формирует управляющее воздействие (в нашем случае увеличение расхода теплоносителя) на радиатор отопления, вследствие чего его теплоотдача увеличивается и повышает температуру воздуха в помещении. Таким образом образовался замкнутый регулировочный контур, в котором температура в помещении является и регулируемым и контролируемым параметром, и в процессе регулирования влияет сама на себя.

Открытый регулировочный контур

Рассмотрим другой пример контура регулирования, достаточно распространенного в современных системах отопления. Это — так называемый, открытый контур. 

Рис. Пример открытого регулировочного контура

Особенность открытого регулировочного контура заключается в том, что, в отличие от закрытого контура, контролируемая и регулируемая величины относятся к различным параметрам. В данном примере контролируемая величина — это температура наружного воздуха, регулируемая — температура теплоносителя, подаваемая в контур теплого пола.

Принцип работы такой схемы регулирования заключается в следующем. Температура наружного воздуха (контролируемая величина) регистрируется датчиком (1), в результате чего формируется сигнал (Y), уровень которого зависит от измеренной температуры. Сигнал поступает на измерительный модуль контроллера (2) (в нашем примере контроллер встроен в котел отопления). Одновременно с помощью датчика (3) регистрируется температура теплоносителя в контуре теплого теплого пола (регулируемая величина), сигнал (х) от которого также передается в измерительное устройство. В контролерре происходит оценка того, насколько температуры (уровни сигналов) соответствуют настройкам. Обычно, соответствие контролируемой и регулируемой температур задается с помощью диаграмм. И в случае выявления несоответствия, подается управляющий сигнал (Z) на сервопривод трехходового клапана (4), в результате чего изменяются пропорции смешения горячего и остывшего теплоносителя и, таким образом, изменяется температура в контуре теплого пола. 

Статья в процессе написания

akrosystems.ru

Регулирование температуры в системе отопления

Регулирование системы отопления подразумевает приведение процесса потребления тепловой энергии в соответствие с реальными потребностями в ней. Простой пример: чем холоднее на улице, тем интенсивнее должна работать отопительная система и, наоборот, при повышении температуры воздуха в доме выше предельного значения, температура теплоносителя в приборах отопления должна снижаться.

Самый простой способ регулирования системы отопления состоит в ручном управлении работой котла и отопительных приборов: жарко в доме, можно перекрыть вентиль подачи теплоносителя в прибор отопления, в результате чего обратная вода вернется в котел горячей, что приведет к отключению котла или к уменьшению расхода топлива.

Еще более простой способ регулирования системы отопления состоит во временном отключении котла и включении его в работу при снижении температуры в помещении. На сегодняшний день подобное «ручное управление» устарело и вести о нем речь можно только применительно к приборам отопления, не имеющим систем автоматического контроля, например, к дровяным печам или к некоторым видам дровяных котлов отопления.

Современные системы регулирования отопления решают одновременно две задачи:

  • позволяют создать действительно комфортные условия в доме, поддерживая в нем заданный уровень температуры

  • оптимизируют расход топлива, и, как следствие, снижают затраты на отопление

Регулировка системы отопления производится по одному из двух параметров

Считается, что более комфортные условия в частном доме можно получить при изменении температуры теплоносителя в зависимости от условий внутри помещения. Объясняется это просто: тепловые потери не всегда линейно зависят от температуры наружного воздуха: необходимо учитывать скорость ветра и расположение строения относительно сторон света.

Для многоквартирных домов и систем центрального отопления важнее температура наружного воздуха, позволяющая получать усредненные результаты сразу для всех потребителей тепловой энергии.

Методы регулирования систем отопления

Как было сказано выше, основная задача регулирования системы отопления состоит в поддержании определенного уровня температуры в помещении. Сделать это можно несколькими способами:

  1. Меняя скорость движения теплоносителя через прибор отопления с помощью запорной арматуры или с помощью циркуляционного насоса. При этом происходит изменение количества теплоносителя, проходящего через прибор отопления в единицу времени. Такой метод называется количественным.

  2. Меняя температуру нагрева теплоносителя (изменяя его качество). Такой метод называется качественным.

Следует отметить, что оба метода неразрывно связаны друг с другом и в системах высокого качества используются одновременно.

Практическая реализация метода №1

Самый простой способ управления отоплением состоит в изменении режимов работы циркуляционного насоса в зависимости от температуры в помещении: холодно, насос работает с максимальной скоростью, что обеспечивает наиболее интенсивную теплоотдачу приборов отопления. Стало жарко: скорость движения теплоносителя минимальная. В ночное время или днем, когда все жильцы дома на работе или на учебе, может также использоваться режим экономии тепла, предусматривающий минимальную скорость движения воды в отопительной системе.

Недостатком управления отоплением с помощью циркуляционного насоса является общий подход ко всем помещениям в доме, независимо от реальных потребностей в тепловой энергии.

Более точное, локальное регулирование системы отопления можно получить, управляя работой отдельно взятого радиатора.

Как управлять работой радиатора отопления?

На практике менять расход теплоносителя можно с помощью автоматических головок, в конструкцию которых включается клапан и термодатчик, реагирующий на изменение температуры в помещении. Принцип действия устройства достаточно прост: полость головки заполнена жидкостью, объем которой зависит от температуры: при похолодании объем жидкости уменьшается, клапан открывается, увеличивая при этом расход теплоносителя. При повышении температуры в помещении напротив: объем жидкости увеличивается, клапан закрывается, перекрывая движение теплоносителя.

Недостатком автоматических головок является их невысокая надежность и частый выход из строя. Более совершенным и надежным является способ регулирования отопления с использованием сервопривода, приводимого в движение и перекрывающего подачу теплоносителя в радиатор также в зависимости от температуры в помещении.

И автоматическая головка, и сервопривод рассчитаны на изменение температуры теплоносителя не во всей системе отопления, а лишь в одном отдельно взятом радиаторе. Если в комнате несколько отопительных приборов, оборудовать подобными системами автоматического контроля придется каждый из них. Только в этом случае можно действительно регулировать отопление.

Все приборы отопления в доме могут быть объединены в одну систему автоматического управления отоплением.

Регулировка во время эксплуатации

Также известен и другой способ – эксплуатационное регулирование. Как следует из названия, регулирование системы отопления проводится во время ее работы. Это необходимо, чтобы производить настройку по мере необходимости. К примеру, если есть потребность увеличить количество тепла или уменьшить (в зависимости от температуры воздуха на улице и метеорологических условий). Изменение количества вырабатываемого системой тепла обеспечивается за счет регулировки температуры или же путем изменения расхода теплоносителя. Таким образом, можно условно разделить на «качественный» и «количественный» варианты осуществления контроля системы.

Качественное регулирование проводится прямо на тепловой станции. Бывает местное и групповое. Количественное имеет три подразделения: групповое, индивидуальное и местное.

Индивидуальное регулирование

Данный способ контролирования системы производится вручную при помощи клапанов и кранов, и автоматически при перемене температуры воздуха в квартире. В разветвленных системах необходимо изменить расход теплоносителя – это должно упростить задачу регулировки.

Регулирование системы отопления в частных домах требует знаний об особенностях индивидуального водяного отопления. Основная задача системы заключается в обеспечении оптимального микроклимата для всей семьи. К сожалению, достаточно часто отопление выходит из-под контроля. Чаще всего, неправильная эксплуатация и несвоевременная корректировка параметров ведут к неэффективности показателей. Причинами также могут быть ошибки, допущенные при проектировании отопления, или плохое утепление.

 Как показывает практика, во время проведения системы отопления люди не задаются вопросом расчетов. Специалисты, занимающиеся монтажом, предпочитают делать все оперативно, за счет чего страдает точность. Как результат, в одной комнате может быть прохладно, а в другой – чересчур жарко. Комфорта в таком случае можно не ждать.

При оценке качества работы системы и экономичности ее эксплуатации следует учитывать все параметры и особенности вашего отопления. Независимо от источника питания (электрический котел или газовый), система должна работать отлажено, поэтому правильное регулирование – залог теплого и уютного дома.

Самый простой способ отрегулировать циркуляцию воды – использовать термостат, расположенный на котле. Это своего рода рычажное устройство, которое позволит переключить теплозатраты и в таким образом произойдет снижение температуры в доме. Также при необходимости можно повысить уровень нагрева жидкости и за счет этого повысить температуру воздуха в доме.

aquagroup.ru

Автоматическое регулирование потребления тепловой энергии

Приобрести широкий спектр современного оборудования для автоматизации по выгодным ценам можно в нашем фирменном магазине.

Автоматическое регулирование потребления тепловой энергии позволяет создать комфортный тепловой режим при более качественном и точном регулировании. Автоматическое регулирование может осуществляться как на тепловом вводе в дом, так и индивидуально в каждой квартире.

Основной принцип автоматических систем заключается в регулировании расхода по измеряемой температуре. При регулировании на тепловом вводе используются измерения температуры наружного воздуха, при регулировании на радиаторах – температура внутри помещения. При увеличении температуры наружного воздуха и температуры внутри помещения расход теплоносителя автоматически пропорционально уменьшается и наоборот увеличивается при снижении температуры внутри помещения и наружного воздуха. За счет снижения величины расхода происходит уменьшение значение потребляемой тепловой энергии.

Регулирование на тепловом вводе производиться следующим образом. На специальный контроллер Рис.2, который является мозгом всей системы, приходит сигнал от датчика температуры наружного воздуха. Далее в контроллере вычисляется необходимое значение температуры теплоносителя Т3в при данной температуре наружного воздуха Тнв. Существует зависимость или график зависимости между температурой наружного воздуха и температурой теплоносителя, которая и программируется в контроллере. Сигнал от датчика фактической температуры теплоносителя Т3 сравнивается с вычисленным значением Т3в и если фактическое значение превышает вычисленное .значение температуры по графику, то регулирующий клапан начинает уменьшать расход до тех пор пока температуры Т3 и Т3в не будут равны.

Рис.2 – Типовая схема автоматического регулирования теплопотреблениемРис.2 – Типовая схема автоматического регулирования теплопотреблением

Понижение температуры воды T3 происходит за счет смешения воды с более низкой температурой из обратного трубопровода в подающий. Расход в системе отопления при этом вне зависимости от положения регулирующего клапана остается постоянным за счет циркуляционного насоса установленного на перемычке между подающим и обратным трубопроводом.

Помимо регулирования по графику температуры в подающем трубопроводе, можно одновременно поддерживать график температуры обратной воды. При таком регулировании обеспечивается заданная зависимость разности температур от температуры наружного воздуха. Дополнительно может быть установлен переход с дневного на ночной режим, т.е. снижение температуры в подающем трубопроводе в ночные часы, но данный режим подходит в основном только для объектов, где ночью отсутствуют люди. В жилых домах должен поддерживаться постоянный тепловой режим.

Индивидуальное автоматическое регулирование на радиаторах достигается при помощи использования радиаторных терморегуляторов. Радиаторный терморегулятор представляет собой регулирующий клапан, устанавливаемый на входе в радиатор по ходу воды. Воздействие на клапан происходит механически при помощи терморегулирующего элемента. Принцип действия терморегулирующего элемента основан на расширении/сжатии газа или жидкости в баллоне терморегулятора при увеличении/снижении температуры внутри помещения. Достаточно установить настройку радиаторного терморегулятора на комфортную температуру, и он автоматически будет поддерживать необходимый расход через радиатор для получения постоянной заданной температуры воздуха в помещении. Диапазон настройки терморегуляторы достаточно велик от 6 до 26 °C. Минимальная настойка предохраняет радиатор от замораживания. Комфортной температурой считается 20 °C при длительном отсутствии людей в помещении её можно уменьшить до 17 °C, а затем обратно вернуть настройку. Нагрев помещения на недостающие три градуса происходит в течение часа. При установке радиаторного терморегулятора вы получаете следующие возможности:

– создание индивидуального комфорта в помещениях, что сохраняет здоровье людей, так как нет колебаний температуры
– исключение «перетопов», не нужно открывать форточки, так как температура в помещении поддерживается постоянной на заданном уровне
– экономия потребляемой тепловой энергии, получаемая за счет уменьшения расхода через отопительные приборы.
Конечно, необходимо сочетать автоматическое регулирование на тепловом вводе с установкой автоматических радиаторных терморегуляторов для получения максимального экономического эффекта при создании комфортных условий в помещениях.

Экономия тепловой энергии

Сейчас все больше людей задумываются о вопросах энергосбережения. И в этом нет ничего удивительного – зачем переплачивать за отопление, когда на этом можно экономить? Самый простой вариант экономия тепловой энергии – установка счетчиков (узлов учета тепловой энергии). Данный способ применяется уже на протяжении 10 лет и позволяет снизить оплату за тепловую энергию на 20-30 %. Практика показала, что в среднем, установка узла учета тепловой энергии для многоквартирного жилого дома окупается в течение одного отопительного сезона. Если вы уже установили узел учета тепловой энергии и ощутили какой эффект это дает – не останавливайтесь. Можно пойти в этом вопросе дальше. Существует несколько способов снижения потребления энергоресурсов, а как следствие сокращение своих затрат.

Основные способы экономии энергии: автоматическое регулирование температуры теплоносителя в системе отопления и сокращение теплопотерь ограждающих конструкции.

Первый способ экономии энергии, получаемый при установке системы автоматического регулирования, объясняется двумя факторами. Во-первых, автоматическое регулирование позволяет поддерживать оптимальную температуру в помещении, исходя из температуры наружного воздуха, сокращая расход теплоносителя из теплосети в периоды резких колебаний температуры. Это происходит за счет повторного использования части теплоносителя в системе отопления здания, так как для обеспечения необходимой температуры требуется гораздо меньшее количество теплоносителя из теплосетей. Этот вариант подходит для жилых, общественных и административных зданий. Во-вторых, для производственных предприятий, благодаря автоматическому регулированию, мы можем устанавливать необходимую нам температуру теплоносителя в то время, когда помещение не используется (в ночное время, праздничные и выходные дни). Таким образом, происходит сокращение расхода тепловой энергии, а, следовательно – экономия тепловой энергии. Утвержденные нормативы потребления тепловой энергии в настоящее время не отражают реального картины потребления теплоносителя зданиями и являются завышенными.

Установка узла учета тепловой позволяет перейти к расчетам за фактическое потребленное количество энергоресурса, а также заняться снижением его потребления.

Регулирование подачи теплоносителя энергоснабжающей организацией осуществляется не в полном объеме, что приводит к явному перерасходу энергоресурса, а как следствие затрат на отопление.

Наличие хорошо работающей системы автоматизации отпуска тепловой энергии непосредственно в здании, а также правильная организация и наладка системы отопления позволяют значительно снизить потребление тепловой энергии для нужд отопления. При подключении системы отопления здания по зависимой схеме (без ЦТП) затраты на отопление можно сократить до 50 % в переходный период, а при подключении системы отопления по независимой схеме (регулирование на ЦТП) затраты можно снизить на 10-15 % в зависимости от качества регулирования на ЦТП. Также устройство автоматизации отпуска тепловой энергии позволит добиться оптимально комфортных условий внутри жилых помещений, улучшив условия проживания жителей.

Актуальность систем автоматического регулирования расхода тепловой энергии

Необходимо отметить, что пароводяное теплоснабжение очень специфично, требует одновременного решения вопросов гидродинамики и теплопередачи; кроме того, тепловая энергия – особенный вид энергии, ее параметры должны контролироваться в обоих направлениях от источника к потребителю и наоборот, поэтому применение систем автоматического регулирования предлагаем рассматривать с учетом технико-экономических приоритетов.

Экономический смысл установки систем автоматического регулирования существует как и без установки приборов учета, так и после установки приборов учета тепловой энергии.

В первом случае система регулирования, регулируя расход тепловой энергии существенно снижает затраты теплоснабжающих организаций в то время как потребители оплачивают тепло по утвержденному тарифу.

Во втором случае потребители оплачивают за фактически потребленное тепло с учетом экономии, которая составляет в среднем от 10% до 30%. Повсеместно устанавливаются общедомовые приборы коммерческого учета тепла. Установка только теплосчетчиков не может уменьшить суммарные затраты на производство и передачу тепловой энергии. Действительно, если теплосчетчики будут установлены всюду, потребители все равно будут оплачивать поставщику тепла все издержки.

Большие резервы экономии имеются в социальной сфере: поликлиники, школы, в общественных, административных зданиях, прежде всего потому, что в них имеются периоды отсутствия людей в отапливаемых помещениях, во время которых возможно задавать заниженные параметры обеспечения теплом и горячей водой без нарушения комфорта в рабочее время. Т.е. при пуско-наладочных работах системы регулирования, например, в школе, возможно сразу заложить экономичный режим потребления тепла этим объектом на период зимних каникул.

В жилых домах неприменимо программное снижение температуры в помещениях. Но имеется возможность раздельного регулирования фасадов одного здания при разных условиях воздействия солнечного освещения и других климатических факторов. Для этого используется двухконтурные регуляторы температуры, в каждый контур которого вводится одинаковая программа регулирования.

Важным фактором энергосбережения для многих объектов является ликвидация осенне-весенних перетопов, когда для целей подготовки горячей воды на объекты подается теплоноситель с заведомо завышенной температурой при положительных температурах наружного воздуха, выше так называемой точки «срезки» температурного графика. В домах, где имеется бойлер для подготовки горячей воды, поскольку в периоды отсутствия разбора горячей воды теплоноситель циркулирует через бойлер-теплообменник напрасно, снижая также его эксплуатационный ресурс, кроме того, изменения параметров теплоисточника очень инерционно распространяются по тепловой сети, что корректируется внутридомовыми регуляторами температуры. По санитарным нормам требуются различные температурные условия в помещениях, а это не всегда реализуется при одинаковой температуре теплоносителя. С учетом всех этих факторов необходимо модернизировать системы теплопотребления с помощью современных систем качественно-количественного регулирования.

В идеальном случае существует эффект от применения систем автоматического регулирования вплоть до каждого отопительного прибора, стояка, калорифера и т.д. Наш более чем многолетний опыт подтверждает эффективность их применения.

Оборудование и его применение

Энергосберегающее оборудование позволяет создавать системы различного назначения и сложности: одно- и двухконтурные, с дополнительными функциями управления насосами или накопления и обработки статистической информации о ходе процесса регулирования. Но за всем этим должен стоять комплексный экономический подход, который включает следующие параметры: учет взаимовлияния объектов и систем теплоснабжения, санитарно-гигиенические требования, комфорт, снижение эксплуатационных издержек, достоверность теплоучета и экономия топливно-энергетических ресурсов. Системы автоматического регулирования включают в себя электронные регуляторы температуры, датчики температуры, электроприводы с импульсным шаговым двигателем, регулирующую и запорно-регулируюшую арматуру. К последней относятся запорно-регулирующие клапаны, смесительные регулирующие клапаны и регулирующие гидроэлеваторы.

Важную роль здесь играют регуляторы температуры, посредством которых осуществляется управление регулирующими звеньями. С 2010 года выпускается регулятор температуры РТ-2010, представляющий собой обновленный и усовершенствованный вариант предшественника РТ-2000А и имеющий дополнительно возможность установки интерфейса RS485; исполнительный механизм для клапанов и элеваторов МЭП-3500, отличающийся от своих предшественников и конкурентов не только конструктивом, но и набором дополнительных функций.

Далее рассмотрим распространенные системы отопления и горячего водоснабжения.

Схема с регулирующим гидроэлеватором очень распространена для объектов, получающих с теплоисточника перегретый теплоноситель. Не допускается применять ее только на объектах с гидравлическими проблемами где перепад давления между подающим и обратным трубопроводом менее 6 метров водяного столба (0,06 МПа). Элеваторы РГ обеспечивают качественное регулирование за счет смещения прямого и обратного теплоносителя. Регулирующий элеватор не требует применения дополнительного насоса, так как одним из элементов его конструкции является струйный насос. Поэтому применение регулирующих гидроэлеваторов, особенно на объектах ЖКХ, снижает монтажные и эксплуатационные расходы и не приводит к нештатным ситуациям при сбоях в электропитании. В аварийных случаях остановка насоса в системе отопления требует неотложных мер, чтобы не допустить замораживания системы. Схема с регулирующим гидроэлеватором лишена этого недостатка и исключаются затраты насоса и на строительно-монтажные работы следовательно значительно ниже.

Для других схем отопления имеется большая гамма запорно-регулирующих клапанов. Если, в соответствии с техническими условиями на объекте установка насоса необходима, то насос может быть установлен на обратном трубопроводе или перемычке. Однако данную схему нельзя применять на теплопунктах, подключенных к ЦТП (график теплоснабжения – 95˚/70˚ С).

Применение запорно-регулирующих клапанов наиболее эффективно в системах автоматического регулирования, допускающих 100%-ное перекрытие подачи теплоносителя. Прежде всего, это – горячее водоснабжение.

Распространены открытые системы ГВС, они сложно поддаются регулировке. По нашему опыту применение двухходовых клапанов не обеспечивает требуемые параметры по температуре горячей воды, обратного теплоносителя и по уровню шумов. Ввиду этого нами предлагаются трехходовые смесительные клапаны КСТ.

На базе энергосберегающего оборудования производим и компактные блочные тепловые пункты, объединяющие в той или иной степени многие схемные решения.

Одним из важнейших направлений, которое в последнее время стало актуальным и востребованным – диспетчеризация объектов регулирования. Так же на базе оборудования предусмотрена возможность реализации подобных систем. Разработаны и широко используются регуляторы температуры РТ-2010, РТ-2000А, которые снабжены интерфейсом RS232 (RS485), по средствам которого имеется возможность удаленного управления систем регулирования.

На сегодняшний день на базе регуляторов уже смонтированы и запущены системы диспетчеризации, включающие кроме регулирования (регуляторы температуры) еще и учет (теплосчетчики).

Разработанные исполнительные механизмы клапанов МЭП-3500 могут снабжаться токовым выходом, дополнительными релейными выходами для определения положения механизма. Это существенно выделяет этот привод на фоне конкурентов. Установка в привода МЭП-3500 интерфейса RS485 позволяет включить их в общую систему диспетчеризации на ряду с регулятором температуры и счетчиком. К реализации подобного проекта уже проявляется интерес со стороны организаций, занимающихся разработкой контроллеров диспетчерского контроля и сбора данных с объектов.

Экономическая эффективность от автоматизации ИТП

При проектировании ИТП кроме требований СНиП проектировщик должен руководствоваться техническими условиями на теплоснабжение объекта с четкими данными о гидравлических параметрах и температурных графиках. Вне зависимости от изготовителя системы автоматического регулирования могут включать комплект регуляторов с датчиками, запорно-регулирующие и смесительные клапаны, насосы, шкафы автоматики и управления, КИП, прочую арматуру. Одним контроллером там, где это необходимо, управляются системы отопления и ГВС.

Рассмотрим применение регуляторов температуры в жилых зданиях. При расчете экономической эффективности применения регулятора температуры отопления с регулирующим гидроэлеватором для 108-квартирного здания экономия составляет 11%, установка оборудования окупается за 0,78 года. В расчете использован только один фактор – перерасход тепла из-за осенне-весенних перетопов. Если второй контур системы регулирования задействован на регулирование тепловой энергии для подогрева горячей воды экономический эффект еще возрастет.

Экономические показатели системы регулирования отопления и ГВС: суммарная экономия составляет более 15%, окупаемость от внедрения системы регулирования – менее 0,5 года.

Расчеты показывают, что для домов с числом квартир 80 и более затраты на внедрение систем автоматического регулирования окупаются менее, чем за 1 год. На объектах, где удельные затраты на энергосберегающее оборудование и его монтаж на 1 Гкал больше срок окупаемости увеличивается, например при числе квартир менее 80 или на небольших объектах социальной сферы. Рассмотрим для примера детский сад. Система автоматического регулирования отоплением включает регулирующий гидроэлеватор и микропроцессорный блок управления им по сигналам с термодатчиков. Окупаемость проекта – 0,94 года. Преимущества данной схемы:

– высокая надежность и безаварийность даже при временном пропадании электропитания, т.к. элеватор выполняет и функцию насоса;
– возможность введения гибкого графика регулирования с учетом ночного времени, выходных и праздничных дней на весь отопительный сезон;
– оптимизация температурного комфорта в помещениях благодаря возможности задания предварительного натопа перед рабочим временем;
– обязательный контроль параметров обратного теплоносителя.

Если на аналогичном объекте имеется подготовка горячей воды и установить регулятор расхода на ГВС, то удельные затраты на автоматизацию теплопункта будут ниже: электронный блок используется тот же, добавляется к нему датчик температуры горячей воды и для ГВС дополнительно используется запорно-регулирующий клапан. Экономический эффект возрастает до 30% при окупаемости 0,72 года.

Все технико-экономические расчеты, особенно при внедрении новых проектных решений, мы поверяем с помощью специальных средств мониторинга, данных коммерческого приборного учета.

В заключении хотелось бы отметить, что сбережение топливно-энергетических ресурсов на основе использования систем автоматического программного регулирования теплопотребления реализуемо и экономически оправдано. Этому процессу нет альтернативы.

Приобрести широкий спектр современного оборудования для автоматизации по выгодным ценам можно в нашем фирменном магазине.

xn--e1ag0ac.xn--p1ai

Настройка системы отопления | Наладка отопления

      Здравствуйте! В данной статье я рассмотрю типовой, скажем так, случай наладки и регулировки внутренней системы отопления здания. А именно, системы отопления с элеваторным узлом смешения. По моим наблюдениям, таких ИТП (тепловых пунктов) примерно процентов 80-85 от общего количества теплоузлов. Про элеватор я писал в этой статье.

      Наладка элеваторного узла производится после наладки оборудования ИТП. Что это значит? Это значит, что для нормальной работы элеватора у вас в тепловом пункте должны быть известны рабочие параметры от теплоснабжающей организации по давлению и температуре в подающем трубопроводе (подаче) P1 и T1. То есть, температура в подаче T1 должна соответствовать температуре по утвержденному на отопительный сезон температурному графику отпуска тепла. График такой можно и нужно взять в теплоснабжающей организации, это не тайна за семью печатями. И вообще такой график должен быть у каждого потребителя теплоэнергии в обязательном порядке. Это ключевой момент.

     Затем давление в подаче P1. Оно должно быть не меньше необходимого для нормальной работы элеватора. Ну обычно теплоснабжающая организация рабочее давление по подаче все таки выдерживает.

     Далее необходимо, чтобы регулятор давления, или регулятор расхода, или дроссельные шайба были правильно отрегулированы, настроены. Или как я обычно говорю, «выставлены». Об этом я как нибудь напишу отдельную статью. Будем считать, что все эти условия соблюдены, и можно приступать к наладке и регулировке элеваторного узла. Как это обычно делаю я?

     Первым делом я стараюсь посмотреть проектные данные по паспорту ИТП. Про паспорт ИТП я писал в этой статье. Здесь нас интересуют все параметры, что касаются элеватора. Сопротивление системы, перепад давлений и т.д.

      Во вторых, проверяю по возможности соответствие факта и рабочих данных из паспорта ИТП.

     В третьих, смотрю и проверяю поэлементно элеватор, грязевики, запорнуюи регулирующую арматуру, манометры, термометры.

      В четвертых, смотрю перепад давлений между подачей и обраткой (располагаемый напор) перед элеватором. Он должен соответствовать или быть близким к расчетному, просчитанному по формуле.

      В пятых, по манометрам после элеваторного узла, перед домовыми задвижками смотрю потери давления в системе (сопротивление системы). Они не должны превышать 1 м.вст. для зданий до 5 этажей, и 1,5 м.в.ст. для зданий от 5 до 9 этажей. Это в теории. Но и по факту, если у вас потери давления 2 м.в.ст. и выше, то скорее всего, возникнут проблемы. Если у вас шкала делений на манометрах после элеваторного узла в кгс/см2 (более частый случай), то смотреть показания нужно так, если на подаче показания манометра 4,2 кгс/см2, то на обратке должно быть 4,1 кгс/см2. Если же на обратке 4,0 или 3,9 кгс/см2, то это уже тревожный сигнал. Конечно, здесь нужно учитывать, что манометры могут давать погрешность измерений, всякое бывает.

      В шестых, проверяю, каков коэффициент смешения элеватора. Про коэффициент смешения я писал здесь. Коэффициент смешения должен соответствовать расчетному, или быть близким по значению к нему. Коэффициент смешения определяем по температурам теплоносителя, которые берем либо с мгновенных показаний теплосчетчика, либо с ртутных термометров. Причем здесь нужно учитывать, что чем больше перепад температур в системе отопления, тем точнее можно просчитать коэффициент смешения. Соответственно, чем меньше перепад температур в системе, тем более высока может быть погрешность в определении коэффициента смешения элеватора.

      Нечасто, но бывает так, что разность давлений между подачей и обраткой перед элеватором (располагаемый напор) является недостаточным для обеспечения необходимого коэффициента смешения. Это, я бы так сказал, тяжелый случай. Если теплоснабжающая организация не может (или не хочет) обеспечить вам необходимый перепад давлений, то скорее всего вам придется переходить на схему с циркуляционным насосом.

      Наладку элеватора можно считать удовлетворительной и законченной, если принятый размер сопла обеспечивает необходимый расход сетевой воды и коэффициент смешения элеватора.

      После наладки элеваторного узла приступают к наладке системы отопления здания. Сначала смотрят схему разводки системы отопления по зданию (если она есть, конечно). Если нет, я просматриваю разводку отопления по зданию визуально. Хотя визуальный осмотр необходим в любом случае. Здесь необходимо узнать, какая разводка , верхняя или нижняя, какие отопительные приборы установлены, есть ли на них регулирующая арматура, есть ли балансировочные краны на стояках отопления, терморегуляторы на отопительных приборах, есть ли устройства для удаления воздуха в верхних точках.

       Наладка системы отопления включает в себя проверку и регулировку системы как по горизонтали (распределение теплоносителя по стоякам), так и по вертикали (распределение теплоносителя по этажам).

       Сначала проверяем прогрев нижних точек всех стояков. Можно делать это на ощупь. Но в этом случае лучше, чтобы температура воды была 55-65 °С. При более высокой температуре трудно уловить степень прогрева. Нижние точки стояков отопления, как правило, находятся в подвале здания. Хорошо, если на всех стояках установлена хоть какая — то регулирующая арматура. Это вообще необходимо, но к сожалению, не всегда бывает по факту. Отлично, если на стояках установлены балансировочные клапаны. Тогда перегревающиеся стояки прикрываем регулирующей арматурой.

      Но лучше, конечно, проверку распределения воды по стоякам производить с помощью замеров температур в подаче и обратке. Хотя это более трудоемкий вариант.

      Так, например, температуру обратки T2 в двухтрубной системе следует принимать с учетом остывания температуры воды в подаче. Если по графику T1 = 68 °С, а фактическиT1 = 62 °С, T2 по графику равна 53 °С. В этом случае расчетная температура T2 = 62- (68-53) = 47 °С, а не 53 °С.

      Вообще, в результате регулировки по стоякам должна быть примерно одинаковая разность температур воды у входа и выхода ее из всех стояков.

      Далее производится регулировка по отдельным отопительным приборам. У меня на многих объектах установлены ручные прямые регулирующие краны.

Очень хорошая штука для регулировки. Еще лучше, если у вас установлены на отопительных приборах терморегуляторы. Тогда регулировка производится в автоматическом режиме. Замеры температуры отопительных приборов проводим с помощью пирометра.

      Наладка элеваторного узла и системы отопления считается удовлетворительной, если достигнута равномерная температура отапливаемых помещений здания.

       На тему устройства и настройки  тепловых пунктов  я написал книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно. Вот содержание книги:

1. Введение
2. Устройство ИТП, схема без элеватора
3. Устройство ИТП, элеваторная схема
4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.
5. Заключение

Просмотреть книгу можно по ссылке ниже:

Устройство ИТП (тепловых пунктов) зданий


teplosniks.ru

Способы регулировки температуры систем отопления

Регулировка температуры систем отопления

Регулировка температуры систем отопления

Регулировка температуры отопления в собственных домах позволяет достигать более комфортного пребывания в помещениях в отопительный сезон.

Как делалось это раньше? Ни а какой регулировки температуры систем отопления и речи не было. Были печи, контрамарки и их растапливали до условного состояния «тепла». И как итог, зачастую в первый день после топки в доме было через чур жарко, на второй самый раз, а на третий день приходилось топить опять.

С появлением систем водяного отопления ситуация немного улучшилась и благодаря водяному отоплению получили свое развитие способы регулировки температуры систем отопления.

Точное регулирование температуры систем отопления решает две особо важные задачи:

  • Максимально комфортное пребывание в доме, где используется именно та температура, которую Вы задаете;
  • Экономия энергоносителей и Ваших денег за счет точной регулировки.

2 способа регулировки систем отопления

По сути, существует два метода регулировки температуры.

  1. Количественный. Это метод изменения скорости движения нагретой воды с помощью специальной запорной арматуры или же циркуляционного насоса. По факту мы ограничиваем подачу теплоносителя в систему через отопительное оборудование.

Самый простой пример реализации данного способа – это изменение скорости работы насоса. Чем холоднее, тем сильнее работает насос и тем с большей скоростью перемещает теплоноситель по системе отопления.

  1. Качественный. Данный метод подразумевает регулировку температуры всей системы на отопительном приборе (на котле и тд.)

Способы регулировки радиаторов отопления

Самый простой вариант регулировки температуры систем радиаторного отопления – это монтаж термоголовки непосредственно на радиатор.

Принцип работы термоголовки состоит в следующем: Головка заполнена жидкостью. Объем жидкости напрямую зависит от температуры теплоносителя. При нагреве объем жидкости увеличивается и клапан термоголовки закрывается. При остывании происходит обратный процесс.

термоголовка для регулеровки

термоголовка для регулеровки

Такой способ регулировки довольно простой  и надежный. К недостаткам можно отнести ручную регулировку термоголовки на каждом радиаторе.

Более продвинутый способ – это монтаж сервопривода вместо термоголовки с последующим монтажом термостата в помещении и соединения всех узлов в единую систему.

сервопривод для регулировки температуры

сервопривод для регулировки температуры

Звучит на первый взгляд сложно. Но на самом деле все достаточно просто реализуется. На сервопривод кидаете два кабеля. Один на питание, другой на подключение термостата. На термостате задаете нужную температуру и сервопривод автоматически ее регулирует.

Способы регулировки температуры теплых полов

водяной теплый пол улитка

водяной теплый пол улитка

Регулировки температуры отопления теплого пола посвящена уже не одна статья на нашем сайте. Если в кратце, то  есть следующие варианты:

  1. Регулировка температуры теплого пола в связвке с накладным термодатчиком на коллекторе и циркуляционным насосом. Датчик щупает температуру на коллекторе (изначально завышенную) и как только получает нужную, отключает питание у насоса.
    [youtube id=»vtPgQoiYesg»]
  2. Монтаж насоса на подачу в паре с трехходовым клапаном. Благодаря трехходовому клапану происходит подмес теплого пола до нужной температуры.
  3. Монтаж теплого пола с помощью смесительного модуля. В смесительном модуле есть все необходимое для регулировки температуры системы отопления теплого пола.
  4. Аналогичный радиаторному. Монтаж на коллектор сервоприводов в связке с терморегуляторами.

Более подробно прочитайте в статье 4 способа регулировки температуры теплого пола

Как бонус. Вот Вам относительно бюджетный и точный способ регулировки температуры теплого пола:

 

eurosantehnik.ru

Пуск и регулировка систем отопления

Пуск и регулировка систем отопления

Пуск системы отопления. Перед пуском системы отопления проводится внешний осмотр оборудования в результате которого устанавливается соответствие проекту диаметров, уклонов, окраски, теплоизоляции и прокладки трубопроводов, типа и количества нагревательных приборов, правильность установки и исправность запорно-регулирующей арматуры, грязевиков, элеваторов или смесительных насосов, контрольно-измерительных приборов, подпиточных насосов и другого оборудования, правильность установки отопительных приборов.

Пуск системы отопления производится только после промывки и опрессовки, а также проверки качества проведенных на системе работ и наличия рабочих документов и документации на систему и ее оборудование (паспортов, актов промывок и испытаний, рабочих схем, инструкций на оборудование системы).

При массовом включении систем отопления в населенных пунктах рекомендуется для быстрого удаления воздуха из систем следующий порядок пуска систем в действие: при ровном и понижающемся профиле местности от источника теплоты — в направлении от источника к конечным потребителям, а при повышающемся профиле местности от источника теплоты — в направлении от конечного потребителя к источнику.

Пуск в действие системы отопления является ответственным мероприятием по эксплуатации системы, проводится в строгом соответствии с графиком бригадой слесарей, разбитых на пары, каждая из которых выполняет операции при пуске системы на 3—4 стояках. В момент наполнения системы все воздухосборники в верхних точках должны быть открыты. Если в обратном трубопроводе давление выше возможного гидростатического давления в системе отопления, наполнение системы производится плавным открытием задвижки на обратном трубопроводе так, чтобы давление снизилось не более чем на 0,03—0,5 МПа. Если на обратном трубопроводе установлен водомер, то систему наполняют по обводному трубопроводу, а при его отсутствии водомер снимают и на его место устанавливают патрубок с фланцем.

Если давление в обратном трубопроводе ниже возможного гидростатического давления в системе отопления, то наполнение производят следующим образом.

При отсутствии регулятора давления «до себя» — первоначально подачей воды из обратного трубопровода, а затем из подающего трубопровода через подсасывающую линию к элеватору в обратную магистраль, при этом наполнение производят медленно, контролируя показания манометров.

При наличии регулятора давления «до себя» система не может быть заполнена обычным открытием задвижки на обратном трубопроводе: так, при отсутствии воды в системе отопления и циркуляции в ней на клапан регулятора будет действовать одностороннее усилие от пружины, стремящейся закрыть клапан. В этом случае для заполнения необходимо провести следующие операции: открыть воздухосборники в верхней части системы и задвижку на обратном трубопроводе, ослабить пружину клапана, приоткрыть задвижку на подающем трубопроводе и начать медленное заполнение системы со стороны подающего трубопровода. При этом необходимо наблюдать за манометром со стороны системы отопления в тепловом узле здания. Как только давления перед клапаном и за клапаном (на обратном трубопроводе) сравняются, производят натяжение пружины. Ее натягивают до тех пор, пока из системы не будет удален весь воздух, а из воздухосборников будет поступать вода. После этого воздушные краны закрывают и производят дальнейшее натяжение пружины с тем, чтобы давление перед регулятором было равно высоте системы плюс 3—5 м.

При пуске систем отопления в зимнее время кроме вышеуказанных операций необходимо выполнить следующие мероприятия по предупреждению замораживания системы:
1) систему отопления следует наполнять отдельными участками (по 3—5 стояков) начиная с наиболее удаленных участков от ввода; наполнение и пуск стояков и приборов лестничных клеток могут быть осуществлены после наполнения и пуска основных стояков системы отопления здания;
2) стояки и приборы, находящиеся в помещениях, которые сообщаются с наружным воздухом (неутепленные помещения, помещения с отсутствующим остеклением окон, неутепленные проходы, тамбуры и т.п.), должны быть отключены.

Системы отопления с нижней разводкой и горизонтальные однотрубные системы заполняют водой из подающего трубопровода теплосети через обе магистрали — прямую и обратную. Для этого в тепловом вводе устраивают перемычку. При заполнении горизонтальной однотрубной системы вначале заполняют теплоносителем стояк и приборы одного этажа, затем второго и т.д.

В системе отопления с естественной циркуляцией, как правило, заполняют водой все стояки системы без разделения на части. При достаточном давлении в водопроводе систему отопления заполняют водой из водопровода. При недостаточном давлении для заполнении системы используют насос.
Регулирование системы отопления. Важным условием удовлетворительной работы системы отопления является достижение гидравлического баланса. В несбалансированной системе отдельные отопительные приборы или контуры могут быть недостаточно снабжены теплоносителем, в то время как другие получают его с избытком.

После пуска системы отопления в действие определяют расход тепловой энергии, идущей на отопление. При несоответствии требуемым значениям тепловой нагрузки систему отопления регулируют.

Системы отопления зданий и сооружений подвергают регулировке, чтобы обеспечить расчетные температуры воздуха помещений. Для этого замеряют температуру поверхностей нагревательных приборов с помощью термоэлектрических термометров — термощупов (термопар).

Регулирование теплоотдачи систем отопления может быть осуществлено двумя способами:
1) качественным регулированием, т.е. изменением температуры теплоносителя;
2) количественным регулированием, т.е. изменением количества теплоносителя.

Качественное регулирование систем центрального отопления осуществляют централизованно на котельной или на другом источнике теплоты; количественное регулирование — непосредственно на системе отопления здания.

Регулирование системы отопления здания начинается с определения расходов теплоносителя по водомерам и расходомерам, установленным в тепловом пункте.
При отсутствии контрольно-измерительных приборов регулирование системы отопления базируется на проверке соответствия фактических расходов воды расчетным. При этом под расчетным расходом понимается расход воды в системе отопления, обеспечивающий заданную теплоотдачу (потребляемую тепловую энергию). Степень соответствия фактического расхода воды расчетному определяется температурным перепадом воды в системе, при этом фактическая температура воды в тепловой сети не должна отклоняться от расчетной более чем на 2 °С.

Если перепад ниже допустимого, то это указывает на завышенный расход воды и соответственно завышенный диаметр отверстия дроссельной диафрагмы или сопла на входе в систему отопления. Если температурный перепад выше допустимого значения, то это указывает на заниженный расход воды и соответственно на заниженный диаметр дроссельной диафрагмы или сопла. И в том, и в другом случае определяется новый диаметр сопла элеватора.

При невозможности определения фактических потерь напора в системе определение нового диаметра дроссельной шайбы или сопла может быть осуществлено с помощью расчетного значения потерь напора. Если после замены сопла или дроссельной шайбы внутренняя температура отапливаемых помещений будет отличаться больше, чем на 2 °С по сравнению с расчетной, то необходимо вторично изменить диаметр сопла или дроссельной шайбы. Необходимо отметить, что регулировка систем отопления зданий с помощью шайб достигается только в том случае, когда шайбы будут рассчитаны и установлены на вводах всех зданий, подключенных к тепловой сети.

Внутренняя температура воздуха в помещениях зданий измеряется через 3—4 ч после включения в работу системы отопления здания при соблюдении температурного графика воды в подающем трубопроводе. Температура замеряется не менее чем в 15% отапливаемых помещений.

Вследствие того что системы отопления, как правило, регулируют не при расчетной наружной температуре, а при сравнительно высоких наружных температурах в начале отопительного сезона, в системе отопления возникают разрегулировки:
— вертикальная — определяется несоответствием теплоотдачи нагревательных приборов различных этажей требуемым значениям;
— горизонтальная — определяется неравномерным изменением теплоотдачи нагревательных приборов одного этажа.

Вертикальная разрегулировка двухтрубных систем водяного отопления с постоянным расходом воды возникает вследствие неодинакового изменения гравитационного давления в нагревательных приборах разных этажей при изменении наружной температуры. В однотрубных системах вертикальная разрегулировка возникает вследствие изменения расхода воды в системе. Уменьшение расхода приводит к большему охлаждению воды в прибоpax вышележащих этажей; следовательно, в нижние приборы будет поступать сильно охлажденная вода, что резко уменьшит теплоотдачу нижних приборов. Для повышения теплоотдачи нижних приборов можно повысить температуру сетевой воды, но это приведет к повышенной теплоотдаче верхних приборов. В однотрубных системах с замыкающими участками вертикальная разрегулировка, как правило, меньше, чем в однотрубных проточных системах.

Горизонтальная разрегулировка систем отопления возникает из-за охлаждения воды в магистральных трубопроводах и стояках. Превышение теплоотдачи через трубы выше расчетных значений приводит к снижению температуры воды, поступающей в отдельные стояки. В стояках, ближайших к тепловому вводу, температура воды будет выше, чем в стояках, удаленных от теплового ввода.

Разрегулировка систем водяного отопления устраняется в процессе эксплуатационного регулирования систем.

В течение всего времени регулирования температура сетевой воды, поступающей в систему отопления, должна поддерживаться постоянной.

Наибольшей разрегулировке подвергают двухтрубные системы отопления. Такие системы необходимо регулировать при температурах воды в системе, которые соответствуют средней наружной температуре отопительного периода, с поправками на температурный перепад в приборах, расположенных на разных этажах: для приборов верхних этажей — на 1,5—3°С выше нормального, для приборов нижних этажей — на ГС ниже нормального.

Эксплуатационное регулирование систем проводят по требуемому перепаду температур в тепловом вводе путем изменения количества поступающей в систему воды по приведенным выше требованиям в зависимости от типа систем и теплового ввода. Так как перепад температур связан с расходом воды обратно пропорциональной зависимостью, для увеличения перепада температур до требуемого необходимо уменьшить расход воды путем прикрытия задвижки на вводе или, наоборот, увеличить расход при повышенном перепаде температур. Чем больше расход воды через нагревательные приборы, тем больше скорость ее движения, а следовательно, вода в приборе остынет меньше, средняя температура в приборе увеличится, что вызовет его повышенную теплоотдачу.
После завершения наладки в тепловом узле приступают к наладке отдельных стояков системы. В тупиковых системах регулировку производят кранами на стояках, дроссельными шайбами или балансировочными вентилями, установленными на стояках.

Если на стояках имеются только краны, то вначале проводят предварительную регулировку исходя из правила: чем ближе к вводу расположен стояк, тем больше должен быть прикрыт кран, так чтобы на ближайшем стояке кран пропускал минимальное количество воды; на самом дальнем стояке кран должен быть полностью открыт. После предварительной регулировки проверяют прогреваемость каждого стояка и приступают последовательно к регулировке стояков, начиная с самого дальнего и заканчивая самым ближним к вводу.

Если на стояках установлены дроссельные шайбы, то распределение воды по стоякам проверяют по расчетному перепаду температур для системы отопления. Закончив наладку стояков, приступают к регулированию теплоотдачи нагревательных приборов путем замера перепада температур на входе и выходе воды из прибора. При регулировании системы с помощью термощупов допускается отклонение от расчетного значения на ±10%.

Балансировочные вентили — это трубопроводная дросселирующая арматура переменного гидравлического сопротивления, предназначенная для обеспечения расчетного потокораспределе-ния по элементам трубопроводной сети или для стабилизации в них циркуляционных давлений или температур. В настоящее время применяются два типа балансировочных вентилей — ручные и автоматические.

Ручные вентили используют вместо дросселирующих диафрагм (шайб) для наладки системы отопления, в которой либо отсутствуют автоматические регулирующие устройства, либо они не позволяют ограничить предельный (расчетный) расход перемещаемой среды. Ручной балансировочный вентиль представляет собой дросселирующее устройство вентильного типа. Через ручные балансировочные вентили можно не только произвести регулирование системы, но и отключить ее отдельные элементы, опорожнить системы через специальные спускные краны. Настройка вентиля на требуемую пропускную способность определяется высотой подъема шпинделя. Регулирование с помощью ручных балансировочных вентилей производится аналогично регулированию с помощью дроссельных шайб.

Автоматические балансировочные вентили применяются для 1 поддержания постоянной разности давлений между подающим и обратным трубопроводами системы, для обеспечения постоянного расхода теплоносителя или стабилизации его температуры. Вентили устанавливаются на стояках или горизонтальных ветвях системы отопления. При необходимости балансировочный вентиль комплектуется дополнительными устройствами, которые позволяют выполнять следующие дополнительные функции: отключение отдельных стояков или ветвей системы, измерение перепада давления и определение расхода теплоносителя, слив теплоносителя и заполнение системы, выпуск воздуха, предварительную настройку, регулирование с электрическим датчиком температуры, регулирование (контроль) перепада давлений. Регулирование автоматического балансировочного вентиля производится в соответствии с инструкцией по эксплуатации с помощью регулировочного винта, который позволяет изменять проходное сечение клапана и соответственно расход теплоносителя.

В двухтрубных системах вследствие влияния напора перегреваются, как правило, приборы верхних этажей. Если в нижних этажах перегрева нет, то снижают теплоотдачу приборов верхних этажей, уменьшая проходное сечение кранов двойной регулировки. При отсутствии таких кранов перед приборами устанавливают дроссельные шайбы, определив диаметр из условия прохождения через них расчетного расхода воды и приняв потери напора в приборе равными 0,05 м, или уменьшают поверхность нагрева нагревательного прибора. При перегреве приборов в верхних этажах и недогреве в нижних следует с помощью кранов двойной регулировки уменьшить проходное сечение на верхних этажах и увеличить его на нижних. При отсутствии кранов на обратном трубопроводе в стояке между перегреваемыми и недогреваемыми этажами разрешается устанавливать дроссельную шайбу.

При перегреве приборов верхних этажей и недогреве нижних в однотрубных системах с замыкающими участками могут проводиться следующие мероприятия: устанавливают дроссельные шайбы перед приборами верхних этажей; уменьшают поверхность нагрева приборов; демонтируют замыкающие участки у приборов нижних этажей (1-го и 2-го) и при необходимости увеличивают диаметры подводок.

При равномерном недогреве отопительных приборов верхних этажей и одновременном перегреве приборов нижних этажей уменьшают коэффициент смешения элеватора.

Расход воды в отопительных приборах однотрубной системы регулируют по перепаду температуры воды в приборах.

Если краны на стояках отсутствуют, то с помощью кранов на приборах можно одновременно перераспределять расходы воды как по отдельным стоякам, так и по отдельным приборам. Степень открывания кранов при регулировании увеличивается по мере удаления приборов от теплового ввода.

В системах с верхней разводкой, кроме того, степень открывания кранов в пределах стояка уменьшается с движением воды от верхнего этажа к нижнему, а в системах с нижней разводкой она одинакова.

В двухтрубных системах отопления равномерность прогрева приборов повышается с увеличением расхода воды в системе. Для однотрубных систем отопления значительно увеличивать расход воды в системе по сравнению с расчетным не рекомендуется, так как это может привести к поэтажной разрегулировке системы.

Регулирование тупиковой системы требует значительных трудозатрат и времени, так как его проводят в несколько этапов, постепенно приближая теплоотдачу приборов к требуемой.

В двухтрубной системе с верхней разводкой и попутным движением воды, где длина всех циркуляционных колец примерно одинакова, разница в прогреве приборов может быть вызвана только дополнительным естественным давлением (напором), возникающим у приборов верхних этажей. Для этого при наладке прикрывают краны у приборов верхних этажей, при этом степень прикрытия кранов у приборов одного этажа должна быть одинаковой, так как все стояки находятся в равных условиях. После этого окончательно регулируют теплоотдачу приборов.

В системах с нижней разводкой и попутным движением воды дополнительное естественное давление, возникающее у приборов верхних этажей, мало влияет на работу нижележащих приборов ввиду большой длины циркуляционного кольца. Поэтому в таких системах возможны лишь незначительные неравномерности в прогреве отдельных приборов, которые легко устраняются регулированием.

В вертикальных однотрубных системах с попутным движением воды все нагревательные приборы и стояки находятся в равных условиях, и регулирование таких систем не представляет затруднений.

Эксплуатационное регулирование систем отопления с естественной циркуляцией является наиболее простым, так как в таких системах обычно не бывает полностью непрогреваемых приборов.

До начала регулировки краны на всех стояках и у приборов должны быть полностью открыты. Неравномерности прогрева устраняются регулировкой кранов.

Температура воды во время наладки должна поддерживаться в пределах 50—60°С.

По окончании регулировки системы температуру в котлах местной системы отопления доводят до 90°С и при этой температуре еще раз проверяют прогреваемость приборов.

В условиях эксплуатации, как бы хорошо ни была отрегулирована работа системы отопления, действительная температура воздуха в помещениях может быть различной. Надежным показателем нормальной теплоотдачи отопительных приборов является температура теплоносителя в обратных стояках. Пониженная температура указывает на то, что система отопления недополучает из тепловой сети требуемого количества теплоносителя или его температура низка.

Повышенная температура указывает на перерасход теплоносителя по сравнению с расчетным значением или на поступление теплоносителя с температурой выше нормальной по температурному графику.

Читать далее:
Нормативная и проектная документация
Охрана труда при проведении ремонтных работ
Содержание конструкций здания
Себестоимость и рентабельность в строительстве
Техническое и тарифное нормирование
Организация труда в строительстве
Организация управления строительством в ссср
Жилищное строительство в Советском Союзе
Оборудование и устройство систем вентиляции и кондиционирования
Кондиционирование воздуха


stroy-server.ru

Регулировка системы отопления многоквартирного дома и многоэтажного здания

Как производится регулировка системы отопления многоквартирного дома и многоэтажного здания 1Проектированием системы отопления в многоэтажных, многоквартирных зданиях занимаются специальные проектные организации, которые в своей проектной работе руководствуются такими нормативными документами, как ГОСТы, ОСТЫ, ТУ, СНИПы и санитарно-технические нормы.

Согласно требованиям некоторых из них, температура в жилых помещениях должна быть устойчивой в пределах двадцати-двадцати двух градусов тепла. А относительная влажность воздуха 40-30 %. Только при соблюдении таких параметров можно обеспечить комфортные условия для проживания людей.

В основе проектирования системы отопления и регулировки лежит выбор теплоносителя, который обусловлен рядом факторов, включая такой, как доступность и возможность подключения к нему системы отопления домостроения в районе нахождения объекта.

Как производится регулировка системы отопления многоквартирного дома и многоэтажного здания 2

Виды регулировки систем отопления

Регулировка системы отопления многоквартирного дома может осуществляться путем использования в системе труб различного диаметра. Как известно, скорость прохождения и давление жидкости и пара в трубопроводе зависят от диаметра отверстия трубы. Это и позволяет осуществлять регулировку давления в системе путём комбинирования труб с различным диаметром друг с другом.

Трубы с диаметром 100 мм обычно ставятся на входе в подвальных помещениях домов.

Это максимальный диаметр труб, используемый в системе отопления. В подъездах для распределения тепла используются трубы диаметром 76-50 мм. Выбор зависит от размеров здания. Монтаж стояков производится из труб диаметром 20 мм. Концевики «лежаков» закрываются шаровыми кранами с диаметром 32 мм, которые устанавливаются обычно на расстоянии 30 см от крайнего стояка.

Однако такая регулировка системы отопления здания не позволяет эффективно выравнивать гибкое давление в системе. Таким образом, температура в жилых помещениях верхних этажей заметно понижается. Поэтому используется гидравлическая система отопления, которая включает в себя циркуляционные вакуумные насосы и автоматические системы регулирования давления.

Их монтаж производится в коллекторе каждого здания. При этом меняется схема разводки теплоносителя по подъездам и этажам.

При этажности домостроения выше двух этажей использование системы с подкачкой для циркуляции воды обязательно. Регулировка системы отопления многоквартирных зданий осуществляется чаще всего вертикальными системами водяного отопления, которые называются однотрубными.

Как производится регулировка системы отопления многоквартирного дома и многоэтажного здания 3

Недостатки однотрубной системы

К недостаткам можно отнести то, что при такой системе невозможно производить учёт расхода тепла в каждой квартире. А, следовательно, произвести индивидуальный расчёт оплаты за фактическое потребление тепловой энергии. К тому же, при такой системе сложно поддерживать температуру воздуха одинаковую во всех жилых помещениях здания.

Именно поэтому используются другие системы поквартирного отопления, которые устроены по-другому и предусматривают установку счётчиков тепловой энергии в каждой квартире.

В настоящее время существуют различные системы поквартирного отопления. Однако пока устраиваются они в многоэтажных зданиях крайне редко. Это связано с рядом причин. В частности, с тем, что такие системы обладают невысокой гидравлической и тепловой устойчивостью.

Чаще всего в многоэтажных, жилых зданиях используется так называемое центральное отопление.

Теплоноситель при таком отоплении поступает к домостроению от городской ТЭЦ.

В последние годы при строительстве новых жилых домов используется автономное отопление. При таком способе индивидуального отопления, котельная устанавливается непосредственно в подвальном или чердачном помещении многоэтажки. В свою очередь системы отопления делятся на открытые и закрытые. Первые предусматривают разделение подачи горячей воды для жильцов на отопление и другие нужды, а в другом — только на отопление.

Как производится регулировка системы отопления многоквартирного дома и многоэтажного здания 4

Требования к регулировке системы отопления

Требования к системам отопления определяются проектной документацией. Регулировка системы отопления многоквартирного дома производится в соответствии с параметрами, определенными этой документацией. Особой сложностью она не обладает. Системы отопления снабжены терморегуляторами на радиаторах, а также теплосчетчиками, балансировочными клапанами как автоматического, так и ручного регулирования.

Регулировка радиаторов отопления не требует использования специального инструмента.

Производится непосредственно жильцами. Все остальные регулировки производятся обслуживающим систему персоналом.

Как производится регулировка системы отопления многоквартирного дома и многоэтажного здания 5

wikiteplo.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *