Какие радиаторы ставить в квартире: готовы к штрафу после замены? | Фишки Ремонта
Потекли радиаторы от старости — срочно меняем их на новые. Но это еще не повод ставить вместо старых чугунных новые биметаллические батареи. Пускать под замену старые радиаторы из-за того, что прошлой зимой вы немного подмерзли — тоже не самое лучшее решение. Попытки улучшить квартиру могут закончиться судебным иском и немаленьким штрафом.
Когда приходит сантехник, он готов установить то, что вы ему дадите. Помогает выбрать лучшие отопительные приборы из тех, что есть в магазинах и по-своему оказывается прав. Но штраф от этого не меньше. Как проектировщик, расскажу чем аукаются такие переделки с точки зрения теплового баланса дома. Наказание в законах предусмотрено не спроста.
Почему нельзя менять тип радиатора
При расчете системы отопления учитывают много параметров: площадь помещения, высоту потолков, наличие дверей и окон, ориентацию по сторонам света, тип радиаторов и т.д.
Когда теплоноситель течет по стояку, он проходит одну батарею за другой и постепенно отдает тепло в помещения. В радиаторе, который стоит первым на подаче, меньше ребер. По мере удаления от подающей магистрали число секций увеличивается. Это сделано для того, чтобы равномерно отапливать все помещения несмотря на остывание теплоносителя.
Если вы хотите сделать помещение теплее, выход простой — ставить более мощные батареи: добавлять количество секций, менять их на современные алюминиевые или биметаллические. Теперь, когда теплоноситель потечет через вашу батарею, он отдаст большее количество тепла и сильнее остынет. Один жилец «утеплился», второй, третий… до последнего человека на стояке доходит чуть теплая вода.
Если вы замерзаете в квартире, это еще не значит, что дом плохо спроектирован или котельная не топит. Скорее всего кто-то из соседей сделал свою квартиру теплее, поставив более мощные радиаторы.
Выхода два: самим поставить более мощные батареи и заморозить последнего на стояке соседа или привлечь к вопросу ЖЭС, найти виновного, вернуть положенные батареи, восстановив тем самым тепловой баланс дома.
Что можно делать, а что нельзя
Теоретически менять радиаторы на более мощные нельзя. На практике же жильцы часто делают это во время сезонного слива воды из отопления. Но замену такую никто не согласует. Проектировщикам иногда удается «протолкнуть» замену батарей в последней на стояке квартире. Самостоятельное повышение мощности всегда на свой страх и риск. Но это еще не значит, что сделать квартиру теплее нельзя.
Если дом старый, внутри системы отопления может быть много «мусора». Забитые батареи практически не греют. Порой их чистят, а иногда просто меняют на новые. Но тип радиатора остается старым. Чугунные меняем на чугунные, а стальные на стальные. В том числе сохраняем количество секций.
Если все же решились менять тип радиатора
Однозначно плохих и хороших батарей не бывает. Главным критерием остается соотношение цены и качества. Смотрите в технических характеристиках мощность и считайте во сколько обходится вам каждый киловатт.
Уточняйте какой теплоноситель используют в системе отопления. Для воды подходят любые радиаторы. Если залит антифриз, выбирайте предназначенные для него модели.
Если уж меняете радиатор, берите мощность с запасом процентов на двадцать. Уменьшить температуру регулятором всегда можно. А если после замены вы продолжите мерзнуть, будет обидно.
Если получается обойтись без замены радиаторов, старайтесь оставить старые батареи. Решились на замену, будьте готовы к штрафам и восстановлению старой системы.
Больше — не всегда лучше: почему нельзя наращивать батареи
Если зимой в квартире холодно, то первое, что решают жильцы, — увеличить источник тепла, например, добавить секций к батареям. Ведь чем больше площадь обогревателя, тем теплее в квартире. С одной стороны, логично, а с другой — в корне не верно. Разберемся на примере абаканской многоэтажки, почему этого делать нельзя.
Батарея моя — не моя
Обычный многоквартирный дом в центре Черногорска, улица Калинина, №10. Таких только в столице Хакасии больше сотни. Как и любой другой многоквартирный дом, это целая система, в которой каждая квартира — звено единой цепи. В домах есть общее имущество, которое принадлежит всем, а обслуживают управляющие компании. Например, внутридомовая система отопления: стояки, радиаторы, полотенцесушители, задвижки и общие счетчики. Часть оборудования находится в подвале, и доступ к нему ограничен, а часть располагается в квартирах. И батареи, которые обогревают вашу квартиру, — не ваши, а общие.
Скачать
Может ли собственник сделать что-то с батареями в квартире? Конечно. Например, покрасить. Все остальное нужно согласовывать с управляющей компанией. Именно она ответственна за содержание общедомового имущества. Если собственник сам решает перенести или увеличить батарею без разрешения управляющей организации, ему грозит ответственность за переустройство жилого помещения, так как это является нарушением Жилищного кодекса РФ. Замену батарей и труб управляющая организация может согласовать, а вот увеличение секций радиаторов отопления в многоквартирном доме запрещено.
Да кто ж заметит?!
Так думают многие. Но раскроем небольшую тайну специалистов тепловой инспекции: проблемы не заставят себя долго ждать. И первый «звоночек» — снижение температуры и увеличение расхода в системе отопления. Сначала это видно на приборах теплового узла, а чуть позже изменения ощутят на себе жители всего дома.
Скачать
Теперь дело за малым — вычислить нарушителя. Сделать это не сложно. Как только в квартире устанавливают «прокачанные» батареи, которые потребляют больше тепла, жильцы последующих квартир получают его меньше. Это и есть нарушение гидравлического режима. А с понижением температуры в квартирах растет число обращений в управляющую компанию. Вот так со временем тайное становится явным.
Нужно ли все это, если есть альтернатива?
Рассказываем, что делать, чтобы следующей зимой в квартире было тепло.
- Обратитесь в свою управляющую компанию. Нужно проверить тепловой узел, батареи и в целом гидравлический режим дома. Если проблему не удалось найти, возможно, дело именно в вашей квартире.
- Подготовьте к холодам двери, окна (кстати, управляющая компания должна проследить за состоянием окон и дверей в подъезде, от этого тоже много зависит). Все в целом это называется «тепловой контур дома».
- Максимально откройте батареи: поступлению тепла в комнату не должна мешать ни мебель, ни декоративные решетки на радиаторах.
Вот так зимой будет теплее, и главное — без нарушения законов.
Какие радиаторы отопления лучше для квартиры
Какие радиаторы отопления лучше для квартиры? Выбираем идеальную батарею.
Каждый человек, так или иначе, сталкивается с заменой батарей отопления. Выход из строя старых, некомфортная температура, ремонт – причина неважна, главное, что к замене радиатора необходимо подойти грамотно и аккуратно, ведь от него зависит, насколько приятно вам будет находиться дома. Чтобы вы могли назвать свою батарею идеальной, важно заранее определить требуемые характеристики и разобраться, какие радиаторы отопления лучше ставить в квартире.
Этап первый. Выбираем тип радиатора
У наших бабушек и дедушек не было особого выбора: рынок предлагал им только чугунные батареи и ограниченный ряд моделей. Нам повезло больше, и современные магазины готовы предложить сотни вариаций. Чтобы понять, какой радиатор отопления выбрать для квартиры, необходимо узнать о недостатках и достоинствах каждого типа.
Секционные радиаторы из чугуна
При словах «чугунный радиатор» многие представляют огромных и неаккуратных «монстров» из сталинских квартир. Однако сегодня дизайнеры научились делать модели, которые нельзя не назвать произведением искусства: элегантные формы, огромное количество оттенков, декоративные элементы – все это делает их привлекательными. Чугунные батареи – качество, проверенное временем, ведь они:
- Долговечны. Во многих домах они стоят больше полувека.
- Надежны. Их конструкции нестрашны случайные механические повреждения.
- Неприхотливы к низкому качеству теплоносителя, что делает их идеальными для систем с естественной циркуляцией.
- Стоят зачастую дешевле алюминиевых, и всегда – биметаллических.
- Имеют неплохие показатели теплопроводности и инерционности. При отключении или поломке остывать они будут долго, сохраняя тепло.
Обратите внимание! Из-за высокой инерционности данные батареи не ставят в системы с регулировкой в автоматическом режиме!
Нынешние батареи отопления из чугуна
имеют привлекательный внешний вид
Однако именно приборы для обогрева из чугуна чаще всего меняют, потому что:
- При прочности к механическим повреждениям, они уязвимы к сильным гидроударам, потому неприменимы в нестабильных системах.
- Они много весят. Снять его и отремонтировать в одиночку – крайне трудная задача.
- Они подвержены к снижению теплоотдачи. Из-за неровных внутренних стенок примеси, характерные для воды наших широт, накапливаются и забивают каналы, из-за чего теплоотдача понижается.
- Для их стабильной работы необходим большой объем теплоносителя, что неэкономно.
Озвученное позволяет сделать вывод о том, что выбор чугунных моделей оптимален больше для частных домов, где исключены гидроудары, а теплоноситель отличается большей чистотой.
Радиаторы из стали
Существует два типа радиаторов из стали: панельный и трубчатый. Панельный не так популярен в нашей стране, как, например, в Америке, поскольку наши водопроводные системы отличаются, и он является наиболее оптимальным для частных домов.
Для панельных радиаторов предпочитаемые условия использования —
для частного дома, нежели иного жилья.
Однако панельные стальные радиаторы отопления имеют место, поскольку они характеризуются:
- Широким габаритным и дизайнерским модельным рядом, что позволяет подобрать батарею даже для нестандартных по размеру ниш и проемов.
- Оптимальными показателями теплоотдачи.
- Низким потреблением теплоносителя, что экономно.
- Устойчивостью к ржавчине.
- Возможность обновить вид батареи при помощи краски.
Достоинства стальных батарей вытекают из их конструкции. Эти устройства производятся из 2 стальных листов, между которыми имеются каналы для движения воды. Высокоуглеродистая сталь сама слабо подвержена коррозии, чтобы увеличить этот параметр радиаторы покрываются изнутри и снаружи порошковой эмалью.
Устройство стальной модели с пояснениями:
Из недостатков стальных радиаторов можно выделить:
- Уязвимость к гидроударам. Так, при гидроударе, превышающем 12 атмосфер, велика вероятность разрыва секции.
- Уязвимость к низкому качеству теплоносителя, что объясняется отсутствием внутренней защиты. Если жесткий теплоноситель повредит покрытие, то в этом месте постепенно начнет образовываться ржавчина, что выведет из строя радиатор.
- Срок использования такой батареи колеблется в пределах 15 лет.
- Необходимость устанавливать запорную арматуру.
Трубчатые отопительные приборы имеют лучшие по сравнению с панельными характеристики. Так, они выдерживают давление до 15 атмосфер, отличаются более эстетичным дизайном, лучше защищены от коррозии, однако и стоят дороже.
Если же вы определились, что хотите отопительный прибор из стали, но не можете выбрать его тип, то предпочтите трубчатый. Такие батареи отличаются более высокой надежностью и долговечностью.
Если перед вами дилема: какой стальной радиатор выбрать,
то рекомендуем отдать предпочтение трубчатому
Отопительные приборы из алюминия
Рассматривая, какой радиатор отопления лучше выбрать для квартиры, многие останавливаются на алюминиевых моделях. Когда говорят о достоинствах, упоминают, что их можно собирать и разбирать самостоятельно, учитывая площадь и особенности помещения. Однако умалчивают, что делать это затруднительно, да и редко когда необходимо (за исключением ремонта конкретной секции), и у использования алюминиевых батарей есть более объективные плюсы:
- Низкая инерционность, из-за чего радиаторы быстро прогреваю помещение до комфортной температуры.
- Широкий модельный ряд и небольшой вес.
- Высокая мощность, что позволяет добиться теплой температуры даже в холодные зимние ночи.
- Эстетичный и универсальный дизайн.
- Рабочее давление до 20 атмосфер, чего достаточно для централизованных систем (снижает риск повреждения при гидроударе).
- Средняя цена, которая варьируется в зависимости от количества секций.
Алюминиевый радиатор Global
Казалось бы, можно хоть сейчас идти и покупать алюминиевый радиатор, однако и у этого прибора есть свои минусы:
- При отключении системы батарея быстро остывает и не может поддерживать комфортный температурный режим.
- Уязвимость к появлению коррозии.
- Требовательность к pH воды, поскольку жесткие примеси повреждают стенки.
- Уязвимость к механическим повреждениям, поскольку алюминий – гибкий металл.
Обратите внимание! Категорически запрещено ставить на изделия из алюминия медные или латунные фитинги, поскольку химическая реакция приведет к быстрому появлению ржавчины и порче прибора.
Совет:
Чтобы быть уверенным в том, что алюминиевая модель прослужит максимального долго, выбирайте модели с полимерным покрытием.
Биметаллические отопительные приборы
Биметаллические батареи без прикрас лучшие радиаторы отопления для квартиры. Их особенность в объединении преимуществ 2-х металлов, а именно стали и алюминия. Стальные каналы, по которым движется теплоноситель, устойчивы к коррозии, передают тепло алюминиевым панелям, отличающимся высокой теплоотдачей. Благодаря такой конструкции биметаллические батареи:
- Отличаются высокой прочностью, выдерживают даже сильные гидроудары, которые пусть и редко, но встречаются в централизованных отопительных системах.
- Могут использоваться при любом качестве теплоносителя и не теряют в теплоотдаче или запасе прочности при низком pH воды.
- Характеризуются продолжительной эксплуатацией. Пользоваться такой батареей можно больше 20 лет.
- Сохраняют комфортный температурный режим при небольшом объеме теплоносителя.
Отопительные приборы из биметалла имеют более высокую стоимость,
однако, больше подходят для квартиры
К недостаткам биметаллических батарей можно отнести:
- Высокую относительно других типов стоимость.
- Низкую вероятность засора коллекторов. Трубки в радиаторах узкие из-за чего может произойти засор, что легко решается чисткой.
- Уязвимость к высокой концентрации кислорода в воде. При таких условиях сталь окисляется, что может привести к появлению коррозии, однако от такого не защищен любое устройство.
Высокая стоимость биметаллических батарей полностью оправдывается отличными эксплуатационными данными и окупается долгим сроком их службы.
Как выбрать радиатор отопления для квартиры
Чтобы не жалеть о выборе батареи, важно внимательно рассмотреть не только предлагаемые типы, но и факторы, которые будут влиять на их работу. К таковым можно отнести:
- Функциональное давление. В характеристиках вы найдете пункты с рабочим и испытательным, но для вас важно именно функциональное, поскольку оно должно быть выше остальных. Это объясняется тем, что без замеров вы не можете точно знать, каким будет среднее давление в вашей отопительной системе: для старых хрущевок этот параметр варьируется в пределах 6-8 атмосфер, а для новых домов – 10-12.
- Устойчивость к гидроударам. Как бы вас не пугали производители и статьи в интернете, сильные гидроудары не такая частая проблема, во многом это зависит от работы коммунальных служб. Однако, если от старого радиатора в период подготовки к отопительному сезону вы слышали щелчки или гул, то лучше подобрать новый с высоким запасом прочности.
- Устойчивость к плохому качеству воды. В нашей стране теплоноситель не отличается высоким качеством независимо от того, новый или старый дом. Для многоквартирных домов оптимально использовать модели батарей с большой толщиной стен и защитным слоем, что позволит переносить постоянное трение из-за жестких частиц.
- Показатель теплоотдачи. Именно от этого параметра зависит, насколько тепло будет в вашей комнате.
- Эстетика. Дизайн – дело вкуса, но не стоит ограничивать себя и брать «некрасивую» модель только потому, что у него хорошие характеристики: всегда найдет оптимальный аналог.
- Длительность эксплуатации. Определить этот параметр заранее вы не сможете, поэтому лучше ориентироваться на тот, что указан в паспорте.
Мощность некоторых популярных образцов:
Это основные параметры, на которые стоит обращать особо пристальное внимание во время выбора модели батареи.
Этап третий.
Поговорим о мощности и секцияхПрежде чем выбрать устройство, важно рассчитать, сколько секций вам понадобится при определенной мощности. Это необходимо, чтобы минимизировать расходы на оплату счетов, при этом сделать каждую комнату теплой.
Прежде чем приступить к расчетам, следует учесть параметры, озвученные в СНиПе:
- Устройство не должно быть шире 70% от окна.
- Лучше устанавливать отопительный прибор по центру от линии окна
- Следует соблюсти расстояние между стенкой и батареей минимум в 3 см.
- Батарея должна быть выше напольного покрытия, однако не более, чем на 12 см.
- Следует оставить расстояние от подоконника до батареи в 5 см.
Соблюдение этих требований делает расчеты более точными и объективными.
Материал | Мощность одной секции |
Чугунный | От 80 до 150 Вт |
Стальной | От 450 до 5700 Вт (на всю батарею) |
Алюминиевый | 190 Вт |
Биметаллический | 160 Вт |
Рассчитываем мощность
На показатели требуемой мощности влияет:
- Панельный или кирпичный ваш дом.
- Какую площадь занимает ваша комната.
- Сколько окон в ней находится, и какого они типа (рамы из дерева или пластика).
- Есть ли внешние стены.
Определить, как будет влиять каждый показатель, трудно, проще ориентироваться на стандартизированные примеры. Так, для помещений, где потолки имеют высоту 3 метра, есть 1 деревянный оконный проем и дверь, рекомендуют брать батарею с мощностью от 90 Вт до 120 на 1 кв. метр.
Обратите внимание! Если вы хотите сделать расчеты более точными, то воспользуйтесь простыми формулами:
- Для начала умножьте площадь помещения на 100 ватт.
- При наличии в нем одного окна и 2 наружных стенок увеличьте полученный результат на 20%.
- При наличии 2 окон и 2 наружных стенок увеличьте полученный результат на 30%.
- Если окно находится на севере или северо-востоке, приплюсуйте 10%.
- Если хотите поставить батарею в углубление, прибавьте 5%.
- Если планируете закрыть устройство экраном сплошного типа, приплюсуйте 15%.
Рассчитываем число секций
Чтобы посчитать, сколько секций необходимо для поддержания комфортной температуры, нам нужно знать среднюю мощность каждой. Узнать точное значение можно в паспорте отопительного прибора, средние же параметры будут таковы (в ваттах):
- Радиатор из чугуна – 80-150.
- Радиатор из стали – 450-5700 (последняя цифра для панельных, поскольку они не имеют секций).
- Радиатор из алюминия – 190.
- Биметаллические отопительные приборы – 160.
Такой расчет примерен и подходит для тех, кому не хочется тратить много времени на нудный подбор. Более точные расчеты производятся с упором на теплоотдачу, ориентированы на объем воздуха в кубометрах, который нужно будет нагреть радиатору. Каждое помещение высчитывается отдельно, основным показателем является мощность выбранного прибора.
Чтобы было понятнее, рассмотрим простой пример. За данное возьмем то, что для нагревания до комфортной температуры 1 кубического метра воздуха требует примерно 40 Вт мощности. Дана также комната, площадь которой равна 10 кв. метрам, а высота потолков в ней – 3 метра.
Для начала нужно высчитать объем. Для этого умножаем 3 на 10, получаем 30 метров кубических. Теперь высчитываем примерный параметр мощности: 40 умножаем на 30, получаем 1200 Вт. За средний параметр мощности отдельной секции возьмем 200 ватт. Узнать необходимое их количество просто: 1200 делим на 200, получаем 6. Так мы выяснили, что для выбранной нами площади необходим отопительный прибор, в котором будет 6 секций.
Обратите внимание! Если у вас получает неровное значение, например, 7,1 или 6,3, то округлять результат нужно только в большую сторону!
- Формула расчета кубатуры: 3 х 10 = 30 м 3.
- Определение расхода энергии: 41 х 30 = 1230 Вт
Важная информация! Если вы хотите поставить дома угловую батарею, то должны учесть еще и коэффициент теплопотери, который определяется климатом в вашем районе, варьируется в в пределах 1,1-1,3 единиц. Для расчета необходимо сначала умножить полученный параметр необходимой мощности (в нашем случае 1200) на коэффициент, например, на 1,1, а уже потом делить на 200. Получится 6,6 секций, округляем до 7.
Отношение количества требуемых секций к мощности батареи и площади помещения:
Мощность 1 секции радиатора отопления по паспорту, Вт |
Площадь помещения в квадратных метрах | |||||||
10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | |
140 | 8 | 9 | 10 | 12 | 13 | 15 | 16 | 17 |
150 | 7 | 8 | 10 | 11 | 12 | 14 | 15 | 16 |
160 | 7 | 8 | 9 | 10 | 12 | 13 | 14 | 15 |
180 | 6 | 7 | 8 | 9 | 10 | 12 | 13 | 14 |
190 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
200 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Расчет количества требуемых секций на примере реальноой модели:
Рабочее давление – параметр, о котором нельзя забывать
Об этом параметре многие забывают, тогда как он очень важен. Проверяя паспорт отопительного прибора, проверьте, будет ли его рабочее давление выше того, что наблюдается в вашей системе. Если оно будет ниже, то во время подготовки к отопительному сезону велика вероятность повреждения устройства. Список средних показателей для каждого типа батарей поможет упростить ваш выбор (в атмосферах):
- Радиатор из чугуна – в пределах 11.
- Радиатор из стали – в пределах 10.
- Радиатор из алюминия – в пределах 19.
- Биметаллические батареи – до 35.
Cовет:
Не стоит переплачивать только из-за большого запаса прочности. Дело в том, что запорная арматура выдерживает давление максимум в 15 кг/см куб., а увеличить этот показатель нельзя.
Отличия центральной и автономной отопительных систем
Чтобы понять, как подобрать радиаторы отопления, какие лучше для квартиры, и на что ориентироваться, хорошо также учесть особенности вашей отопительной системы. Сегодня их существует 2: централизованная и автономная, первая используется в многоквартирных домах.
Современный радиатор в интерьере
Централизованная отопительная система характеризуется тем, что для обогрева помещения используются внешние тепловые источники, например, котельная. К достоинством её можно отнести:
- Низкая стоимость топлива, например, уголь, газ и другие.
- Экологичность, связанная с отсутствием вредоносных продуктов горения.
Недостатков у системы больше, например:
- Плохое качество воды, из-за чего трубы и устройства ржавеют и выходят из строя быстрее.
- Наличие в воде песчинок и твердых элементов, которые могут царапать радиатор.
- Нестабильная температура воды.
- Высокое давление.
- Вероятность гидроудара, когда происходит скачок давления.
У автономной отопительной системы куда больше достоинств перед централизованной:
- Вы сами можете регулировать обогрев.
- Дом круглый год обеспечен горячей водой.
- Благодаря регулировке температуры вы экономите на оплате счетов.
- Лучшее по сравнению с централизованной системой качество воды.
Существенный недостаток автономной отопительной системы в необходимости получить на её организацию в пределах квартиры разрешение. Также автономная система сложнее в монтаже, а её ремонт обходится дороже, но она окупает такие затраты экономичностью в плане оплаты счетов.
Центральная система отопления: особенности функционирования
Выбор радиаторов обусловлен разными факторами. Но самый важный – это разновидность отопительной системы дома. Большинство многоэтажных домов обслуживают центральные отопительные сети. Они отличаются своими преимуществами и недостатками. Если ваш дом подключен к центральной тепловой сети, оборудование для нее стоит подбирать с учетом технических характеристик.
- Принцип работы центральной отопительной системы заключается в следующем. Тепло вырабатывается при помощи специального агрегата, после чего подается по магистралям в каждую квартиру и возвращается. Теплоноситель циркулирует непрерывно благодаря мощным насосам. В каждом случае может использоваться свой комплект отопительного оборудования. Но чаще всего насосы работают при нагрузке в 16 атмосфер. Радиаторы отопления, установленные в квартире, должны выдерживать такую нагрузку. Поэтому обращайте внимание на данный технический показатель при выборе батарей – в паспорте оборудования изготовитель обязательно указывает максимально допустимый уровень давления, при котором радиатор будет функционировать бесперебойно и безопасно.
- Теплоноситель, циркулирующий по магистралям центральной системы, подается с неравномерным давлением. Это провоцирует гидроудары в системе, что отрицательно сказывается не только на эффективности теплоотдачи, но и на продолжительности работы батарей отопления.
- Температура теплоносителя также непостоянна. В один день батареи холодные, в другой – слишком горячие. Естественно, резкие перепады температурных режимов отрицательно сказываются на состоянии трубопроводов и батарей отопления.
- Рано или поздно, работа центральной системы отопления дает сбой. Возникают аварии, протечки, технические сливы. Установленная в квартире батарея должна выдерживать и такие непростые условия эксплуатации.
- Качество теплоносителя также оставляет желать лучшего. Большинство радиаторов отопления, представленных на рынке, отвечают европейским требованиям, где устанавливаются другие нормы к качеству воды, циркулирующей по магистралям. В нашей стране в центральных системах отопления часто используют загрязненную, ржавую воду с большим содержанием извести. Сырье, из которого изготовлены батареи отопления, часто совсем не предназначено для эксплуатации с некачественным теплоносителем. Содержащиеся в воде химические элементы способствуют быстрому износу внутренней оболочки радиаторов, что приводит к сокращению сроков эксплуатации оборудования.
- Особенности соединения материалов играют важную роль в вопросах долговечности оборудования. Можно приобрести самые дорогие и долговечные батареи отопления, но если соединить их с трубами, которые несовместимы с данным типом оборудования, о длительном сроке эксплуатации речи идти не может. К тому же это негативно скажется на эффективности отопления.
Вывод прост: в центральной системе отопления может использоваться не всякий радиатор отопления. Многие из них не рассчитаны на то качество теплоносителей, которые используются в современных системах. Приступать к выбору батарей стоит только после того, как определены условия, при которых они будут эксплуатироваться.
Итог — как же всё таки выбрать радиатор отопления для квартиры?
Если говорить о производителях, то лучше обратить внимание на тех, кто отлично зарекомендовал себя на рынке: Sira, Global, Rifar и других.
На что обратить внимание при выборе хорошего радиатора для квартиры
На выбор радиаторов отопления для квартиры влияют не только технические характеристики и особенности функционирования центральной системы. Есть и другие определяющие факторы.
- Рабочее давление. В техническом паспорте оборудования в обязательном порядке указывается рабочее давление. Его показатели должны превышать показатели центральной отопительной системы, как минимум, в 1,5 раза. Этот показатель действительно важен, поскольку именно условия эксплуатации оборудования в отечественных отопительных системах, а также перепады рабочего и испытательного давления, становятся причиной преждевременного выхода из строя оборудования. В старых пятиэтажках рабочее давление, как правило, составляет не менее 6-8 атмосфер. В домах новой планировки этот показатель выше и составляет от 12-15 атмосфер.
- Устойчивость к гидравлическим ударам. Фактор тоже нужно принимать в расчет, поскольку он оказывает прямое влияние на продолжительность срока службы радиаторов и их эксплуатационные свойства. Предупредить возникновения гидроударов в современных центральных системах отопления невозможно. Остается лишь принимать в расчет показатель работы коммунальных служб и выбирать батареи, которые отличаются большей устойчивостью к гидравлическим ударам.
- Число секций. Если трудно определиться с количеством, стоит выбирать радиаторы, которые в дальнейшем можно наращивать, то есть присоединять новые секции. Это позволит увеличивать отопительную мощность оборудования.
- Мощность батарей отопления. Практичность радиаторов определяет их обогревательные свойства. Когда за окном мороз, и -40 градусов по Цельсию, справиться с возросшей нагрузкой удается далеко не каждой разновидности оборудования. Поэтому при выборе всегда обращайте внимание на максимальную температуру теплоносителя. Многие модели радиаторов, особенно те, которые изготовлены заграничными производителями, рассчитаны на максимальную температуру теплоносителя в 80-90 градусов по Цельсию. Но если речь идет о выборе батарей для домов, расположенных в суровых климатических условиях, лучше отдавать предпочтение радиаторам, где максимальная рабочая температура теплоносителя будет достигать 120-130 градусов.
- Состав теплоносителя. Поскольку в большинстве центральных систем отопления используется теплоноситель, химический состав которого далек от идеального, это приводит к быстрому износу внутреннего покрытия и стенок радиаторов. Поэтому лучше выбирать толстостенные изделия. Внешний вид радиаторов. Это важно, чтобы дизайн батарей отопления гармонировал с интерьером квартиры. Ассортимент предложений, представленных на рынке, позволит сделать оптимальный выбор.
- Срок службы. Данный показатель зависит от условий эксплуатации радиаторов, технических особенностей центральной системы. Отдавайте предпочтение тем изделиям, заявленный срок службы которых составляет не менее 20-25 лет.
- Легкость и удобство монтажа. Часто это зависит от особенностей конструкции радиаторов, а также веса изделия. Тяжелую чугунную батарею самостоятельно установить вы вряд ли сможете, а вот с легковесной панельной конструкцией наверняка справитесь в одиночку.
Читайте так же:
Как рассчитать количество секций батареи отопления для помещения
Чугунная батарея.
Открытые источники в Интернете (СС0)
Устройство биметаллической батареи
Первый слог названия подсказывает, что радиатор состоит из двух металлов. Стальной трубопровод и алюминиевые внешние пластины (или ребра), передающие тепло в пространство комнаты благодаря его высокой теплопроводности, отлично обогревают помещение. Теплоноситель — вода, циркулирует по цельнотянутым трубам, сваренным между собой таким методом, который не разрушает структуру металла — это препятствует коррозии стальной части. Алюминий же, обладает высокой теплопроводностью и внешние пластины (или ребра) прекрасно передают тепло в помещение, принимая его от стального сердечника. Получается, что биметаллический отопительный прибор соединил лучшие свойства стальных и алюминиевых приборов обогрева.
Достоинства биметаллических радиаторов:
- Высокое рабочее давление — до 35 атмосфер, устойчивость к перепадам давления.
- Стойкость к коррозии при любом качестве теплоносителя.
- Возможность быстро снизить или повысить температуру в комнате, регулируя подачу теплоносителя, так как благодаря малой инерционности радиаторы быстро нагреваются и быстро остывают.
- Малый вес, легкость монтажа.
- Секционная конструкция, позволяющая выбрать нужное количество ребер.
К недостаткам можно отнести, разве что, более высокую цену биметаллических радиаторов. Что с лихвой компенсируется их надежностью и длительным сроком службы.
При установке или замене радиаторов отопления обычно встает вопрос: как правильно рассчитать количество секций радиаторов отопления, чтобы не испытывать дискомфорта от недостатка или избытка тепла. Сделать расчет несложно, когда известны параметры помещения и мощность батарей выбранного типа.
Расчет количества секций для помещения со стандартной высотой потолков
Для начала надо вычислить площадь комнаты, умножив длину комнаты на ее ширину. Для обогрева 1 квадратного метра требуется 100 Вт мощности отопительного прибора, и чтобы вычислить общую мощность, необходимо умножить площадь на 100 Вт. Полученное значение означает общую мощность отопительного прибора. В документации на радиатор обычно указана тепловая мощность одной секции. Чтобы определить количество секций, нужно разделить общую мощность на это значение и округлить результат в большую сторону.
Пример. Типичная комната шириной 3,5 метра и длиной 4 метра, с обычной высотой потолков. Мощность радиатора 160 Вт.
- Определяем площадь комнаты: 3,5×4 = 14 м2.
- Считаем общую мощность отопительных приборов 14×100 = 1400 Вт. Требуемого тепла
- Вычисляем количество секций: 1400:160 = 8,75. Округляем в сторону большего значения, получается 9 секций.
Если комната расположена в торце здания, количество радиаторов необходимо увеличить на 20%.
Расчет количества секций для помещения с высотой потолков более 3-х метров
Здесь другой принцип расчета, он ведется от объема помещения. Объем — это площадь, умноженная на высоту потолков. Для обогрева 1 кубического метра помещения требуется 40 Вт тепловой мощности отопительного прибора. Чтобы вычислить его общую мощность, нужно умножить объем комнаты на 40 Вт, а для определения количества секций это значение разделить на мощность одной секции по паспорту.
Пример. Комната шириной 3,5 метра и длиной 4 метра, с высотой потолков 3,5 м. Мощность одной секции радиатора — 160 Вт.
- Определяем площадь комнаты: 3,5×4 = 14 м2.
- Определяем объем комнаты: 14×3,5 = 49 м3.
- Считаем общую мощность радиаторов отопления: 49×40 = 1960 Вт. Нужного тепла
- Вычисляем количество секций: 1960:160 = 12,25. Округляем в большую сторону, получается 13 секций.
Для угловой комнаты этот показатель нужно умножить на коэффициент 1,2. Увеличить количество секций необходимо, если комната находится в панельном доме, на первом или последнем этаже, а также если в ней больше одного окна. Имеет значение и расположение рядом с неотапливаемыми помещениями. В таких случаях полученное значение необходимо умножить на коэффициент 1,1 за каждый из факторов.
При расчетах следует обращать внимание на то, что различные типы радиаторов отопления имеют разную тепловую мощность. Для того чтобы теплоотдача от радиаторов была максимальной, необходимо устанавливать их в соответствии с рекомендациями производителя, соблюдая все оговоренные в паспорте условия. Скажем, расстояние до стены, пола и подоконника должно быть не менее 4 см.
Биметаллические батареи могут прослужить около 20 лет.
Как правильно самостоятельно рассчитать количество секций радиатора?
Как посчитать количество секций радиатора отопления на помещение? Вы решили установить батареи в новом доме, или заменить старые на новые, или ставите для дизайна приборы другой модификации, и Вам надо подсчитать число его сегментов для комнаты. Исходя из этих расчетов можно подсчитать, сколько устройств Вам потребуется на все помещение.
Теперь о некоторых нюансах. Если Вы давно проживаете в квартире и знаете как у Вас топят:
- если трубы горячие и температура батарей нормальная, просто они малые по мощности или дизайн не устраивает, можете считать точное количество секций по площади;
- если же у Вас прохладно, то посчитайте точно и добавьте на пару больше.
Для начала почитайте, как выбрать подобный прибор, а я буду описывать его биметаллическую разновидность.
Порядок расчетов
Секция биметаллических радиаторов в среднем рассчитана на обогрев 1,5-2 квадратных метра, точнее надо уточнять у продавца, я расскажу на примере. Допустим, у Вас комната 20 кв. м и вертикальная система отопления, в ней находится 2 стояка отопления. Если сегмент устройства, которое Вы хотите установить, рассчитан на обогрев 1,5 квадрата, то Вам потребуется 14 штук (20 делим на 1,5, получается 13,33). Лучше поставить по семь на каждый стояк, или, чтобы было с запасом, поставьте на одном приборе 8, а на другом 7. Лучший вариант, если стояки железные, заменить батарею сваркой. Если у Вас проходит один стояк и Вы будете ставить устройство на 15 секций, то стандартное подключение Вам не подойдет, нужно подключать по диагонали. А вообще, нужно выбрать, чтобы получилась правильная установка, так как, если поставите большое число сегментов, то столкнетесь с проблемой, что не все они греют, к тому же может притормозиться движение теплоносителя по стояку — медленнее пойдет циркуляция, и это скажется на всех квартирах.
Если же у Вас двухтрубная горизонтальная система, то лучше устанавливайте 2 батареи и подключение делайте по диагонали.
Тепла Вам зимой!!!
Радиаторы отопления, какие лучше выбрать? Расчет радиатора
Содержание
Одним из ключевых элементов системы обогрева любого жилища являются радиаторы отопления. Это приборы, внутри которых непрерывно циркулирует вода, антифриз или масло, нагретые до заданной температуры. Правильно подобранные, установленные они непременно обеспечат теплом ваш дом, а значит и его уют, даже самыми суровыми зимними холодами. Если во время отопительного периода вас не устраивает, как греют батареи, то в этом не всегда следует винить коммунальщиков. Возможно, просто пришла пора заменить установленные приборы на более современные с улучшенными характеристиками. Причем позаботиться об этом стоит еще летом.
Какие радиаторы отопления лучше
Чтобы не ошибиться с выбором батареи следует перед покупкой просчитать все необходимые параметры, тщательно изучить технические характеристики, достоинства и недостатки всех представленных на рынке приборов, учесть особенности эксплуатации системы отопления вашего дома целиком. Неправильно подобранное устройство не только будет плохо согревать в холод, но и может быстро выйти из строя, тем самым не оправдав затраченные на него средства. Для автономной отопительной системы специалисты рекомендуют присмотреться к радиаторам из алюминия, они считаются бюджетным вариантом, при этом обладают высокой теплоотдачей, современным дизайном. Если вопрос стоимости для вас не актуален, то самым идеальным выбором станут биметаллические радиаторы, отлично зарекомендовавшие себя по всем показателям. Чтобы сделать правильный выбор, первоначально стоит ознакомиться со всеми современными устройствами, представленными на рынке.
Типы радиаторов отопления
Виды приборов определяются по типу материала, из которого их изготавливают. На основе этого современные устройства делят на:
- алюминиевые;
- стальные;
- биметаллические;
- чугунные.
Алюминиевые радиаторы
Алюминиевые радиаторы отопления в свою очередь делятся еще на экструзионные и литьевые. Оба данных вида не подойдут для централизованной системы из-за давления, а также вызываемой некачественным теплоносителем коррозии. Их рекомендуется устанавливать для автономного отопления.
Радиаторы, изготовленные методом литья под давлением, отличают хорошие толщина и прочность стенок, а также широкие каналы для горячей воды. Более дешевые в производстве экструзионные приборы грешат отсутствием возможности изменить количество секций. Коллектор батареи отливается из силумина, а ее вертикальные части выдавливаются на экструдере из сплава алюминия.
К достоинствам алюминиевых батарей относят:
- Малый вес, упрощающий монтаж, позволяющий обойтись без кронштейнов.
- Очень высокую теплоотдачу, позволяющую быстро прогревать помещение.
- Экономичность (особенно при оснащении регулятором температуры).
- Привлекательный современный дизайн.
Но у прибора достаточно и минусов:
- Маленький срок службы (примерно 15 лет).
- Подверженность коррозии из-за химической активности алюминия, поэтому без теплоносителя высокого качества не обойтись.
- Между секциями случаются протечки.
- Конвекция слабая.
- Появляется водород при вытеснении воздуха.
- Неспособность сопротивляться скачущему давлению, гидроударам, температурным перепадам.
Общие характеристики:
- среднее рабочее давление – 6-16 бар;
- максимальная температура горячей воды – 110°C;
- pH теплоносителя – 7-8;
- Тепловая мощность одной секции – 82-212 Вт.
Стальные радиаторы
Эти приборы подразделяются на панельные (конвекторы) и трубчатые. Первые состоят из нагревательных панелей из стали с оребрением из конвекторов, отличаются высоким КПД (около 75%), бюджетной стоимостью, благодаря чему часто используются как радиаторы отопления для частного дома с автономной системой теплоснабжения.
Трубчатые же батареи можно смело отнести к классу премиум. Горячая вода в них курсирует по трубам из стали, производство такого варианта дороже, что собственно влияет на формирование более высокой стоимости на них. Но зато рабочее давление у таких приборов тоже лучше, чем у панельных собратьев.
К общим плюсам стальных радиаторов отопления относят:
- прекрасную теплоотдачу, низкую инерционность;
- довольно быстрый монтаж;
- низкое энергопотребление, несущественный объем теплоносителя;
- аккуратный привлекательный дизайн;
- для регулировки температуры есть возможность поставить термостат;
- не наносят вред здоровью, экологичны.
Минусы же данному виду присущи следующие:
- возможно образование коррозии при отсутствии воды в системе из-за соприкосновения кислорода со стенками прибора;
- в случае аварии придется сменить весь радиатор;
- требует высокого качества теплоносителя;
- следует оберегать от механического воздействия;
- боятся гидроударов, поэтому их не используют в многоэтажных постройках.
Основные характеристики:
- Среднее рабочее давление – 6-10 бар (панельные), 8-15 бар (трубчатые).
- Общая тепловая мощность – 1200-1600 Вт.
- Максимальная температура горячей воды – 110-120°C.
- pH теплоносителя – 8,3-9,5.
Биметаллические радиаторы
Приборы этого вида выпускаются секциями, чаще четного количества, включающие в себя стальную трубчатую сердцевину, пролегающую по всему каналу, заключенную в оболочку из алюминия. Реже на рынке встречается монолитная разновидность, отличающаяся способностью выдерживать давление до 100 атмосфер. Это становится возможным благодаря тому, что прочный каркас из стали обтягивается оболочкой, выполненной из алюминия.
Выпускаются также псевдобиметаллические батареи, которые стоят значительно дешевле за счет того, что состоят только из вертикальных каналов, усиленных сталью. У таких приборов теплоотдача выше, но из-за соприкосновения теплоносителя с алюминием они подвержены коррозии.
Достоинства биметаллических батарей отопления:
- Большая теплоотдача при практически отсутствующей инертности.
- Стойкость по отношению к гидроударам, высокому давлению.
- Маленький объем горячей воды.
- Не подвержены коррозии.
- Допускают установку термостата.
- Длительный срок эксплуатации.
- Привлекательный дизайн.
Минусов немного, но они все же есть, это:
- Высокая стоимость.
- Уступают радиаторам из алюминия по теплоотдаче.
Основные характеристики:
- Среднее рабочее давление – 20-50 бар.
- Тепловая мощность одной секции – 150-180 Вт.
- Максимальная температура теплоносителя – 130°C.
- Качество воды не имеет значения.
Чугунные радиаторы
Чугунный радиатор зарекомендовал себя как надежный, долгослужащий, неприхотливый прибор, состоящий из секций, изготовленных методом литья из однородного крепкого сплава. Он отлично подходит для установки как в автономной, так и в централизованной отопительной системе. По числу каналов в одной секции устройства разделяются на одно-, двух- и трехканальные. Приборы выпускают различными по ширине, высоте и глубине. Именно по первому показателю стоит выбирать агрегат, ведь чем больше секций будет, тем больше тепла отдаётся помещению.
К достоинствам чугунных батарей относят:
- нетребовательность к качеству теплоносителя, устойчивость к коррозии;
- отложение солей, накипи никак не сказывается на работе;
- высокое рабочее давление и температура, устойчивость к гидроударам;
- долгий срок эксплуатации, ремонтопригодность в случае засора, протекания;
- высокая теплоотдача, сохранение тепла на протяжении долгого времени;
- простота монтажа;
- приемлемая стоимость.
Но есть у приборов и недостатки:
- длительное время нагрева;
- медленная теплоотдача;
- ударная хрупкость;
- потребление большого количества теплоносителя;
- большой вес;
- трудности с регулировкой температуры в помещении;
- довольно однотипный дизайн.
Основные характеристики:
- рабочее давление – до 18 атм;
- средняя мощность секции – от 110 до 150 Вт;
- pH теплоносителя – от 6,5 до 9;
- максимальная температура теплоносителя – до 1300С.
Как выбрать радиаторы отопления?
Для того чтобы правильно подобрать прибор, который согреет в самые лютые морозы не принося лишних хлопот, следует знать, на какие критерии и характеристики обратить внимание:
- Тип системы теплосетей. Если подбирается радиатор отопления для квартиры, то следует учитывать, что для тепловых сетей свойственно колебание давления, температур, а также плохое качество воды. Поэтому перед приобретением устройства для жилья с централизованной системой теплоснабжения следует узнать, боится ли оно гидравлических ударов, на какую температуру рассчитано. Автономная же значительно расширяет выбор радиаторов, практически ничем его не ограничивая.
- На эффективность прогрева воздушных масс в помещении оказывает влияние теплоотдача. Этот параметр зависит от материала, из которого изготовлено устройство. Алюминиевые батареи по этому показателю превосходят все остальные.
- Надежность и долговечность прибора зависят от условий эксплуатации, технических особенностей системы теплоснабжения. Т.к. замена радиатора отопления довольно дорогостоящее мероприятие, требующее еще и определенных трудозатрат, следует присмотреться к батареям, имеющим долгий срок службы (в идеале лет 25). Правильно подобранное, установленное устройство от проверенного производителя не подведет в самый неподходящий момент, таща за собой еще большие траты денег и нервов.
- Эстетичный вид для батареи фактор довольно субъективный, однако шикарный дизайнерский ремонт дома или квартиры никто не захочет портить громоздким и некрасивым радиатором. Но, к счастью, все современные модели смотрятся стильно и смогут органично вписаться в любой интерьер.
- Способы установки и подключения повлияют на вашу возможность самостоятельного монтажа устройства. Так легкий алюминиевый радиатор отопления с нижним подсоединением не вызовет никаких сложностей во время сборки, т.к. в таком случае имеется входной и выходной патрубки для подачи/отвода теплоносителя, как их правильно соединять обычно понятно из инструкции. При боковом подключении вариантов монтажа несколько (диагональное, одностороннее или седельное), поэтому если вы не специалист, хорошо в этом разбирающийся, лучше будет прибегнуть к помощи профессионала.
Расчет количества радиаторов и мощности
На основании требуемой мощности батареи рассчитывается ее размер, количество секций, необходимая теплоотдача, чтобы обогрев помещения проходил максимально эффективно и при этом комфортно. На расчет оказывают влияние:
- Толщина стен, материал, из которого они изготовлены, т.к. в зависимости от него будут разниться теплоизоляционные и теплоудерживающие факторы.
- Окна (их количество, тип, размер). Пластиковые стеклопакеты будут отличаться по своим характеристикам от окон из дерева.
- Также учитывается соотношение по площади окон и стен.
- Климат, местные погодные условия, ведь для холодных районов отопление имеет очень большое значение.
- Высота потолков, площадь помещения. Чем они больше, тем мощнее должна быть батарея.
- Стены, выходящие на улицу, наличие отапливаемых помещений сверху.
- Материал, из которого изготовлен сам радиатор. От этого напрямую зависят теплоотдача и временные затраты на обогрев комнаты.
Расчет необходимой мощности радиатора отопления делается исходя из объема или площади комнаты. При этом важно учесть возможные теплопотери помещения, поэтому рекомендуется прибавлять около 20% к имеющемуся значению. Считается, что при высоте потолков до 3 м понадобится тепловой мощности 100 Вт на 1 м.кв. После вычисления площади комнаты получившийся результат просто умножается на эту норму. Затем высчитывается необходимое количество секций радиатора исходя из теплоотдачи каждой из них. Если несколько стен комнаты граничат с улицей, в ней много окон, то следует добавить еще около 15% тепловой мощности, а значит количество секций.
Расчет необходимой мощности батареи по объему помещения считается более точным. По стандарту для отопления 1 м.куб. потребуется 41 Вт. Поэтому получившийся объем комнаты просто умножаем на этот показатель, а затем делим на тепловую мощность одной секции, получая необходимое их количество. Следует учесть, что если помещение большое, эффективнее будет расставить батареи в разных его частях, а не сделать одну побольше.
Примерная тепловая мощность разных видов радиаторов:
- алюминиевые (1 секция) – 82-212 Вт;
- стальные – 1200-1600 Вт;
- биметаллические (1 секция) – 150-180 Вт.
Полезные советы по выбору радиаторов
Современные батареи должны отвечать определенным показателям качества:
- Отдавать максимум тепловой энергии. При этом следует учесть, что чем больше площадь прибора, тем этот показатель выше.
- Выдерживать высокое давление, его скачки, гидроудары. Поэтому важно учитывать, автономная у вас система теплоснабжения или централизованная.
- Иметь терморегулятор или возможность его установки. Он позволит регулировать температуру в помещении по своему вкусу или с поправкой на погодные условия.
- Соответствовать нормам безопасности и гигиены, а значит легко очищаться, не иметь острых граней.
- Отличаться по типам и размерам, чтобы была возможность подобрать отопительный прибор под особенности помещения.
Вероятнее всего, вам не удастся подобрать идеальный радиатор, соответствующий сразу всем этим показателям, поэтому выбор стоит делать на основании самых важных лично для вас характеристик, учитывая условия использования устройства. Только так можно добиться максимальной эффективности и длительного периода эксплуатации отопительного прибора.
Расчет количества батарей отопления онлайн калькулятор
Радиаторов, батарей отопления
Грамотный расчет отопления частного дома (калькулятор использовать предпочтительнее) задача исключительно сложная. Ведь слишком много факторов следует при этом учесть. Малейшая ошибка или неправильная трактовка исходных данных могут привести к ошибке, из-за которой смонтированная система отопления не будет выполнять поставленные задачи. Либо, что тоже вероятно, режим ее работы будет весьма далек от оптимального, что приведет к значительным и неоправданным тратам. Специалисты компании «Новое место» готовы рассчитать отопление любой специфики оперативно и недорого. Не хотите иметь проблем с теплом в доме – просто позвоните нашему менеджеру.
Точность исходных данных крайне важна
Существует довольно много методик, которые позволяют обычному человеку, не связанному со строительным делом, провести расчет радиаторов отопления частного дома – калькулятор для этих нужд также используется сейчас широко. Однако, на правильные данные можно рассчитывать только в том случае, если входящая информация предоставлена грамотно.
Так, самостоятельно измерить кубатуру помещения (длина, ширина и высота каждой комнаты), подсчитать количество окон и примерно определить тип подключаемого радиатора достаточно просто. Но, далеко не все владельцы жилья смогут разобраться с типом подачи горячей воды, толщиной стен, материалом, из которого они сделаны, а также учесть все нюансы предполагаемого к монтажу отопительного контура.
С другой стороны, для предварительного планирования даже такие методы, неточные, но простые в реализации, подойдут очень хорошо. Они помогут выполнить приблизительный расчет радиатора отопления в частном доме (калькулятор вам понадобится, но вычисления будут очень простыми) и примерно понять, какой отопительный контур будет наиболее оптимальным.
Расчет на основании площади помещения
Самый быстрый и весьма неточный метод, лучше всего подходящий для помещений со стандартной высотой потолков, равной примерно 2,4-2,5 метров. Согласно действующим строительным правилам, на обогрев одного квадратного метра площади понадобится 0,1 кВт тепловой мощности. Следовательно, для типовой комнаты площадью 19 квадратных метров необходимо 1,9 кВт.
Чтобы завершить расчет количества радиаторов отопления в частном доме, осталось разделить полученное значение на показатель теплоотдачи одной секции батареи (этот параметр должен быть указан в сопроводительной инструкции или на упаковке, но для примера возьмем стандартное значение 170 Вт) и при необходимости округлить полученную цифру в большую сторону. Окончательный результат будет равен 12 (1900 / 170 = 11,1764).
Предложенная методика является очень приблизительной, так как не учитывает множество факторов, напрямую влияющих на расчеты. Поэтому для корректировки стоит использовать несколько уточняющих коэффициентов.
- помещение с балконом или комната в торце здания: +20%;
- проект предполагает установку радиаторной батареи в нишу или за декоративный экран: +15%.
Расчет по кубатуре помещения
Предлагаемая методика также не претендует на высокую точность, но по сравнению с расчетом на основе площади помещения она дает результаты, более соответствующие реальному положению дел. Самая большая проблема в данном случае – правильная трактовка норм СНиП, по которым для обогрева одного кубического метра жилой площади необходимо затратить 41 кВт мощности. Так как этот параметр описывает систему организации отопления в стандартном панельном здании, расчет количества радиаторов отопления в частном доме будет не совсем точным. Но примерное представление о том, как ее следует проектировать, он дает.
В первую очередь, нужно перемножить площадь помещения на его высоту. Например, для комнаты в 30 квадратных метров и потолками в 3,5 метра итоговая цифра будет 105 м3(30 * 3,5). После этого ее нужно умножить на 41 (нормы требуемой тепловой мощности для одного «куба»): 105 * 41 = 4305 Вт (примерно 4,3 кВт).
Вычисление оптимального количества радиаторов выполняется очень просто. Прежде всего, выясните теплоотдачу одной сегмента, после чего разделите на это значение полученную ранее цифру. В нашем примере имеем 26 секций (4305 / 170 = 25,3235). Для получения более достоверного результата есть смысл использовать несколько корректирующих коэффициентов:
- угловая комната: +20%;
- батарея задекорирована решеткой или экраном: +20%;
- дом плохо утеплен, основной материал, из которого сделаны стены, – крупногабаритная панель: +10%;
- помещение находится на последнем или первом этаже: +10%;
- в комнате большего одного окна или оно одно, но очень большое: +10%;
- рядом расположены неотапливаемые помещения (особенно, если в них отсутствует часть стен): +10%.
Профессиональный подход
Как рассчитать батареи отопления для частного дома, если нужна очень высокая точность с минимально возможными допусками. В этом случае есть смысл воспользоваться методикой, которая предполагает наличие нескольких уточняющих коэффициентов. Она имеет определенные допуски, но итоговый результат позволит смонтировать такую отопительную систему, которая будет учитывать все особенности помещения.
Формула расчета имеет следующий вид: Q = 100 * S * X1 * X2 * X3 * X4 * X5 * X6 * X7. Q – количество тепла (в ваттах на квадратный метр), которое необходимо обеспечить для конкретного помещения), S – его площадь, а X1-X7 – несколько уточняющих коэффициентов.
X1: класс остекления оконных проемов (особо уточним, он не учитывает количество самих проемов)
- Двойное остекление: 1,27.
- 2-слойный стеклопакет: без коррекции.
- 3-слойный стеклопакет: 0,85.
X2: уровень теплоизоляции стен (может быть скорректирован установкой внешних утепляющих конструкций)
- Недостаточная (одинарная кладка, нет дополнительных навесных блоков): 1,27.
- Хорошая (слой утеплителя или двойная кирпичная кладка): без коррекции.
- Высокая: 0,85.
X3: отношение площади окон и пола
- 50%: 1,2.
- 40%: 1,1.
- 30%: без коррекции.
- 20%: 0,9.
- 10%: 0,8 (часто встречающийся случай в складских помещениях, но в частных домах встречается очень редко).
X4: средневзвешенная температура воздуха для наиболее холодной недели в году (в градусах Цельсия)
- -35 и менее: 1,5.
- От -35 до -25: 1,3.
- От -25 до -20: 1,1.
- От -20 до -15: 0,9.
- От -15 до -10: 0,7.
X5: внешние стены
- Одна: 1,1;
- Две: 1,2;
- Три: 1,3;
- Четыре: 1,4.
X6: тип находящегося над комнатой, для которой производится расчет, помещения
- Чердак, лишенный принудительного отопления: без коррекции.
- Отапливаемый чердак: 0,9.
- Жилое помещение с собственным отоплением: 0,8.
X7: высота потолков (метров)
- Менее 2,5: без коррекции.
- От 2,5 до 3: 1,05.
- От 3 до 3,5: 1,1.
- От 3,5 до 4: 1,15.
- От 4 до 4,5: 1,2.
Как рассчитать количество радиаторов в доме, исходя из предложенной методики? Представим себе, что у нас есть дом из двух комнат – 20 и 25 м2. В одной из них – двойное остекление, в другой – тройной стеклопакет. Уровень теплоизоляции высокий. Соотношение окон и пола – 1:1. Самая низкая температура -17 градусов. В доме 2 внешних стены, над комнатами находится неотапливаемый чердак, а высота стен – 3,1 м.
- 1 комната (S=20 м2). 100 * 20 (S) * 1,27 (X1) * 0,85 (X2) * 1,2 (X3) * 0,9 (X4) * 1,2 (X5) * 1 (X6) * 1,1 (X7) = 3077,87.
- 2 комната (S=15 м2). 100 * 15 (S) * 0,85 (X1) * 0,85 (X2) * 1,2 (X3) * 0,9 (X4) * 1,2 (X5) * 1 (X6) * 1,1 (X7) = 1544,99.
После этого нужно разделить полученные значения на теплоотдачу одной секции радиатора, (например, 170 Вт / м2):
- 1 комната: 3077,87 / 170 = 19 (18,1051).
- 2 комната: 1544,99 / 170 = 10 (9,0881).
Именно такое количество секций будет оптимальным и достаточным.
Виды радиаторов
Приведенное значение теплоотдачи – 170 Вт / м2 является усредненным, а значит реальное положение дел отражает далеко не всегда. Потому его также можно скорректировать для более точного расчета.
Биметаллические радиаторы
Являются в наше время самыми распространенными. Показатели теплоотдачи у разных производителей могут несколько разниться, но общее представление о том, какую они обеспечивают теплоотдачу, получить можно. Основной критерий в данном случае – межосное расстояние:
- 500 мм: 165 Вт.
- 400 мм: 143 Вт.
- 300 мм: 120 Вт.
- 250 мм: 102 Вт.
Алюминиевые радиаторы
Основной показатель здесь тот же – межосное расстояние, а приведенные нами данные верны для продукции итальянских брендов Calidor и Solar.
- 500 мм: от 178 до 182 Вт.
- 350 мм: от 145 до 150 Вт.
Стальные пластинчатые радиаторы
Здесь ситуация несколько сложнее, так как приходится дополнительно учитывать способ врезки в контур отопления, потому нужные параметры теплоотдачи следует выяснить у производителя вашей модели батареи.
Чугунные радиаторы
Классика, доставшаяся нам по наследству со старых советских времен, но не теряющая своей актуальности и в наши дни. Однако здесь следует учитывать, что в реальной жизни показатели могут быть ниже на 10-20 градусов, особенно если коммуникации сильно изношены.
Как рассчитать количество радиаторов в доме, используя предложенную методику? Вы должны четко выяснить необходимые для этого параметры помещения и технико-технические характеристики предполагаемых к использованию радиаторов. Но, так как это не так просто, как может показаться на первый взгляд, это обратитесь за помощью в компанию «Новое место».
Последовательные и параллельные конфигурации батарей и информация
BU-302: Configuraciones de Baterías en Serie y Paralelo (Español)
Узнайте, как расположить батареи для увеличения напряжения или увеличения емкости.
Батареи достигают желаемого рабочего напряжения путем последовательного соединения нескольких ячеек; каждая ячейка складывает свой потенциал напряжения, чтобы получить общее напряжение на клеммах. Параллельное соединение обеспечивает более высокую мощность за счет суммирования общего ампер-часа (Ач).
Некоторые блоки могут состоять из комбинации последовательного и параллельного подключения. Аккумуляторы для ноутбуков обычно имеют четыре литий-ионных элемента 3,6 В последовательно для достижения номинального напряжения 14,4 В и два параллельно для увеличения емкости с 2400 мАч до 4800 мАч. Такая конфигурация называется 4s2p, что означает четыре ячейки последовательно и две параллельно. Изоляционная фольга между ячейками предотвращает электрическое короткое замыкание проводящей металлической оболочкой.
Аккумуляторы большинства типов подходят для последовательного и параллельного подключения.Важно использовать батареи одного типа с одинаковым напряжением и емкостью (Ач) и никогда не смешивать батареи разных производителей и размеров. Более слабая ячейка вызовет дисбаланс. Это особенно важно в последовательной конфигурации, потому что мощность батареи определяется самым слабым звеном в цепи. Аналогия — это цепочка, звенья которой представляют последовательно соединенные элементы батареи (рис. 1).
Рисунок 1: Сравнение батареи с цепью. Звенья цепи представляют собой элементы, включенные последовательно для увеличения напряжения, удвоение звена означает параллельное соединение для повышения токовой нагрузки. |
Слабый элемент может не выйти из строя сразу, но при нагрузке он истощится быстрее, чем сильный. При зарядке аккумулятор с низким уровнем заряда заполняется раньше, чем с высоким уровнем, потому что его нужно заполнять меньше, и он остается в избыточном заряде дольше, чем другие. При разряде слабая ячейка опорожняется первой, и ее забивают более сильные братья.Ячейки в групповых упаковках должны быть согласованы, особенно при использовании под большими нагрузками. (См. BU-803a: Несоответствие ячеек, балансировка).
Приложения с одной ячейкой
Одноэлементная конфигурация представляет собой простейший аккумуляторный блок; элемент не требует согласования, и схема защиты на небольшом литий-ионном элементе может быть простой. Типичными примерами являются мобильные телефоны и планшеты с одним литий-ионным аккумулятором 3,60 В. Одноэлементный элемент также используется в настенных часах, в которых обычно используются щелочные элементы на 1,5 В, наручные часы и резервное копирование памяти, большинство из которых являются приложениями с очень низким энергопотреблением.
Номинальное напряжение аккумуляторной батареи на никелевой основе составляет 1,2 В, щелочной — 1,5 В; оксид серебра составляет 1,6 В, а свинцово-кислотный — 2,0 В. Первичные литиевые батареи находятся в диапазоне от 3,0 до 3,9 В. Литий-ионный — 3,6 В; Li-фосфат — 3,2 В, а литий-титанат — 2,4 В.
Литий-марганцевые и другие системы на основе лития часто используют ячейки с напряжением 3,7 В и выше. Это связано не столько с химией, сколько с увеличением ватт-часов (Втч), что становится возможным при более высоком напряжении. Аргумент гласит, что низкое внутреннее сопротивление элемента поддерживает высокое напряжение под нагрузкой.Для рабочих целей эти ячейки подходят как кандидаты на 3,6 В. (См. BU-303 «Путаница с напряжениями»)
Соединение серии
В портативном оборудовании, требующем более высоких напряжений, используются аккумуляторные батареи с двумя или более элементами, соединенными последовательно. На рисунке 2 показан аккумуляторный блок с четырьмя последовательно соединенными литий-ионными элементами 3,6 В, также известными как 4S, для получения номинального напряжения 14,4 В. Для сравнения, свинцово-кислотная цепочка с шестью ячейками с 2 В на элемент будет генерировать 12 В, а четыре щелочных с 1,5 В на элемент дадут 6 В.
Рисунок 2: S eries подключение четырех ячеек (4s).
Добавление ячеек в цепочку увеличивает напряжение; емкость остается прежней.
Предоставлено Cadex
Если вам нужно нечетное напряжение, скажем, 9,50 В, подключите последовательно пять свинцово-кислотных, восемь никель-металл-гидридных или никель-кадмиевых или три ионно-литиевых. Конечное напряжение батареи не обязательно должно быть точным, если оно выше, чем указано в устройстве. Источник питания 12 В может работать вместо 9,50 В. Большинство устройств с батарейным питанием могут выдерживать некоторое перенапряжение; однако необходимо соблюдать напряжение в конце разряда.
Высоковольтные батареи сохраняют малый размер проводника. Аккумуляторные электроинструменты работают от батарей 12 В и 18 В; в моделях высокого класса используются 24 В и 36 В. Большинство электровелосипедов поставляются с литий-ионным аккумулятором 36 В, некоторые — 48 В. Автомобильная промышленность хотела увеличить стартерную батарею с 12 В (14 В) до 36 В, более известную как 42 В, путем последовательного размещения 18 свинцово-кислотных элементов. Логистика замены электрических компонентов и проблемы с дугой на механических переключателях сорвали ход.
Некоторые легкие гибридные автомобили работают от литий-ионных аккумуляторов 48 В и используют преобразование постоянного тока в 12 В для электрической системы.Запуск двигателя часто осуществляется отдельной свинцово-кислотной батареей на 12 В. Ранние гибридные автомобили работали от батареи 148 В; электромобили обычно 450–500 В. Такой аккумулятор требует более 100 последовательно соединенных литий-ионных элементов.
Высоковольтные батареи требуют тщательного согласования ячеек, особенно при работе с большими нагрузками или при работе при низких температурах. Если несколько ячеек соединены в цепочку, вероятность отказа одной ячейки реальна, и это приведет к сбою. Чтобы этого не произошло, твердотельный переключатель в некоторых больших батареях обходит неисправную ячейку, чтобы обеспечить непрерывный ток, хотя и при более низком напряжении в цепи.
Сопоставление ячеек является проблемой при замене неисправного элемента в устаревшем блоке. Новая ячейка имеет большую емкость, чем другие, что вызывает дисбаланс. Сварная конструкция усложняет ремонт, поэтому аккумуляторные блоки обычно заменяются целиком.
Высоковольтные батареи в электромобилях, полная замена которых невозможна, делят батарею на модули, каждый из которых состоит из определенного количества ячеек. Если одна ячейка выходит из строя, заменяется только затронутый модуль.Небольшой дисбаланс может возникнуть, если новый модуль будет оснащен новыми ячейками. (См. BU-910: Как отремонтировать аккумуляторный блок.)
На рисунке 3 показан аккумуляторный блок, в котором «ячейка 3» выдает только 2,8 В вместо полностью номинальных 3,6 В. При пониженном рабочем напряжении эта батарея достигает точки окончания разряда раньше, чем обычная батарея. Напряжение падает, и устройство выключается с сообщением «Батарея разряжена».
Рисунок 3: S eries соединение с неисправной ячейкой.
Неисправный элемент 3 снижает напряжение и преждевременно отключает оборудование.
Предоставлено Cadex
Батареи в дронах и пультах дистанционного управления для любителей, которым требуется высокий ток нагрузки, часто демонстрируют неожиданное падение напряжения, если одна ячейка в цепочке слаба. Максимальный ток нагружает хрупкие ячейки, что может привести к поломке. Считывание напряжения после заряда не позволяет выявить эту аномалию; проверка баланса ячеек или проверка емкости с помощью анализатора аккумуляторов.
Постукивание по последовательной строке
Обычной практикой является подключение к последовательной цепочке свинцово-кислотного массива для получения более низкого напряжения. Для тяжелонагруженного оборудования, работающего от батарейного блока 24 В, может потребоваться источник питания 12 В для вспомогательной работы, и это напряжение удобно доступно в промежуточной точке.
Постукивание не рекомендуется, поскольку оно создает дисбаланс ячеек, так как одна сторона батарейного блока загружена больше, чем другая. Если несоответствие не может быть исправлено с помощью специального зарядного устройства, побочным эффектом является сокращение срока службы батареи.Вот почему:
При зарядке несбалансированного блока свинцово-кислотных аккумуляторов с помощью обычного зарядного устройства в недозаряженной части возникает тенденция к сульфатированию, поскольку элементы никогда не получают полного заряда. Секция высокого напряжения батареи, которая не принимает дополнительную нагрузку, имеет тенденцию к перезарядке, что приводит к коррозии и потере воды из-за выделения газов. Обратите внимание, что зарядное устройство, заряжающее всю цепочку, проверяет среднее напряжение и соответственно прекращает заряд.
Постукивание также распространено на литий-ионных и никелевых батареях, и результаты аналогичны свинцово-кислотным: сокращение срока службы.(См. BU-803a: Согласование и балансировка ячеек.) В новых устройствах используется преобразователь постоянного тока в постоянный для обеспечения правильного напряжения. В электрических и гибридных транспортных средствах в качестве альтернативы используется отдельная низковольтная батарея для вспомогательной системы.
Параллельное соединение
Если требуются более высокие токи, а ячейки большего размера недоступны или не соответствуют конструктивным ограничениям, одна или несколько ячеек могут быть подключены параллельно. Большинство химикатов батарей допускают параллельную конфигурацию с небольшими побочными эффектами.На рисунке 4 показаны четыре ячейки, соединенные параллельно в схеме P4. Номинальное напряжение показанного блока остается на уровне 3,60 В, но емкость (Ач) и время работы увеличиваются в четыре раза.
Рисунок 4: Параллельное соединение четырех ячеек (4p). Предоставлено Cadex |
Ячейка, которая развивает высокое сопротивление или размыкается, менее критична в параллельной цепи, чем в последовательной конфигурации, но неисправная ячейка снизит общую нагрузочную способность.Это как двигатель, работающий только на трех цилиндрах, а не на всех четырех. С другой стороны, электрическое короткое замыкание является более серьезным, поскольку неисправный элемент забирает энергию из других элементов, вызывая опасность пожара. Большинство так называемых электрических коротких замыканий мягкие и проявляются как повышенный саморазряд.
Полное короткое замыкание может произойти из-за обратной поляризации или роста дендритов. Большие блоки часто включают в себя предохранитель, который отключает неисправный элемент от параллельной цепи в случае короткого замыкания.На рисунке 5 показана параллельная конфигурация с одной неисправной ячейкой.
Рисунок 5: Параллельное соединение / соединение с одной неисправной ячейкой. Предоставлено Cadex |
Последовательное / параллельное соединение
Последовательная / параллельная конфигурация, показанная на рисунке 6, обеспечивает гибкость конструкции и позволяет достичь требуемых номинальных значений напряжения и тока со стандартным размером ячейки.Полная мощность — это сумма напряжения, умноженного на ток; батарея 3,6 В (номинальная), умноженная на 3400 мАч, дает 12,24 Втч. Четыре элемента питания 18650 емкостью 3400 мАч каждый можно подключить последовательно и параллельно, как показано, чтобы получить номинальное напряжение 7,2 В и общую мощность 48,96 Вт-ч. Комбинация с 8 ячейками даст 97,92 Втч, допустимый предел для перевозки на воздушном судне или перевозки без опасных материалов класса 9. (См. BU-704a: Доставка литиевых батарей по воздуху). Тонкий элемент позволяет гибкую конструкцию блока, но необходима схема защиты.
Рисунок 6: S eries / параллельное соединение четырех ячеек (2s2p). Предоставлено Cadex |
Литий-ионный аккумулятор
хорошо подходит для последовательной / параллельной конфигурации, но элементы нуждаются в мониторинге, чтобы оставаться в пределах напряжения и тока.Интегральные схемы (ИС) для различных комбинаций ячеек доступны для контроля до 13 литий-ионных ячеек. Для более крупных пакетов требуются специальные схемы, и это относится к аккумуляторным батареям для электронных велосипедов, гибридным автомобилям и Tesla Model 85, которая потребляет более 7000 ячеек 18650, чтобы составить аккумулятор мощностью 90 кВт · ч.
Терминология для описания последовательного и параллельного соединения
В производстве аккумуляторов сначала указывается количество ячеек, соединенных последовательно, а затем ячеек, размещаемых параллельно. Пример — 2с2п.При использовании литий-ионных аккумуляторов в первую очередь всегда создаются параллельные струны; завершенные параллельные блоки затем помещаются последовательно. Литий-ионная система — это система, основанная на напряжении, которая хорошо подходит для параллельного формирования. Объединение нескольких ячеек в параллель с последующим последовательным добавлением блоков снижает сложность управления напряжением для защиты блока.
Сначала сборка гирлянд, а затем их параллельное размещение может быть более обычным для никель-кадмиевых аккумуляторов, чтобы удовлетворить химический механизм челнока, который уравновешивает заряд в верхней части заряда.«2с2п» — обычное дело; Были выпущены официальные документы, которые относятся к 2p2s при параллельном соединении последовательной строки.
Устройства безопасности при последовательном и параллельном подключении
Переключатели с положительным температурным коэффициентом (PTC) и устройства прерывания заряда (CID) защищают аккумулятор от перегрузки по току и избыточного давления. Хотя эти защитные устройства рекомендуются для обеспечения безопасности в небольших батареях из 2 или 3 элементов с последовательной и параллельной конфигурацией, они часто не используются в более крупных многоэлементных батареях, например, для электроинструментов.PTC и CID работают, как ожидалось, переключая ячейку на чрезмерный ток и внутреннее давление в ячейке; однако завершение работы происходит в каскадном формате. Хотя некоторые ячейки могут рано отключиться, ток нагрузки вызывает избыточный ток на оставшихся ячейках. Такое состояние перегрузки может привести к тепловому разгоне до срабатывания остальных предохранительных устройств.
Некоторые ячейки имеют встроенные PCT и CID; эти защитные устройства также могут быть добавлены задним числом. Инженер-проектировщик должен знать, что любое предохранительное устройство может выйти из строя.Кроме того, PTC вызывает небольшое внутреннее сопротивление, которое снижает ток нагрузки. (См. Также BU-304b: Обеспечение безопасности литий-ионных аккумуляторов)
Простые инструкции по использованию первичных бытовых батарей
- Следите за чистотой контактов аккумулятора. Конфигурация с четырьмя ячейками имеет восемь контактов, и каждый контакт добавляет сопротивление (ячейка к держателю и держатель к следующей ячейке).
- Никогда не смешивайте батареи; замените все ячейки, когда они слабые. Общая производительность зависит от самого слабого звена в цепи.
- Соблюдайте полярность. Перевернутая ячейка вычитает, а не добавляет к напряжению ячейки.
- Выньте батареи из оборудования, когда оно больше не используется, чтобы предотвратить утечку и коррозию. Это особенно важно для первичных цинк-углеродных элементов.
- Не храните незакрепленные элементы в металлическом ящике. Поместите отдельные ячейки в небольшие полиэтиленовые пакеты, чтобы предотвратить короткое замыкание. Не носите в карманах незакрепленные ячейки.
- Храните батарейки в недоступном для маленьких детей месте.Ток от батареи может не только вызвать удушье, но и вызвать изъязвление стенки желудка при проглатывании. Батарея также может разорваться и вызвать отравление. (См. BU-703: Проблемы со здоровьем, связанные с батареями.)
- Не заряжайте неперезаряжаемые батареи; скопление водорода может привести к взрыву. Выполняйте экспериментальную зарядку только под наблюдением
Простые инструкции по использованию вторичных батарей
- Соблюдайте полярность при зарядке вторичного элемента.Обратная полярность может вызвать короткое замыкание и создать опасную ситуацию.
- Выньте полностью заряженные аккумуляторы из зарядного устройства. Потребительское зарядное устройство может не подавать правильный постоянный заряд при полной зарядке, что может привести к перегреву элемента.
- Заряжайте только при комнатной температуре.
Последнее обновление 2019-06-18
*** Пожалуйста, прочтите комментарии ***
Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта.Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.
Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected]. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.
Предыдущий урок Следующий урокИли перейти к другой артикуле
Батареи как источник питанияПоложение о создании литий-ионной батареи — Battery University
Изучите требования для утверждения агентством при создании литий-ионного блока.
Сборка литий-ионной аккумуляторной батареи начинается с удовлетворения требований к напряжению и времени работы, а затем с учетом ограничений по нагрузке, окружающей среде, размеру и весу.Портативным конструкциям для потребительских товаров нужен тонкий профиль, и выбор — призматическая или мешочная ячейка. Если позволяет пространство, цилиндрический элемент, такой как 18650, часто обеспечивает самую низкую стоимость и лучшие характеристики с точки зрения удельной энергии, безопасности и долговечности. (См. BU-301a: Типы аккумуляторных элементов.)
Большинство аккумуляторных батарей для медицинских устройств, электроинструментов, электронных велосипедов и даже силовых агрегатов для электромобилей основаны на 18650. Это кажется непрактичным, но маленькие элементы работают. хорошо, потому что это один из наиболее зрелых доступных литий-ионных форматов, он производится в больших объемах и имеет низкую стоимость в час.
Цилиндрическая ячейка не идеальна, поскольку она оставляет пустые места в конфигурации с несколькими ячейками. Этот недостаток превращается в преимущество при рассмотрении гибкости и охлаждения. Tesla S85 EV использует более 7000 ячеек, включенных параллельно для увеличения тока и последовательно для увеличения напряжения. Если одна из последовательно соединенных ячеек разомкнется, общая потеря мощности будет минимальной; если один из параллельно закорачивает, предохранитель удаляет эту ячейку из цепи. Таким образом, неисправные элементы могут быть устранены без разряда батареи.
Производители электромобилей не едины в выборе элементов питания, но существует тенденция к использованию более крупных форматов с целью сокращения вспомогательной электроники, которая добавляет 20–25 процентов к готовой упаковке. Однако с большей ячейкой электронные компоненты становятся дороже из-за более высокого тока. Согласно отчетам 2015 года, у Tesla S 85 самая низкая стоимость киловатт-часа по сравнению с 18650. Другие электромобили имеют более крупные призматические элементы при более высоких затратах на киловатт-час. В таблице 1 сравнивается стоимость кВтч.
Марка и модель | Тип ячейки | Стоимость кВтч | Удельная энергия |
---|---|---|---|
Tesla S 85, 90 кВтч (2015) * | 18650 | 260 долл. США / кВтч | 250Втч / кг |
Tesla 48кВт / ч Gen III | 18650 | 260 долл. США / кВтч | 250Втч / кг |
Лучшие практики DoE / AABC) | подсумок / призматический | 350 долл. США / кВтч | 150–180Втч / кг |
Nissan Leaf, 30кВтч (2016) * | подсумок / призматический | 455 долл. США / | кВтч80–96Втч / кг |
БМВ i3 | подсумок / призматический | N / A | 120Втч / кг |
Таблица 1: Сравнение цен на аккумуляторы для электромобилей. Массовое производство позволяет использовать аккумулятор 18650 по низкой цене.
* В 2015/16 Tesla S 85 увеличила батарею с 85кВтч до 90кВтч; Nissan Leaf от 25 кВт до 30 кВт.
Батареи должны быть спроектированы так, чтобы допускать отказ без катастрофических событий. Все источники энергии рано или поздно выйдут из строя, и аккумуляторная батарея не исключение. После нежелательного события FAA обязало поместить литий-ионную корабельную батарею Boeing Dreamliner 787 в металлический контейнер с вентиляцией наружу.Tesla усилила батарею электромобиля, добавив толстую стальную пластину внизу, которая обеспечивает дополнительную защиту от снарядов с дороги.
Большие батареи для силовых установок охлаждаются. Некоторые используют стержневую систему для вывода тепла наружу, другие используют принудительную подачу воздуха или жидкостное охлаждение. Жидкостное охлаждение лучше, и, хотя и более дорогие, батареи электромобилей тяготеют к этой форме охлаждения.
Соответствие стандартам безопасности
Авторитетные производители аккумуляторов не поставляют литий-ионные элементы несертифицированным сборщикам аккумуляторов.Эта предосторожность понятна, учитывая, что литий-ионные элементы могут заряжаться и разряжаться сверх безопасных пределов с неадекватными схемами защиты.
Авторизация аккумуляторной батареи для коммерческого рынка и для воздушного транспорта может стоить от 10 000 до 20 000 долларов. Такая высокая цена вызывает беспокойство, зная, что производители ячеек отказываются от старых элементов в пользу замены с большей емкостью. Пакет с новым элементом, даже если он указан как прямая замена, требует новых сертификатов.
Часто задают вопрос: «Зачем нужны дополнительные тесты, если ячейки уже одобрены?» Простой ответ заключается в том, что разрешения на ячейки не могут быть перенесены на упаковку, потому что регулирующие органы размещают подтверждение безопасности на готовом продукте, а не на компонентах.Готовая батарея должна быть протестирована и зарегистрирована, чтобы гарантировать правильную сборку и соответствие стандартам безопасности.
В рамках требований к испытаниям готовый аккумулятор должен пройти электрическую и механическую оценку на соответствие рекомендациям по перевозке опасных грузов для литий-ионных аккумуляторов для перевозки по воздуху, правилам, установленным Организацией Объединенных Наций (ООН). Транспортное испытание ООН (UN / DOT 38.3) работает совместно с Федеральным авиационным управлением (FAA), Министерством транспорта США (US DOT) и Международной ассоциацией воздушного транспорта (IATA) *.Сертификация распространяется на первичные и вторичные литиевые элементы.
Испытание UN 38.3 включает:
T1 — Имитация высоты : Низкое давление имитирует негерметичный грузовой отсек на высоте 15 000 метров.
T2 — Thermal Test : экстремальные температуры, выдерживая батареи в течение 6 часов при -40 ° C, а затем + 75 ° C.
T3 — Вибрация : Имитирует вибрацию при транспортировке с частотой от 7 Гц до 200 Гц в течение до 3 часов.
T4 — Shock : Имитирует вибрацию во время транспортировки при заданных перегрузках, связанных с размером батареи.
T5 — Внешнее короткое замыкание : Короткое замыкание с сопротивлением <0,1 Ом при 50 ° C. Температура корпуса не может превышать 170 ° C.
T6 — Удар : цилиндрические элементы диаметром 20 мм испытаны на удар; Типы ячеек <20 мм проходят испытания на раздавливание.
T7 — Избыточный заряд : Заряд в два раза превышающим рекомендованный ток в течение 24 часов (только вторичные батареи)
T8 — Принудительный разряд : То же, что и T7, принудительный разряд с первичными и вторичными элементами.
Тестовые батареи должны пройти тесты без причинения вреда, но после этого батареи не должны работать.Тест проводится строго на безопасность, а не на выносливость потребителя. Уполномоченной лаборатории необходимо 24 образца батарей, состоящих из 12 новых упаковок и 12 образцов, которые были циклизованы 50 раз. ИАТА хочет убедиться, что рассматриваемые батареи годны к полетам и сохраняют целостность в полевых условиях; 50 циклов прокрутки пакетов перед испытанием удовлетворяет этому требованию.
Высокая стоимость сертификации не позволяет мелким производителям использовать литий-ионные аккумуляторы для небольших объемов продукции, а предприниматели могут вместо этого выбирать системы на основе никеля.Эти батареи не нужно тестировать до уровня продуктов на основе лития для воздушного транспорта. В то время как уважаемые компании следуют инструкциям, правила нарушаются, а наказания жесткие. (См. BU-704: Как транспортировать батареи)
- Соблюдайте осторожность при обращении с литий-ионными аккумуляторами и их проверке.
- Не закорачивайте, не перезаряжайте, не раздавливайте, не роняйте, не деформируйте, не проникайте посторонними предметами, не применяйте обратную полярность, не подвергайте воздействию высоких температур и не разбирайте блоки и элементы.
- Используйте только литий-ионные батареи с обозначенной схемой защиты и утвержденным зарядным устройством.
- Прекратите использование аккумулятора и / или зарядного устройства, если температура аккумулятора поднимается более чем на 10ºC (18ºF) при обычной зарядке.
- Электролит легко воспламеняется, и разрыв аккумулятора может привести к травмам.
* IATA (Международная ассоциация воздушного транспорта) работает с авиакомпаниями и авиационной отраслью для продвижения безопасных, надежных, надежных и экономичных авиаперелетов.
Обновлено 03.08.2017
*** Пожалуйста, прочтите комментарии ***
Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта. Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.
Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: BatteryU @ cadex.com. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.
Предыдущий урок Следующий урокИли перейти к другой артикуле
Батареи как источник питанияОбслуживание батарей | Компания Trojan Battery
Trojan Battery Company уже более трех поколений производит заливные батареи глубокого цикла.
Наш опыт показал, что ключевым фактором достижения оптимальной производительности и длительного срока службы батареи является соблюдение программы регулярного ухода и технического обслуживания.
При просмотре наших советов по обслуживанию батарей помните, что все системы батарей уникальны. Тип аккумулятора, технология зарядного устройства, нагрузка на оборудование, размер кабеля, климат и другие факторы могут варьироваться. Эти незначительные или значительные различия потребуют соответствующей корректировки обслуживания батареи. Это всего лишь рекомендации, которым необходимо следовать для правильного ухода за аккумулятором.Каждая конкретная система всегда требует особого внимания.
Достижение оптимальной производительности и длительного срока службы батареи
Перед началом работы
- Убедитесь, что вы знаете напряжение вашей системы, размер батарейного отсека (длина, ширина и высота) и ваши потребности в энергии.
- Определите, хотите ли вы использовать залитую батарею глубокого цикла, AGM или гелевую батарею.
Шаг 1. Определите напряжение вашей батареи и сколько батарей использовать
1–1 | Исходя из напряжения вашей системы, вы должны сначала решить, какая батарея необходима и сколько использовать, чтобы соответствовать вашим требованиям. Например, вы можете подключить серию из восьми батарей на 6 В, шести батарей на 8 В или четырех батарей на 12 В для 48-вольтовой системы. Размер аккумуляторного отсека, требования к характеристикам и стоимость могут ограничивать ваши возможности. |
1-2 | Убедитесь, что между батареями достаточно места для незначительного расширения батареи во время использования и для обеспечения надлежащего воздушного потока для снижения температуры батареи в жарких условиях. |
TIP
Последовательное соединение аккумуляторов не увеличивает емкость аккумуляторов; он просто увеличивает общее напряжение в соответствии с требованиями вашей системы. Как только ваши требования к напряжению будут соблюдены и если позволяет пространство, вы можете удвоить батареи при параллельном подключении, тем самым удвоив емкость батареи.См. Диаграммы ниже.
Серия Connect | Параллельное соединение | Серия / Параллельное соединение | ||
Для увеличения напряжения подключите батареи последовательно. Это не увеличит емкость системы. Пример Две батареи T-105, 6 В номиналом 225 Ач, подключенные последовательно Напряжение системы 6 В + 6 В = 12 В Емкость системы = 225 Ач | Для увеличения емкости подключите батареи параллельно.Это не приведет к увеличению напряжения в системе. Пример Две батареи T-105, 6 В номиналом 225 Ач, подключенные параллельно Напряжение системы 6 В Емкость системы = 225 Ач + 225 Ач = 450 Ач | Для увеличения напряжения и емкости подключите дополнительные батареи последовательно и параллельно. Пример Четыре аккумулятора T-105, 6 В номиналом 225 Ач, подключенные последовательно / параллельно Напряжение системы 6 В + 6 В = 12 В Емкость системы = 225 Ач + 225 Ач = 450 Ач | ||
Для увеличения напряжения подключите батареи последовательно. | Для увеличения емкости в ампер-часах подключите батареи параллельно. | Для увеличения напряжения и емкости в ампер-часах подключите батареи последовательно / параллельно. | ||
Шаг 2. Выберите лучшую модель аккумулятора
2–1 | При выборе модели аккумулятора сначала учитывайте объем аккумуляторного отсека, так как это может ограничить ваши возможности. В пределах вашего размера у вас может быть несколько вариантов батареи на выбор.Например, вы можете использовать Т-605, Т-105 или Т-125 в одном помещении, поскольку они имеют одинаковый физический размер. Разница между этими батареями заключается в количестве энергии, которую они предлагают. |
2-2 | Затем рассмотрите свои потребности в энергии. При замене существующей батареи используйте ее как ориентир. Если ваша старая батарея обеспечивала достаточно энергии, ее можно заменить батареей аналогичной емкости. Если вам нужно больше энергии, вы можете увеличить ее, а если вам нужно меньше энергии, вы можете уменьшить ее. |
СОВЕТ
Если вы не знаете, какую батарею использовать, обратитесь к производителю оборудования для получения рекомендованной спецификации батареи. Trojan Battery также предлагает отличную техническую поддержку со стороны штатных инженеров по приложениям, которые помогут вам выбрать идеальные батареи.
Шаг 3. Выберите лучший терминал
3–1 | Наконец, определите, какой вариант клеммы лучше всего соответствует вашим потребностям, исходя из типа кабельных соединений, которые вы планируете использовать.Найдите клеммы, доступные для выбранной вами батареи. |
СОВЕТ
Убедитесь, что вы используете кабель подходящего размера при подключении батарей, чтобы соединения не перегревались. Для получения информации о правильных размерах проводов вы можете обратиться к Национальному электрическому кодексу, Руководству пользователя Trojan Battery или обратиться в службу технической поддержки Trojan по телефону 800.423.6569.
Свинцово-кислотные батареи обычно классифицируются по применению (для чего они используются) и по конструкции (как они сделаны).Аккумуляторы глубокого разряда используются для различных типов приложений, таких как жилые автофургоны, автомобили для гольфа, возобновляемые источники энергии и морские суда.
Существует два популярных типа конструкции: залитые батареи (мокрые) и батареи VRLA (свинцово-кислотные батареи с регулируемым клапаном). В затопленных типах электролит представляет собой раствор серной кислоты и воды, который может вылиться при опрокидывании аккумулятора. В батареях VRLA электролит суспендирован в геле или стекловолоконном мате (технология AGM), что позволяет устанавливать эти батареи в различных положениях.
Перед началом работы обязательно определите тип используемой батареи. В этом разделе рассматривается зарядка и техническое обслуживание как аккумуляторных батарей глубокого цикла, так и аккумуляторов VRLA.
Существует множество инструментов, которые могут помочь в правильном уходе и обслуживании аккумуляторов. Ниже приведен список основных элементов, которые троянец рекомендует для этой задачи:
Рекомендуемое оборудование | |||
Пищевая сода | Вода дистиллированная | Очки и перчатки | Ареометр |
Очиститель столбов | Вазелин | Вольтметр | Гаечный ключ |
ВНИМАНИЕ: Всегда надевайте защитную одежду, перчатки и очки при работе с аккумуляторами, электролитом и зарядкой аккумулятора.
Батареи следует регулярно тщательно проверять, чтобы обнаруживать и устранять потенциальные проблемы, прежде чем они могут причинить вред. Это отличная идея начать эту процедуру, когда вы впервые получаете батареи.
Инспекция Указания
1. Осмотрите внешний вид аккумулятора.
- Поищите трещины в емкости.
- Верхняя часть батареи, стойки и соединения должны быть чистыми, без грязи, жидкостей и коррозии.Если батареи загрязнены, обратитесь к разделу «Очистка», чтобы узнать о правильной процедуре очистки.
- Отремонтируйте или замените поврежденные батареи.
2. Любая жидкость на батарее или вокруг нее может указывать на то, что электролит проливается, выщелачивается или вытекает.
- Протекающие батареи необходимо отремонтировать или заменить.
3. Проверьте все кабели аккумуляторной батареи и их соединения.
- Внимательно посмотрите на незакрепленные или поврежденные детали.
- Кабели аккумулятора не должны быть повреждены; Оборванные или изношенные кабели могут быть чрезвычайно опасными.
- Замените любой подозрительный кабель.
4. Затяните все соединения проводки в соответствии со спецификацией (см. Ниже). Убедитесь в хорошем контакте с клеммами.
ВНИМАНИЕ: Не перетягивайте клеммы. Это может привести к поломке стойки, ее расплавлению или возгоранию.
Одного визуального осмотра недостаточно для определения общего состояния аккумулятора.
Показания как напряжения холостого хода, так и удельного веса могут дать хорошее представление об уровне заряда, возрасте и состоянии аккумулятора.Регулярные проверки напряжения и силы тяжести не только покажут состояние заряда, но также помогут выявить признаки неправильного ухода, такие как недостаточный заряд и чрезмерный полив, и, возможно, даже обнаружить неисправный или слабый аккумулятор. Следующие шаги описывают, как правильно выполнять обычные испытания на напряжение и удельный вес аккумуляторов.
I. Проверка удельного веса (только для залитых батарей)
- Не добавляйте воду в это время.
- Перед взятием пробы наполните и слейте воду из ареометра 2–4 раза.
- В ареометре должно быть достаточно проб электролита, чтобы полностью поддерживать поплавок.
- Снимите показания, запишите их и верните электролит обратно в ячейку.
- Чтобы проверить другую ячейку, повторите 3 шага выше.
- Проверьте все элементы в аккумуляторной батарее.
- Установите на место вентиляционные колпачки и сотрите пролившийся электролит.
- Скорректируйте показания на 80º F (26,6º C):
• Добавьте 0,004 к показаниям на каждые 10º F (5.На 6 ° C) выше 80 ° F (26,6 ° C)
• Вычтите 0,004 на каждые 10 ° (5,6 ° C) ниже 80 ° F (26,6 ° C) - Сравните показания.
- Проверьте уровень заряда по Таблице 1 ниже.
Показания должны быть на уровне 1,277 +/- 0,007 или выше заводской спецификации. Если какое-либо значение удельного веса окажется низким, выполните следующие действия.
- Проверьте и запишите уровни напряжения.
- Полностью зарядите аккумулятор (и).
- Снова снимите показания удельного веса.
Если какие-либо значения удельного веса по-прежнему низкие, выполните следующие действия.
- Проверить уровень (и) напряжения.
- Выполните уравнительный заряд. Обратитесь к разделу «Уравнивание» для получения информации о правильной процедуре.
- Снова снимите показания удельного веса.
Если какое-либо значение удельного веса по-прежнему ниже заводской спецификации 1,277 +/- 0,007, то может существовать одно или несколько из следующих условий:
- Батарея старая, срок ее службы подходит к концу.
- Аккумулятор слишком долго находился в разряженном состоянии.
- Электролит был потерян из-за пролива или перелива.
- Развивается слабая или плохая клетка.
- Аккумулятор перед тестированием был чрезмерно полив.
Батареи в условиях 1–4 должны быть доставлены к специалисту для дальнейшей оценки или сняты с эксплуатации.
II. Проверка напряжения холостого хода
Для получения точных показаний напряжения батареи должны оставаться в режиме ожидания (без зарядки и разрядки) не менее 6 часов, предпочтительно 24 часа.
- Отключите все нагрузки от аккумуляторов.
- Измерьте напряжение с помощью вольтметра постоянного тока.
- Проверьте уровень заряда по Таблице 1 ниже.
- Зарядите аккумулятор, если уровень заряда составляет от 0% до 70%.
Если уровень заряда батареи ниже значений, указанных в таблице 1, могут существовать следующие условия:
- Аккумулятор слишком долго находился в разряженном состоянии.
- Батарея неисправна.
Батареи в этих условиях следует доставить к специалисту для дальнейшей оценки или снять с эксплуатации.
ТАБЛИЦА 1 | ||||||||||||||
Состояние заряда в зависимости от удельного веса и напряжения холостого хода | ||||||||||||||
Процент начисления | Удельный вес, скорректированный до | Напряжение холостого хода | ||||||||||||
6v | 8v | 12 В | 24 В | 36v | 48 В | |||||||||
100 | 1.277 | 6,37 | 8,49 | 12,73 | 25,46 | 38.20 | 50,93 | |||||||
90 | 1,258 | 6,31 | 8,41 | 12,62 | 25,24 | 37,85 | 50,47 | |||||||
80 | 1,238 | 6,25 | 8,33 | 12,50 | 25,00 | 37,49 | 49,99 | |||||||
70 | 1.217 | 6,19 | 8,25 | 12,37 | 24,74 | 37,12 | 49,49 | |||||||
60 | 1,195 | 6,12 | 8,16 | 12,27 | 24,48 | 36,72 | 48,96 | |||||||
50 | 1,172 | 6,02 | 8,07 | 12,10 | 24.20 | 36,31 | 48,41 | |||||||
40 | 1.148 | 5,98 | 7,97 | 11,89 | 23,92 | 35,87 | 47,83 | |||||||
30 | 1,124 | 5,91 | 7,88 | 11,81 | 23,63 | 35,44 | 47,26 | |||||||
20 | 1.098 | 5,83 | 7,77 | 11,66 | 23,32 | 34,97 | 46,63 | |||||||
10 | 1.073 | 5,75 | 7,67 | 11,51 | 23,02 | 34,52 | 46,03 |
ТОЛЬКО ЗАЛИВНЫЕ БАТАРЕИ
Залитые батареи нуждаются в воде.
Что еще более важно, полив должен производиться в нужное время и в нужном количестве, иначе ухудшатся характеристики и долговечность аккумулятора.
Воду следует добавлять после полной зарядки аккумулятора. Перед зарядкой должно быть достаточно воды, чтобы покрыть пластины.Если аккумулятор разряжен (частично или полностью), уровень воды также должен быть выше пластин. Поддержание правильного уровня воды после полной зарядки избавит от необходимости беспокоиться об уровне воды при другом уровне заряда.
В зависимости от местного климата, методов зарядки, области применения и т. Д. Trojan рекомендует проверять батареи раз в месяц, пока вы не почувствуете, как часто ваши батареи нуждаются в поливе.
Важно помнить
- Не допускайте контакта пластин с воздухом.Это приведет к повреждению (коррозии) пластин.
- Не доливайте воду в заливное отверстие до крышки. Это, скорее всего, вызовет переполнение батареи кислотой, что приведет к потере емкости и возникновению коррозионного беспорядка.
- Не используйте воду с высоким содержанием минералов. Используйте только дистиллированную или деионизированную воду.
ВНИМАНИЕ: Электролит представляет собой раствор кислоты и воды, поэтому следует избегать контакта с кожей.
Пошаговая процедура полива
- Откройте вентиляционные крышки и загляните внутрь заливных колодцев.
- Проверить уровень электролита; минимальный уровень — вверху тарелок.
- Если необходимо, добавьте в это время ровно столько воды, чтобы покрыть пластины.
- Полностью зарядите аккумуляторы перед добавлением воды (см. Раздел «Зарядка»).
- По завершении зарядки откройте вентиляционные крышки и загляните внутрь заливных колодцев.
- Добавляйте воду до тех пор, пока уровень электролита не станет на 1/8 дюйма ниже дна заливного колодца.
- Кусок резины можно безопасно использовать в качестве щупа для определения этого уровня.
- Очистите, замените и затяните все вентиляционные крышки.
ВНИМАНИЕ: Никогда не добавляйте кислоту в аккумулятор.
Батареи притягивают пыль, грязь и сажу. Содержание в чистоте поможет обнаружить признаки проблем, когда они появляются, и избежать проблем, связанных с грязью.
- Убедитесь, что все вентиляционные крышки плотно закрыты.
- Очистите верхнюю часть батареи тканью или щеткой, смоченной в растворе пищевой соды и воды.
• При чистке не допускайте попадания чистящего раствора или других посторонних предметов внутрь батареи. - Промойте водой и вытрите насухо чистой тканью.
- Очистите клеммы аккумулятора и внутреннюю часть кабельных зажимов с помощью очистителя для столбиков и зажимов.
• Чистые клеммы будут иметь яркий металлический блеск. - Подсоедините зажимы к клеммам и нанесите на них тонкий слой антикоррозийного спрея или силиконового геля.
- Следите за тем, чтобы место вокруг батарей было чистым и сухим.
Периоды простоя могут быть чрезвычайно опасными для свинцово-кислотных аккумуляторов. Помещая аккумулятор на хранение, следуйте приведенным ниже рекомендациям, чтобы аккумулятор оставался исправным и готовым к использованию.
ПРИМЕЧАНИЕ: Хранить, заряжать или эксплуатировать аккумуляторы на бетоне — это нормально.
Самые важные вещи, которых следует избегать
- Замораживание. Избегайте мест, где ожидается отрицательная температура. Поддержание высокого уровня заряда аккумулятора также предотвратит замерзание. Замораживание приводит к непоправимому повреждению пластин и контейнера батареи.
- Тепло. Избегайте прямого воздействия источников тепла, таких как радиаторы отопления или обогреватели. Температура выше 80 ° F (26.6º C) ускоряют саморазряд батареи.
Пошаговая процедура хранения
- Полностью зарядите аккумулятор перед хранением.
- Храните аккумулятор в прохладном сухом месте, защищенном от атмосферных воздействий.
- Во время хранения следите за удельным весом (залитый водой) или напряжением. Аккумуляторы, находящиеся на хранении, должны получить повышенный заряд, если они показывают уровень заряда 70% или меньше. См. Таблицу 1 в разделе «Тестирование».
- Полностью зарядите аккумулятор перед повторной активацией.
- Для оптимальной работы выровняйте аккумуляторы (залитые) перед их повторным вводом в эксплуатацию. Обратитесь к разделу выравнивания для этой процедуры.
В большинстве приложений с глубоким циклом уже установлена какая-либо система зарядки для зарядки аккумуляторов (например, солнечные панели, инвертор, зарядное устройство для гольф-кара, генератор и т. Д.). Однако все еще существуют системы с батареями глубокого разряда, в которых необходимо выбрать индивидуальное зарядное устройство. Следующее поможет сделать правильный выбор.
Сегодня доступно множество типов зарядных устройств. Обычно они оцениваются по их начальному значению — значению в амперах, которое зарядное устройство подает в начале цикла зарядки. При выборе зарядного устройства скорость заряда должна составлять от 10% до 13% от 20-часовой емкости аккумулятора. Например, для аккумулятора с 20-часовой номинальной емкостью 225 Ач будет использоваться зарядное устройство с номиналом приблизительно от 23 до 30 ампер (для зарядки нескольких аккумуляторов используйте рейтинг АН всего банка).Можно использовать зарядные устройства с более низкими номиналами, но время зарядки будет увеличено.
Trojan рекомендует использовать трехступенчатое зарядное устройство. Также называемые «автоматическими», «интеллектуальными» или «IEI» зарядными устройствами, которые продлевают срок службы батареи с помощью запрограммированного профиля зарядки. Эти зарядные устройства обычно имеют три различных этапа зарядки: объемный, приемный и плавающий.
Для правильной зарядки батарей требуется подача нужного количества тока при правильном напряжении. Большинство зарядного оборудования автоматически регулируют эти значения.Некоторые зарядные устройства позволяют пользователю устанавливать эти значения. Как автоматическое, так и ручное оборудование может вызвать трудности при зарядке. В таблицах 2 и 3 перечислены большинство необходимых настроек напряжения, которые могут потребоваться для программирования зарядного устройства. В любом случае для правильной зарядки также следует обращаться к оригинальным инструкциям по зарядному устройству. Вот список полезных вещей, которые следует помнить при зарядке.
- Ознакомьтесь с инструкциями производителя зарядного устройства и следуйте им.
- Батареи следует заряжать после каждого периода использования.
- Свинцово-кислотные батареи не обладают памятью, и их не нужно полностью разряжать перед зарядкой.
- Заряжайте только в хорошо вентилируемых помещениях. Берегите заряжаемый аккумулятор от искр или пламени.
- Проверьте правильность настроек напряжения зарядного устройства (Таблица 2).
- Откорректируйте напряжение зарядки для компенсации температур выше или ниже 77 ° F (25 ° C). Вычтите 0,0028 вольта на элемент на каждые 0 ° F (0,9 ° C).005 В на элемент на каждый 1 ° C) выше 77 ° F (25 ° C) или добавьте 0,0028 В на элемент на каждый 1 ° F (0,005 В на элемент на каждый 1 ° C) ниже 77 ° F (25 ° C) .
- Проверьте уровень воды (см. Раздел «Полив»).
- Перед заправкой затяните все вентиляционные крышки.
- Не допускайте перезарядки батарей. Чрезмерная зарядка вызывает чрезмерное выделение газов (разрушение воды), перегрев и старение батареи.
- Не допускайте недостаточной зарядки аккумуляторов. Недозаряд вызывает расслоение, которое может привести к преждевременному выходу из строя аккумулятора.
- Не заряжайте замерзший аккумулятор.
- Избегайте зарядки при температуре выше 120 ° F (48,8 ° C).
Таблица 2 | |||||
Настройки напряжения зарядного устройства для заливных аккумуляторов | Системное напряжение | ||||
Настройка напряжения зарядного устройства | 6v | 12 В | 24 В | 36 В | 48 В |
Поглощение / насыпная загрузка | 7.35 | 14,7 | 29,4 | 44,1 | 58,8 |
Плавающий заряд | 6,75 | 13,5 | 27,0 | 40,5 | 54,0 |
Уравнительный заряд | 8,1 | 16,2 | 32,4 | 48,6 | 64,8 |
Дополнительные инструкции по зарядке VRLA:
- Ознакомьтесь с инструкциями производителя зарядного устройства и следуйте им.
- Убедитесь, что зарядное устройство имеет необходимые настройки VRLA.
- Установите зарядное устройство на настройки напряжения VRLA (Таблица 3).
- Не перезаряжайте батареи VRLA. Чрезмерная зарядка приведет к высыханию электролита и повреждению аккумулятора.
Таблица 3 | ||||
Настройки напряжения зарядного устройства для аккумуляторов VRLA | Напряжение системы | |||
Настройка напряжения зарядного устройства | 12 В | 24 В | 36 В | 48 В |
Поглощение / насыпная загрузка | 14.4 | 28,8 | 43,2 | 57,6 |
Плавающий заряд | 13,5 | 27,0 | 40,5 | 54,0 |
ТОЛЬКО ЗАЛИВНЫЕ БАТАРЕИ
Выравнивание — это перезарядка свинцово-кислотных аккумуляторов после их полной зарядки.
Он обращает вспять накопление отрицательных химических эффектов, таких как расслоение, состояние, при котором концентрация кислоты в нижней части батареи выше, чем в верхней.Выравнивание также помогает удалить кристаллы сульфата, которые могли скопиться на пластинах. Если не установить этот флажок, это состояние, называемое сульфатацией, снизит общую емкость аккумулятора.
Многие эксперты рекомендуют периодически выравнивать аккумуляторные батареи, от одного раза в месяц до одного или двух раз в год. Однако троянец рекомендует выравнивание только при обнаружении низкого или широкого диапазона удельного веса (> 0,030) после полной зарядки аккумулятора.
Пошаговое выравнивание
- Убедитесь, что батарея (и) залитого типа.
- Снимите все нагрузки с аккумуляторов.
- Подключите зарядное устройство.
- Установите зарядное устройство на выравнивающее напряжение (см. Таблицу 2 в разделе «Зарядка»). Если в вашем зарядном устройстве нет режима выравнивания, вы можете отключить зарядное устройство и снова подключить его. Это также проведет выравнивающий заряд.
- Начать зарядку аккумуляторов.
- Батареи начнут выделять газ и сильно пузыриться.
- Измеряйте удельный вес каждый час.
- Выравнивание завершено, когда значения удельного веса больше не повышаются во время стадии газовыделения.
Разрядка батарей полностью зависит от вашего конкретного применения.
Однако ниже приведен список полезных вещей:
- Мелкая разрядка продлит срок службы батареи.
- Рекомендуется разрядка не более 50%.
- 80% разряд — это максимально безопасный разряд.
- Не разряжайте полностью залитые батареи (80% и более).Это повредит (или убьет) аккумулятор.
- Многие специалисты рекомендуют эксплуатировать аккумуляторы только от 50% до 85% от полного диапазона заряда. При использовании этой практики необходимо периодическое выравнивание заряда.
- Не оставляйте батареи глубоко разряженными на какое-либо время.
- Свинцово-кислотные батареи не обладают памятью, и их не нужно полностью разряжать перед зарядкой.
- Батареи следует заряжать после каждого периода использования.
- Батареи, которые заряжаются, но не могут поддерживать нагрузку, скорее всего, неисправны и должны быть проверены.Обратитесь к разделу «Тестирование» для правильной процедуры.
% Разряжено | |||||
100 | 80 | 60 | 40 | 20 | 0 |
0 | 20 | 40 | 60 | 80 | 100 |
Залитые батареи нуждаются в воде.
Но что еще более важно, полив должен производиться в нужное время и в нужном количестве, иначе производительность и долговечность аккумулятора страдают.
Общие инструкции по поливу:
- Добавьте воду, но не кислоту, в ячейки (рекомендуется дистиллированная вода)
- НЕ ПЕРЕЛИВАТЬ
- Для полностью заряженных стандартных батарей глубокого разряда добавьте воды до уровня 1/8 ниже дна вентиляционного колодца (см. Диаграмму A ниже)
- Для полностью заряженных батарей серии Plus добавьте воды к индикатору максимального уровня воды (см. Диаграмму B ниже)
- Если батареи разряжены, добавляйте воду только в том случае, если пластины открыты.Добавьте воды, достаточной для покрытия пластин, затем зарядите батареи. После полной зарядки долейте воды до надлежащего уровня, указанного выше
- После полива закройте вентиляционные крышки на аккумуляторах
Схема A | Схема B | |
Добавьте воду до уровня 0,125 дюйма ниже дна вентиляционного колодца. | Залейте воду до указателя максимального уровня воды. |
ДЛЯ СОЛНЕЧНОГО ПРИМЕНЕНИЯ
Храните аккумуляторы и эксплуатируйте их в прохладном сухом месте.
На каждые 18 ° F (10 ° C) превышения комнатной температуры (77 ° F или 25 ° C) срок службы батареи сокращается на 50%.
Полностью заряжайте аккумуляторы после каждого периода использования.
Если ваши батареи будут находиться в состоянии низкого заряда в течение продолжительного времени, уменьшится их емкость и срок службы.
Если вы храните батареи в течение длительного периода времени, обязательно заряжайте их полностью каждые 3-6 месяцев.Свинцово-кислотные батареи будут саморазряжаться от 5% до 15% в месяц, в зависимости от температуры условий хранения.
Регулярно контролируйте напряжение аккумулятора и удельный вес электролита, чтобы убедиться в полной перезарядке. Как правило, общий ток от ваших фотоэлектрических панелей должен составлять от 10% до 20% от общего количества ампер-часов (Ач) аккумуляторной батареи.
Многие контроллеры заряда имеют настройки выравнивания, которые вы можете установить, чтобы обеспечить работоспособность ваших батарей.Выполняйте выравнивание аккумуляторов не реже одного раза в месяц в течение 2–4 часов или дольше, если аккумуляторы постоянно недозаряжались.
Напряжение системы | |||||
Настройки напряжения | 6 В | 12 В | 24 В | 36 В | 48 В |
Ежедневная зарядка | 7,4 | 14,8 | 29,6 | 44,5 | 59,3 |
Плавающий заряд | 6.7 | 13,5 | 27 | 40,5 | 54 |
Уравнительный заряд | 8,1 | 16,2 | 32,4 | 48,6 | 64,8 |
Регулярно поливайте батареи.
Залитые батареи или батареи с жидкими элементами требуют периодического полива. Проверяйте батареи раз в месяц после установки, чтобы определить правильный график полива. Добавьте воду после полной зарядки аккумулятора и используйте дистиллированную воду.
Для получения более подробной информации о процедурах полива, проверке напряжения аккумуляторной батареи и других инструкциях по техническому обслуживанию обратитесь к нашему разделу по обслуживанию аккумуляторной батареи.
Как разработать литиевый аккумулятор (часть 2 из 2)
Обязательно ознакомьтесь с первой частью этой серии, посвященной сборке аккумулятора. Ссылка здесь
Разработка индивидуальной литиевой аккумуляторной батареи — интересный способ узнать об электричестве и технике. Литиевые батареи можно использовать в бесчисленных приложениях, включая электрические велосипеды, скутеры, транспортные средства, резервные источники питания, автономные решения и многое другое.
Я разбил это руководство на следующие разделы:
1. Как работают элементы литиевой батареи
2. Основы работы с электричеством
3. Сколько элементов вставить в аккумуляторную батарею
4. Как соединить клетки вместе 5. BMS, зарядка и принципиальная схема
1. Как работают литиевые батареи
Существует бесчисленное множество типов литиевых батарей, но в этом уроке я сосредоточусь на самом популярном размере — 18650.18650 — это тип литиевого элемента, название которого соответствует размеру элемента. 18 мм в диаметре и 65 мм в длину.
Если заглянуть внутрь ячейки, то это длинный рулон из анода и катодного материала, изолированных с помощью сепаратора. Между всеми слоями также находится электролит на основе лития, который действует как переносчик ионов лития. Сепаратор достаточно пористый, чтобы позволить ионам лития проходить через себя, но все же изолирует анод и катод друг от друга.
Если посмотреть на поперечное сечение элемента 18650, видно, сколько слоев намотано вместе:
По мере того, как элемент разряжается при использовании, ионы лития перемещаются от анода к катоду, используя электролит в качестве переносчика.Это вызывает дисбаланс заряда на катодной стороне, что заставляет электроны перемещаться через все, что подключено в цепи, обратно к анодной стороне, запитывая устройство.
Когда элемент перезаряжается, этот процесс меняется на противоположный, и ионы лития проходят обратно от катода к аноду:
Это очень глубокая тема, но этого базового понимания достаточно для создания аккумуляторной батареи.
2. Основные принципы работы с электричеством
Есть несколько концепций, которые нам необходимо рассмотреть, чтобы понять, что означают характеристики аккумулятора.
Напряжение = электрический потенциал. Это «сила» электричества.
Сила тока = количество переносимых электронов. Это «скорость потока» за электричеством.
Сопротивление = то, что замедляет поток электричества.
Вот механическая аналогия с водяной системой, которая может помочь объяснить электрический смысл:
Теперь, что это означает для создания реальных вещей: Для электровелосипедов:
Чем выше напряжение , тем быстрее будет вращаться двигатель.По этой причине у двигателей обычно есть ограничение по напряжению. Для бесщеточных двигателей рейтинг «KV» — это количество оборотов в минуту, которое двигатель будет вращать на один приложенный вольт.
пр.) Двигатель 10 кВ с питанием от 10 В будет вращаться со скоростью 10 * 10 = 100 об / мин.
Если вернуться к приведенной выше аналогии с водяным колесом, колесо не будет вращаться вообще, если не будет достаточной скорости потока. Это означает, что чем больше сопротивления вращению колеса, тем больше требуется тока , чтобы преодолеть это
Закон Ома
Закона Ома достаточно, чтобы описать здесь все поведение.Закон Ома объясняет, как напряжение, ток и сопротивление связаны друг с другом.
Покупка литиевых батарей
Литиевые батареи имеют следующие характеристики:
Размер: Номинальный диаметр и длина, например 18650 или 2170
Напряжение: Напряжение зависит от заряда и химического состава.
Токовый выход: Максимально допустимый выходной ток без повреждения
Емкость: Номинальное значение в ампер-часах.Пример: батарея 3 Ач может работать 3 часа при 1 А или 1 час при 3 А на выходе
C Рейтинг: Скорость разряда в зависимости от емкости. C = Амперы * Емкость. Пример: батарея 10C емкостью 3 Ач может безопасно разряжаться при 10/3 = 3,3 А.
Ячейки 18650 обычно заряжаются до 4,2 В, а во время разряда опускаются до 3 В или меньше. Вот график разряда, показывающий изменение напряжения во времени по мере разряда батареи для элемента Samsung 30Q. Нормальное номинальное напряжение элемента 18650 находится примерно в середине этой диаграммы на отметке 3.7V
18650 элементы также будут разлагаться при циклах зарядки, так как химический состав незначительно меняется, и имеет место незначительная деградация материала. Вот диаграмма зависимости емкости от цикла для того же элемента Samsung 30Q:
Чтобы увеличить срок службы элемента, не рекомендуется опускаться ниже 3 В, так как полный разряд литиевого элемента приведет к его необратимому повреждению.
Кроме того, тепло — враг литиевого элемента, важно не превышать рекомендованный производителем номинальный ток разряда, в противном случае может произойти внутреннее повреждение элемента.
3. Сколько элементов в аккумуляторной батарее?
Вам нужно знать, для чего будет использоваться аккумулятор, чтобы выбрать правильный элемент.
1. Какое напряжение необходимо (сколько ячеек последовательно)
2. Какой максимальный ток разряда требуется (сколько ячеек параллельно)
3. Какая требуется емкость (сколько ячеек параллельно)
Стекирование ячеек встык, последовательно , увеличивает напряжение, но сохраняет емкость и выходной ток неизменными.1 ячейка = 1S || 2 ячейки последовательно = 2S || 3 ячейки последовательно = 3S || 4 последовательно соединенных элемента = 4S
Объединение ячеек бок о бок, параллельно , увеличивает емкость и выходной ток, но сохраняет неизменным напряжение.
1 ячейка = 1P || 2 ячейки параллельно = 2P || 3 ячейки параллельно = 3P || 4 параллельных ячейки = 4P
Рассмотрим пример с ячейкой Samsung 30Q. Он имеет:
— Пиковое напряжение 4,2 В
— Емкость 3 Ач
— Максимальный выходной ток 15 А
Если нам нужно спроектировать аккумуляторную батарею с пиковым напряжением 48 В и выходным током 50 А, сколько ячеек нам нужно? 12 в ряд = 4.2 В * 12 = 50,4 В
4 параллельно = 15 А * 4 = 60 А
Итак, 4 ячейки в параллельной группе и 12 параллельных групп, соединенных последовательно.
Это называется 12S4P, поскольку имеется 12 последовательно соединенных ячеек, и каждая последовательная группа содержит 4 параллельных ячейки. Вот как это выглядит.
Давайте внимательнее посмотрим, что здесь происходит, есть 12 групп по 4 элемента, объединенных вместе, чтобы образовать эту батарею:
Имейте в виду, когда емкость истощается, каждая ячейка будет уменьшаться с 4.От 2 В до 3 В, понижая выходную мощность батареи до 12 * 3 В = 36 В
4. Как соединить элементы вместе
Один из самых простых способов удержать элементы вместе в требуемой конфигурации — это держатели элементов. Они соединяются практически во всех возможных комбинациях и имеют идеальные вырезы для сборных шин.
Ссылка: https://amzn.to/2EBNG3Y
Для электрических соединений, шины используются для соединения соседних ячеек вместе для формирования параллельных и последовательных групп:
Лучшие шины для использования сделаны из чистого никель.Я использовал шины толщиной 8 мм * 0,15 мм, так как они идеально подходят для держателей ячеек, о которых я расскажу ранее.
Ссылка (маленькая упаковка): https://amzn.to/2Qpcl0o
Ссылка (большая упаковка): https://amzn.to/2EBN1zz
Два самых популярных способа присоединения сборной шины к концы ячеек подвергаются пайке или точечной сварке. Я настоятельно не рекомендую пайку, так как она выделяет большое количество тепла, а именно тепло разрушает ячейку.
Вместо этого я бы рекомендовал использовать точечный сварочный аппарат, такой как SUNKKO 709AD, или аналогичный:
Ссылка: https: // amzn.to / 2QvoyAL (у меня есть именно этот аппарат, и он отлично работает)
Этот аппарат для точечной сварки работает за счет коротких сварочных швов, в результате чего только местный материал плавится и сплавляется. Поскольку это происходит так быстро, тепло локализуется только в области сварного шва.
Каждую шину следует дважды приварить к концам 18650. Однако, даже если выделяемое тепло минимально, лучше оставить некоторое время для охлаждения между сварками одной и той же ячейки. Вот пример:
Размер шины
Ток почти не протекает между параллельными ячейками, весь ток протекает в последовательном соединении.Единственный раз, когда ток протекает между параллельными ячейками, это если одна ячейка разряжается немного быстрее, но это почти сразу же корректируется другими ячейками в параллельной группе.
Чтобы увидеть, какой ток может выдержать шина размером 8 мм * 0,15 мм, я провел несколько испытаний при разной силе тока и измерил повышение температуры. Поскольку тепло является врагом литиевого элемента, лучше поддерживать температуру не выше 30 ° C.
Тепло генерируется в сборной шине из-за джоулева нагрева (потери сопротивления).2 * R, который равен квадрату тока, умноженного на сопротивление шины. Таким образом, небольшое изменение тока может иметь огромное тепловое воздействие.
Для моего аккумуляторного блока мне требуется ток 50А, что потребует 4 никелевых полоски между последовательными соединениями, чтобы не перегреть систему. Это может быть выполнено путем двойного штабелирования шин для создания необходимого количества шин.
Затем промойте и повторите соединение всех ячеек вместе и удвоение (или более) последовательных соединений по мере необходимости.
5. BMS, зарядка и принципиальная схема
Чтобы защитить новую модную батарею, мы хотим добавить так называемую систему управления батареями (BMS), которая защищает батарею во время зарядки и разрядки. Ранее я упоминал, что литиевые элементы не любят разряжаться ниже 3 В, а также не должны заряжаться выше 4,2 В. BMS делает именно это для последовательно соединенных групп ячеек, она гарантирует, что ни одна ячейка никогда не выйдет за пределы рекомендуемого диапазона напряжения, тем самым повышая безопасность аккумуляторной батареи, а также долговечность!
Ссылка: http: // www.batterysupports.com/ BMS будет зависеть от количества подключенных ячеек, убедитесь, что вы выбрали правильный.
Вот как вы подключаете BMS к аккумуляторной батарее. Пожалуйста, ознакомьтесь с рекомендациями по подключению вашей конкретной BMS, так как они могут отличаться по соглашению об именах.
BMS работает путем соединения балансировочных проводов между узлами через последовательные соединения. Во время зарядки, если напряжение на каком-либо узле превышает пороговое значение 4,2 В, BMS будет гарантировать, что мощность больше не поступает в эту группу параллельных ячеек, чтобы избежать повреждения.Во время разряда, если какой-либо узел упадет ниже 3 В или того, что установлено в BMS, тогда BMS отключит выходную мощность на всю батарею, чтобы сохранить ячейки.
Требуемое зарядное устройство будет зависеть от количества последовательно соединенных групп ячеек. При поиске введите количество соединенных ячеек серии. Например «Зарядное устройство 12S».
Не имеет значения, сколько параллельных ячеек в группе. Вы хотите убедиться, что уровень заряда не превышает заряд батареи. Например, в таблице данных ячейки Samsung 30Q указано 1.5A как нормальный, и 4A как максимум.
Примеры:
— 6S1P, максимальная скорость заряда 4A
— 6S2P, максимальная скорость заряда 8A
— 6S3P, максимальная скорость заряда 12A
— 12S1P, максимальная скорость заряда 4A
— 12S2P, макс. скорость заряда 8A
— 12S3P, максимальная скорость заряда 12A
12S ссылка на зарядное устройство: https://amzn.to/2MpkYKm
Вам нужно будет купить цилиндрический разъем постоянного тока, чтобы аккумулятор мог быть подключенным и заряженным.Убедитесь, что зарядное устройство, которое вы покупаете, имеет такой же диаметр. Должно быть, большинство из них — 2,1 мм.
Ссылка: https://amzn.to/2YX6EKl
Линия разъемов XT очень хорошо работает с выходами литиевых батарей, поскольку они могут выдерживать большие токовые нагрузки. Существует 3 основных размера: XT30, XT60 и XT90. Основное отличие — это текущая нагрузка, с которой они могут справиться.
При поставке от качественных поставщиков пластиковый корпус изготовлен из негорючего и самозатухающего нейлона, рассчитанного на температуру 120 ° C.Они также имеют ключ, поэтому их можно подключать только одним способом, без случайного подключения в обратном направлении и переключения полярности.
Просто припаяйте провода к концам. Я рекомендую надеть немного термоусадки, когда вы закончите пайку, чтобы немного ослабить натяжение.
XT30 — номинал 30A
Ссылка: https://amzn.to/2YXs9L8
XT60 — номинал 60A Ссылка: https://amzn.to/2YWSqsY
XT90 — 90A с рейтингом
Ссылка: https: // amzn.to / 2KiQneq
Необязательная, но приятная функция для аккумуляторного блока — это выключатель. Это позволяет при необходимости отключить мощность.
Ссылка: https://amzn.to/2VWAufS
Еще одна необязательная, но приятная функция — индикатор уровня заряда батареи. Большинство из них можно настроить на любую подключенную батарею. Им просто нужно знать, сколько групп ячеек соединено последовательно:
Ссылка: https://amzn.to/2VWeEJM
Последний шаг — связать все это вместе со схемой подключения системы.В этом примере я покажу батарею 12S4P, но это также будет работать для любого варианта S и P:
Вы можете увидеть, как все параллельные группы ячеек (1S4P для этого примера) связаны вместе с балансом BMS. линии, подключенные к каждому стыку. Порт зарядки подключается перед электронным переключателем, так как мы хотим иметь возможность заряжать аккумулятор, когда он выключен. Наконец, индикатор заряда батареи находится на выходе переключателя, поэтому мощность отображается только при включенной батарее.
Для балансных линий, соединений с портом зарядки и измерителя батареи, провод в диапазоне 18-22 AWG должен работать нормально, так как текущие нагрузки немного ниже, чем основной выход батареи.
Размер проводки для токопроводящих частей будет зависеть от максимального ожидаемого тока. Ниже приведена диаграмма, которая дает приблизительные рекомендации по максимально допустимому току с учетом номинальной температуры оболочки для медного провода при температуре окружающей среды 25 ° C.
Для любых портативных устройств (электровелосипед, скутер, дрон и т. Д.) Я бы рекомендовал использовать кабели с силиконовой оболочкой, так как они рассчитаны на 200 ° C и очень гибкие. Это позволит вам использовать максимально легкий провод, позволяя ему нагреться.Для фиксированной проводки, например для источников резервного питания и автономных решений, я бы рекомендовал провод большего сечения, чтобы свести к минимуму тепловыделение. Любое тепло, выделяемое в кабелях, является неэффективностью системы, и этого следует избегать там, где масса не важна.
Вот несколько ссылок для силиконового провода:
16AWG (35A макс.): https://amzn.to/2W2tsGw
14AWG (54A max): https://amzn.to/2MgYhIc
12AWG (68A макс.): https: // amzn.to / 2YUFC6b
10AWG (90A макс.): https://amzn.to/30RJgzF
8AWG (124A max): https://amzn.to/2MiThCH
22AWG (для сигналов): https://amzn.to/2Mifilh
18650 Ячейки батареи: https://www.imrbatteries.com/samsung-30q-18650-3000mah-15a-flat-top-battery/
Превосходный аккумулятор DIY book: https://amzn.to/2MoFEC1
Это должно быть все, что вам нужно, чтобы начать делать аккумуляторы !!!
Обязательно ознакомьтесь с первой частью этой серии, посвященной сборке батареи. Ссылка здесь
Что такое аккумулятор? — learn.sparkfun.com
Добавлено в избранное Любимый 22Введение
Батареи представляют собой совокупность одной или нескольких ячеек, химические реакции которых создают поток электронов в цепи. Все батареи состоят из трех основных компонентов: анода (сторона «-»), катода (сторона «+») и какого-то электролита (вещество, которое химически реагирует с анодом и катодом).
Когда анод и катод батареи подключены к цепи, между анодом и электролитом происходит химическая реакция. Эта реакция заставляет электроны проходить через цепь и возвращаться к катоду, где происходит другая химическая реакция. Когда материал в катоде или аноде расходуется или больше не может быть использован в реакции, батарея не может производить электричество. В этот момент ваша батарея «разряжена».
Батареи, которые необходимо выбросить после использования, известны как первичные батареи .Батареи, которые можно перезаряжать, называются вторичными батареями .
Литий-полимерные батареи, например, заряжаемые
Без батарей ваш квадрокоптер пришлось бы привязать к стене, вам пришлось бы вручную провернуть машину, а ваш контроллер Xbox должен был бы быть постоянно подключен к розетке (как в старые добрые времена). Батареи позволяют хранить потенциальную электрическую энергию в переносном контейнере.
Батареи бывают разных форм, размеров и химического состава.
Изобретение современной батареи часто приписывают Алессандро Вольта. На самом деле все началось с удивительной аварии, связанной с рассечением лягушки.
Что вы узнаете
В этом руководстве будут подробно рассмотрены следующие темы:
- Как были изобретены батарейки
- Из каких частей состоит аккумулятор
- Как работает аккумулятор
- Общие термины, используемые для описания батарей
- Различные способы использования батарей в схемах
Рекомендуемая литература
Есть несколько концепций, с которыми вы, возможно, захотите ознакомиться перед тем, как начать читать это руководство:
Хотите изучить различные батареи?
Мы вас прикрыли!
Щелочная батарея 9 В
В наличии PRT-10218Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac.Даже не думайте пытаться перезарядить их. Используйте их с…
1История
Термин Батарея
Исторически слово «батарея» использовалось для описания «серии подобных объектов, сгруппированных вместе для выполнения определенной функции», как в артиллерийской батарее. В 1749 году Бенджамин Франклин впервые использовал этот термин для описания серии конденсаторов, которые он соединил вместе для своих экспериментов с электричеством.Позже этот термин будет использоваться для любых электрохимических ячеек, связанных вместе с целью обеспечения электроэнергии.
Батарея «конденсаторов» Лейденской банки соединена вместе(Изображение любезно предоставлено Альвинруном из Wikimedia Commons)
Изобретение батареи
В один роковой день 1780 года итальянский физик, врач, биолог и философ Луиджи Гальвани рассекал лягушку, прикрепленную к медному крючку. Когда он коснулся лягушачьей лапы железным отростком, нога дернулась.Гальвани предположил, что энергия исходит от самой ноги, но его коллега-ученый Алессандро Вольта считал иначе.
Вольта выдвинул гипотезу, что импульсы лягушачьей лапки на самом деле были вызваны различными металлами, пропитанными жидкостью. Он повторил эксперимент, используя ткань, пропитанную рассолом, вместо трупа лягушки, что привело к аналогичному напряжению. Вольта опубликовал свои открытия в 1791 году, а позже создал первую батарею, гальваническую батарею, в 1800 году.
Гальваническая свая состояла из пакета цинковых и медных пластин, разделенных тканью, пропитанной рассолом
СтопкаVolta страдала от двух основных проблем: из-за ее веса электролит вытекал из ткани, а особые химические свойства компонентов привели к очень короткому сроку службы (около часа).Следующие двести лет уйдут на совершенствование конструкции Вольты и решение этих проблем.
Исправления к гальванической свае
Уильям Круикшанк из Шотландии решил проблему утечки, положив гальваническую батарею на бок, чтобы сформировать «желобную батарею».
Желобковая батарея решила проблему утечки гальванической сваи
Вторая проблема, короткий срок службы, была вызвана разложением цинка из-за примесей и скоплением пузырьков водорода на меди.В 1835 году Уильям Стерджен обнаружил, что обработка цинка ртутью предотвратит разложение.
Британский химик Джон Фредерик Дэниелл использовал второй электролит, который вступал в реакцию с водородом, предотвращая накопление на медном катоде. Батарея Даниэля с двумя электролитами, известная как «ячейка Даниэля», станет очень популярным решением для обеспечения энергией зарождающихся телеграфных сетей.
Коллекция клеток Даниэля из 1836 г.
Первая аккумуляторная батарея
В 1859 году французский физик Гастон Планте создал батарею из двух прокатанных листов свинца, погруженных в серную кислоту.Путем реверсирования электрического тока через батарею химия вернется в исходное состояние, создав первую перезаряжаемую батарею.
Позже, в 1881 году, Камилла Альфонс Фор улучшила конструкцию Планте, превратив листы свинца в пластины. Эта новая конструкция упростила производство аккумуляторов, и свинцово-кислотные аккумуляторы получили широкое распространение в автомобилях.
-> Дизайн обычного «автомобильного аккумулятора» существует уже более 100 лет
(Изображение любезно предоставлено Эмилианом Робертом Виколом из Wikimedia Commons) <-
Сухая камера
Вплоть до конца 1800-х годов электролит в батареях был в жидком состоянии.Это сделало транспортировку аккумуляторов очень осторожным делом, и большинство аккумуляторов никогда не предназначались для перемещения после подключения к цепи.
В 1866 году Жорж Лекланше создал батарею с цинковым анодом, катодом из диоксида марганца и раствором хлорида аммония в качестве электролита. Хотя электролит в элементе Лекланше был все еще жидким, химический состав батареи оказался важным шагом для изобретения сухого элемента.
Карл Гасснер придумал, как создать электролитную пасту из хлорида аммония и гипса.Он запатентовал новую батарею с «сухими элементами» в 1886 году в Германии.
Эти новые сухие элементы, обычно называемые «угольно-цинковыми батареями», производились массово и пользовались огромной популярностью до конца 1950-х годов. Хотя углерод не используется в химической реакции, он играет важную роль в качестве электрического проводника в углеродно-цинковой батарее.
-> Угольно-цинковая батарея 3 В 1960-х годов
(Изображение любезно предоставлено PhFabre из Wikimedia Commons) <-
В 1950-х годах Льюис Урри, Пол Марсал и Карл Кордеш из компании Union Carbide (позже известной как «Eveready», а затем «Energizer») заменили электролит хлористого аммония щелочным веществом на основе химического состава батареи, сформулированного Вальдемаром. Юнгнер в 1899 году.Щелочные батареи с сухими элементами могут содержать больше энергии, чем угольно-цинковые батареи того же размера, и имеют более длительный срок хранения.
Щелочные батареи приобрели популярность в 1960-х годах, обогнали угольно-цинковые батареи и с тех пор стали стандартными первичными элементами для потребительского использования.
-> Щелочные батареи бывают разных форм и размеров
(Изображение любезно предоставлено Aney ~ Commonswiki из Wikimedia Commons) <-
Аккумуляторы 20-го века
В 1970-х годах компания COMSAT разработала никель-водородную батарею для использования в спутниках связи.Эти батареи хранят водород в газообразной форме под давлением. Многие искусственные спутники, такие как Международная космическая станция, по-прежнему используют никель-водородные батареи.
Исследования нескольких компаний с конца 1960-х годов привели к созданию никель-металлгидридной (NiMH) батареи. NiMH батареи были выпущены на потребительский рынок в 1989 году и стали более дешевой альтернативой никель-водородным аккумуляторным элементам меньшего размера.
Компания Asahi Chemical из Японии построила первую литий-ионную батарею в 1985 году, а Sony создала первую коммерческую литий-ионную батарею в 1991 году.В конце 1990-х годов был создан мягкий гибкий корпус для литий-ионных аккумуляторов, в результате чего возникли «литий-полимерные» или «LiPo» аккумуляторы.
Химические реакции в литий-полимерной батарее практически такие же, как и в литий-ионной батарее
Очевидно, что было изобретено, произведено и устарело гораздо больше химикатов батарей. Если вы хотите узнать больше о современных и популярных технологиях аккумуляторов, ознакомьтесь с нашим руководством по технологиям аккумуляторов.
Компоненты
Батареисостоят из трех основных компонентов: анода , катода и электролита . Сепаратор часто используется для предотвращения соприкосновения анода и катода, если электролита недостаточно. Для хранения этих компонентов аккумуляторы обычно имеют какой-то кожух .
Хорошо, большинство батарей на самом деле не разделены на три равные части, но идею вы поняли.Лучшее поперечное сечение щелочной ячейки можно найти в Википедии.И анод, и катод относятся к типу электродов . Электроды — это проводники, через которые электричество входит или выходит из компонента в цепи.
Анод
Электроны выходят из анода в устройстве, подключенном к цепи. Это означает, что обычный «ток» течет в анод .
На аккумуляторах анод обозначен как отрицательная (-) клемма
В батарее химическая реакция между анодом и электролитом вызывает накопление электронов на аноде.Эти электроны хотят двигаться к катоду, но не могут пройти через электролит или сепаратор.
Катод
Электроны текут в катод в устройстве, подключенном к цепи. Это означает, что обычный «ток» течет из катода.
На батареях катод помечен как положительный (+) вывод
В батареях в химической реакции внутри катода или вокруг него используются электроны, образующиеся на аноде.Электроны могут попасть на катод только через цепь, внешнюю по отношению к батарее.
Электролит
Электролит — это вещество, часто жидкость или гель, которое способно переносить ионы между химическими реакциями, происходящими на аноде и катоде. Электролит также препятствует потоку электронов между анодом и катодом, так что электроны легче проходят через внешнюю цепь, чем через электролит.
-> В щелочных батареях может протекать электролит, гидроксид калия, если они подвергаются воздействию высоких температур или обратного напряжения
(Изображение любезно предоставлено Вильямом Дэвисом из Wikimedia Commons) <-
Электролит имеет решающее значение в работе аккумулятора.Поскольку электроны не могут проходить через него, они вынуждены проходить через электрические проводники в виде цепи, соединяющей анод с катодом.
Сепаратор
Сепараторы представляют собой пористые материалы, которые предотвращают соприкосновение анода и катода, что может вызвать короткое замыкание в батарее. Сепараторы могут быть изготовлены из различных материалов, включая хлопок, нейлон, полиэстер, картон и синтетические полимерные пленки. Сепараторы не вступают в химическую реакцию ни с анодом, ни с катодом, ни с электролитом.
В гальванической куче использовалась ткань или картон (разделитель), пропитанные солевым раствором (электролитом) для разделения электродов
Ионы в электролите могут быть положительно заряженными, отрицательно заряженными и иметь различные размеры. Могут быть изготовлены специальные сепараторы, которые пропускают одни ионы, но не пропускают другие.
Кожух
Большинству батарей требуется способ удерживать химические компоненты. Кожухи, также известные как «кожухи» или «оболочки», представляют собой просто механические конструкции, предназначенные для удержания внутренних компонентов батареи.
Свинцово-кислотный аккумулятор в пластиковом корпусе
Корпуса батареймогут быть изготовлены практически из чего угодно: из пластика, стали, пакетов из мягкого полимерного ламината и так далее. В некоторых батареях используется токопроводящий стальной кожух, который электрически соединен с одним из электродов. В случае обычного щелочного элемента AA стальной корпус соединен с катодом.
Эксплуатация
Батареи обычно требуют нескольких химических реакций для работы.По крайней мере, одна реакция происходит внутри или вокруг анода, и одна или несколько реакций происходят внутри или вокруг катода. Во всех случаях реакция на аноде дает дополнительные электроны в процессе, называемом окисление , а реакция на катоде использует дополнительные электроны в процессе, известном как восстановление .
Когда переключатель замкнут, цепь замыкается, и электроны могут течь от анода к катоду. Эти электроны активируют химические реакции на аноде и катоде.
По сути, мы разделяем определенный вид химической реакции, реакцию окисления-восстановления или окислительно-восстановительную реакцию, на две отдельные части. При переносе электронов между химическими веществами происходят окислительно-восстановительные реакции. Мы можем использовать движение электронов в этой реакции, чтобы они выходили за пределы батареи и питали нашу цепь.
Анодное окисление
Эта первая часть окислительно-восстановительной реакции, окисление, происходит между анодом и электролитом и производит электроны (обозначенные как e — ).
В некоторых реакциях окисления образуются ионы, например, в литий-ионной батарее. В других химических реакциях расходуются ионы, как в обычных щелочных батареях. В любом случае ионы могут свободно проходить через электролит, а электроны — нет.
Катодное восстановление
Другая половина окислительно-восстановительной реакции, восстановление, происходит в катоде или рядом с ним. Электроны, образующиеся в результате реакции окисления, расходуются во время восстановления.
В некоторых случаях, например, в литий-ионных батареях, положительно заряженные ионы лития, образующиеся во время реакции окисления, расходуются во время восстановления.В других случаях, например, в щелочных батареях, во время восстановления образуются отрицательно заряженные ионы.
Электронный поток
В большинстве батарей некоторые или все химические реакции могут происходить, даже если батарея не подключена к цепи. Эти реакции могут повлиять на срок годности батареи.
По большей части, реакции будут происходить с полной силой только тогда, когда между анодом и катодом замыкается электрически проводящая цепь. Чем меньше сопротивление между анодом и катодом, тем больше электронов может течь и тем быстрее протекают химические реакции.
Короткое замыкание в аккумуляторе (в данном случае даже случайное) может быть опасным. Известно, что литий-ионные батареи перегреваются и даже задыхаются или загораются при коротком замыкании.
Мы можем пропускать эти движущиеся электроны через различные электрические компоненты, известные как «нагрузка», для выполнения чего-то полезного. В анимационном ролике в начале этого раздела мы зажигаем виртуальную лампочку движущимися электронами.
Батарея разряжена
Химические вещества в батарее в конечном итоге достигают состояния равновесия. В этом состоянии химические вещества больше не будут реагировать, и в результате аккумулятор больше не будет генерировать электрический ток. На данный момент аккумулятор считается «мертвым».
Первичные элементы необходимо утилизировать, когда батарея разряжена. Вторичные элементы можно перезаряжать, и это достигается путем подачи через батарею обратного электрического тока.Перезарядка происходит, когда химические вещества выполняют еще одну серию реакций, чтобы вернуть их в исходное состояние.
Терминология
Люди часто используют общий набор терминов, говоря о напряжении батареи, емкости, возможности источника тока и так далее.
Ячейка
Элемент относится к одному аноду и катоду, разделенным электролитом, используемым для выработки напряжения и тока. Батарея может состоять из одной или нескольких ячеек.Например, одна батарея AA — это одна ячейка. Автомобильные аккумуляторы содержат шесть ячеек по 2,1 В.
Обычная 9-вольтовая батарея содержит шесть щелочных элементов по 1,5 В, установленных друг над другом
Первичный
Первичные клетки содержат химический состав, который нельзя обратить вспять. В результате аккумулятор необходимо выбрасывать после того, как он разрядился.
Среднее
Вторичные элементы можно перезаряжать, и их химический состав возвращается в исходное состояние.Эти элементы, также известные как «перезаряжаемые батареи», можно использовать много раз.
Номинальное напряжение
Номинальное напряжение аккумулятора — это напряжение, указанное производителем.
Например, щелочные батареи типа AA указаны как имеющие напряжение 1,5 В. В этой статье из Mad Scientist Hut показано, что их испытанные щелочные батареи начинаются с напряжения около 1,55 В, а затем медленно теряют напряжение по мере разряда. В этом примере номинальное напряжение «1,5 В» относится к максимальному или пусковому напряжению батареи.
Этот аккумулятор Storm для квадрокоптеров показывает кривую разряда для их LiPo-элементов, начиная с 4,2 В и снижаясь до 2,8 В по мере разряда. Номинальное напряжение, указанное для большинства литий-ионных и LiPo-элементов, составляет 3,7 В. В этом случае номинальное напряжение «3,7 В» относится к среднему напряжению аккумулятора в течение его цикла разряда.
Вместимость
Емкость аккумулятора — это величина электрического заряда, который он может доставить при определенном напряжении. Большинство батарей рассчитаны на ампер-часы (Ач) или миллиампер-часы (мАч).
Этот LiPo аккумулятор рассчитан на 1000 мАч, что означает, что он может обеспечить 1 ампер в течение 1 часа, прежде чем он будет считаться разряженным.
Большинство графиков разряда батареи показывают зависимость напряжения батареи от емкости, например, эти тесты батареи AA, проведенные PowerStream. Чтобы выяснить, достаточно ли емкости аккумулятора для питания вашей схемы, найдите самое низкое допустимое напряжение и найдите соответствующий номинал мАч или Ач.
C-Rate
Многие батареи, особенно мощные литий-ионные, обозначают ток разряда как «C-Rate», чтобы более четко определить характеристики батареи.C-Rate — это скорость разряда относительно максимальной емкости аккумулятора.
1С — это количество тока, необходимое для разрядки аккумулятора за 1 час. Например, аккумулятор емкостью 400 мАч, обеспечивающий ток 1С, будет обеспечивать 400 мА. 5C для той же батареи будет 2 A.
Большинство батарей теряют емкость при более высоком потреблении тока. Например, этот график информации о продукте от Chargery показывает, что их LiPo-элемент имеет меньше мАч при более высоких показателях C-Rates.
ПРИМЕЧАНИЕ: Общий совет гласит, что вы должны заряжать LiPo батареи при 1С или меньше.
Массачусетский технологический институт предлагает фантастическое руководство по спецификациям и терминологии аккумуляторов, которое идет намного дальше этого обзора.
Использование
Однокамерный
Некоторые схемы могут питаться от одного элемента, но убедитесь, что батарея может обеспечивать достаточное напряжение и ток.
Этот щит фотонной батареи питается от одного элемента LiPoЕсли напряжение слишком высокое или слишком низкое для вашей схемы, вам, вероятно, понадобится преобразователь постоянного тока в постоянный.
серии
Чтобы увеличить напряжение между выводами батареи, вы можете расположить элементы последовательно. Последовательность означает штабелирование ячеек встык, соединение анода одного с катодом следующего.
Последовательно соединяя батареи, вы увеличиваете общее напряжение. Сложите напряжение всех ячеек, чтобы определить рабочее напряжение. Емкость остается прежней.
В этом примере четыре ячейки на 1,5 В подключены последовательно.Напряжение на нагрузке составляет 6 В, а общий набор аккумуляторов имеет емкость 2000 мАч.
В большинстве бытовых электронных устройств, в которых используются щелочные батареи, батареи устанавливаются последовательно. Например, этот держатель батареек 2x AA может поднять номинальное напряжение до 3 В для проекта.
ПРИМЕЧАНИЕ: Если вы заряжаете литий-ионные или литий-полимерные батареи последовательно, вам необходимо обязательно использовать специальные схемы, известные как «балансировщик», чтобы гарантировать равномерное напряжение между элементами.Некоторые зарядные устройства, такие как это, имеют балансиры для безопасной зарядки.Параллельный
Если напряжение одного элемента соответствует нагрузке, вы можете добавить батареи параллельно, чтобы увеличить емкость. Обратите внимание, что это также означает увеличение доступного тока (C-Rate).
Будьте осторожны при параллельном подключении аккумуляторов! Все элементы должны иметь одинаковое номинальное напряжение и одинаковый уровень заряда. Если есть какие-либо различия в напряжении, может произойти короткое замыкание, что приведет к перегреву и, возможно, возгоранию.
В этом примере четыре ячейки 1,5 В подключены параллельно. Напряжение на нагрузке остается на уровне 1,5 В, но общая емкость увеличивается до 8000 мАч.
Последовательный и параллельный
Если вы хотите увеличить напряжение и емкость, вы можете комбинировать последовательные и параллельные батареи. Еще раз убедитесь, что уровень напряжения одинаков для батарей, включенных параллельно, так как может произойти короткое замыкание.
В этом примере полное напряжение на нагрузке составляет 3 В, а общая емкость аккумуляторов составляет 4000 мАч.
В больших аккумуляторных блоках, особенно литий-ионных, вы часто видите конфигурацию, указанную с использованием «S» и «P» для последовательного и параллельного подключения. Конфигурация для схемы выше — 2S2P. В качестве практического примера современные электромобили используют массивные массивы батарей, соединенных последовательно и параллельно.
Ресурсы и дальнейшее развитие
К настоящему времени вы должны понимать, как были изобретены батареи и как они работают. Батареи — это один из способов обеспечения вашего проекта электроэнергией, и они могут быть невероятно полезны, если вам нужен портативный источник питания.
Если вы хотите больше узнать о батареях, вот еще несколько уроков:
Хотите увидеть аккумуляторы в действии? Взгляните на эти проекты, в которых используются разные батареи в разных конфигурациях:
Simon Splosion Wireless
Это учебное пособие, демонстрирующее один из многих методов «взлома» Саймона Сэйса. Мы выделим технику, чтобы взять ваш Simon Says Wireless.
69.ВНУТРИ АККУМУЛЯТОРА NISSAN LEAF
Один из самых узнаваемых электромобилей на дорогах, Nissan Leaf, имеет аккумулятор емкостью 24 кВтч. Его номинальный запас хода составляет почти 80 миль, примерно ⅓ емкости Tesla Model S. Поэтому неудивительно, что емкость его аккумулятора также почти емкости аккумулятора Tesla, о которой я говорил ранее в этом посте. Сегодняшний пост с помощью некоторой общедоступной информации проливает свет на то, что движет Nissan Leaf.
Аккумулятор Nissan Leaf производится и собирается компанией Automotive Energy Supply Corporation (AESC), совместным предприятием Nissan и NEC, расположенным недалеко от Иокогамы, Япония. До запуска Tesla Gigafactory завод AESC остается крупнейшим производителем автомобильных аккумуляторов, ежегодно поставляющим около 90 000 аккумуляторов, в основном на электромобили и гибриды Nissan и Renault.
AESC раскрывает на своем веб-сайте некоторые важные сведения об аккумуляторе и его характеристиках.Разборка аккумуляторной батареи Leaf Беном Нельсоном на 300mpg.org дополняет этот пост красивой пошаговой механической разборкой этого блока. Вес пакета Nissan Leaf составляет 648 фунтов, примерно ½ веса пакета Tesla, но только only его вместимости. Я вернусь к этому вопросу ниже.
На первой фотографии пачка снята с металлического верхнего защитного футляра. Размер упаковки составляет примерно 1570,5 x 1188 x 264,9 мм (61,8 x 46,8 x 10,4 дюйма).
Фотография аккумуляторной батареи электромобиля Nissan Leaf.Можно легко увидеть некоторые из более мелких модулей, составляющих пакет. Предоставлено: Бенджамин Нельсон.
Первое, что мы сделаем, это то, что пакет состоит из модулей меньшего размера. Фактически, AESC сообщает нам, что их 48, каждый размером около 303 x 223 x 55 мм (11,93 x 8,78 x 1,38 дюйма) и весом около 3,8 кг (8,4 фунта). Эти модули разделены на три отдельные секции, одна рядом с задней частью с 24 модулями, прикрепленными друг к другу в вертикальном положении, и две другие секции с каждой стороны упаковки, каждая с 12 модулями в горизонтальном положении.Электрически все модули соединены последовательно. Шины (толстые медные соединители) электрически соединяют вместе эти три отдельные секции.
Каждый модуль состоит из четырех отдельных ячеек пакета (также известного как ламинат), каждая ячейка похожа на ячейку, показанную на следующей фотографии. Четыре ячейки электрически сконфигурированы как 2 последовательно и 2 параллельно. В этой предыдущей публикации рассказывается больше о последовательных и параллельных конфигурациях.
Фотография аккумуляторного отсека, используемого в пакете Nissan Leaf.Источник: AESC
AESC разделяет некоторые электрические характеристики ячейки. Каждая ячейка рассчитана на 32,5 Ач, что примерно в 10 раз больше, чем у ячейки 18650, используемой в Tesla. В нем используется другой материал для катода, называемый оксидом лития-марганца с оксидом никеля (LiMn2O4 с LiNiO2), который по своей природе более безопасен, чем катодный материал из оксида лития-кобальта, используемый в мобильных устройствах и батареях Tesla. Диаграмма напряжения элемента показывает максимальное напряжение элемента 4,2 В. Номинально рассчитанный на 3,75 В, один аккумуляторный блок может хранить до 122 Втч энергии, что примерно в 10 раз больше, чем аккумулятор iPhone 6 Plus.
Итак, давайте займемся математикой. Каждый модуль содержит 4 ячейки, так что общая энергия 488 Втч. Сейчас это значительная сумма, и поэтому следует проявлять большую осторожность при обращении с такими модулями или их использовании. Номинальное напряжение на одном модуле составляет 2 × 3,75 = 7,5 В, а номинальное напряжение на всем блоке Leaf составляет 48 × 7,5 = 360 В. Максимальное напряжение на блоке составляет 2 × 4,2 × 48 = 403 В, хотя широко известно, что Leaf использует только около 80% мощности блока (20 кВтч из 24 кВтч для сохранения срока службы), создавая максимальное напряжение элемента ближе к 4.0 В, а максимальное напряжение батареи ближе к 384 В.
Из приведенной выше диаграммы напряжения видно, что одна ячейка может выдавать ток не менее 90 А. Это эквивалентно пакету, выдающему более 180 А при напряжении 384 В или 70+ кВт (95+ л.с.) на трансмиссию. Эта оценка недалеко от мощности автомобиля Leaf в 90 кВт (120 л.с.). В любом случае можно увидеть, что значения как тока, так и напряжения высоки, что требует специальных конструктивных мер для обеспечения безопасности.
Но за дополнительную безопасность материала LMnO компания Nissan понесла некоторые важные штрафы.Во-первых, собственная плотность энергии отдельного пакета составляет всего около 320 Втч / л. Сравните это с почти 700 Втч / л для батарей Panasonic, используемых Tesla. Почему это имеет значение? Плотность энергии напрямую влияет на дальность действия, а дальность действия, или, скорее, ее отсутствие, сейчас является проблемой №1 для электромобилей. Именно поэтому пакет Tesla весит всего в два раза больше, чем пакет Leaf, но обеспечивает в 3 раза больший запас хода. Другими словами, Nissan Leaf, использующий гипотетическую батарею с ячейками на 700 Втч / л, должен быть способен проехать 120–140 миль вместо нынешних 80 миль.Я хочу одну из них!
Во-вторых, использование больших пакетов требует наличия двух уровней упаковки: один на уровне модуля, а затем снова на уровне упаковки. Это добавляет упаковке лишний вес и объем. Посмотрите на плотность энергии модуля и блока. Для модуля он составляет 131 Втч / л, а для пакета — мрачные 49 Втч / л.
Другой способ взглянуть на эту механическую неэффективность: общий вес 192 ячеек составляет 151 кг (332 фунта) — это часть, которая действительно хранит энергию — к которой стальные коробки, пластины, жгуты проводов и электроника добавляют еще 144 кг ( 316 фунтов) для общего веса упаковки 295 кг (648 фунтов).Другими словами, это 316 фунтов дополнительного веса, который не способствует накоплению энергии. Каждый фунт веса аккумуляторной батареи Leaf хранит 37 Втч энергии. Для сравнения: каждый фунт веса в пакете Tesla S хранит 64 Вт · ч энергии!… Этот дизайн пакета Leaf плохо масштабируется для больших пробегов.
Это, ребята, говорит о том, что Leaf — хороший автомобиль первого поколения, но что Nissan необходимо найти серьезные улучшения в своей батарее, чтобы он получил широкое распространение за пределами избранных зеленых и богатых сообществ, таких как наш район залива Сан-Франциско.
Связанные Поделиться этой записьюАккумуляторы для гибридных автомобилей и электромобилей
В большинстве подключаемых к электросети гибридов и полностью электрических транспортных средств используются подобные литий-ионные батареи.
Системы накопления энергии, обычно аккумуляторы, необходимы для гибридных электромобилей (HEV), подключаемых гибридных электромобилей (PHEV) и полностью электрических транспортных средств (EV).
Типы систем хранения энергии
Следующие системы накопления энергии используются в автомобилях HEV, PHEV и электромобилях.
Литий-ионные батареи
Литий-ионные батареи в настоящее время используются в большинстве портативных бытовых электронных устройств, таких как сотовые телефоны и ноутбуки, из-за их высокой энергии на единицу массы по сравнению с другими системами хранения электроэнергии. Они также обладают высоким удельным весом, высокой энергоэффективностью, хорошими высокотемпературными характеристиками и низким саморазрядом. Большинство компонентов литий-ионных аккумуляторов могут быть переработаны, но стоимость рекуперации материалов остается проблемой для отрасли.Министерство энергетики США также поддерживает Премию за переработку литий-ионных аккумуляторов, чтобы найти решения для сбора, сортировки, хранения и транспортировки использованных и выброшенных литий-ионных аккумуляторов для последующей переработки и восстановления материалов. В большинстве современных PHEV и электромобилей используются литий-ионные батареи, хотя точный химический состав часто отличается от химического состава батарей для бытовой электроники. Продолжаются исследования и разработки, направленные на снижение их относительно высокой стоимости, продление срока их службы и решение проблем безопасности в отношении перегрева.
Никель-металлогидридные батареи
Никель-металлогидридные батареи, обычно используемые в компьютерном и медицинском оборудовании, предлагают разумную удельную энергию и удельные мощности. Никель-металлогидридные батареи имеют гораздо более длительный срок службы, чем свинцово-кислотные, и безопасны и устойчивы к неправильному обращению. Эти батареи широко используются в HEV. Основными проблемами никель-металлгидридных батарей являются их высокая стоимость, высокий саморазряд и тепловыделение при высоких температурах, а также необходимость контролировать потери водорода.
Свинцово-кислотные батареи
Свинцово-кислотные аккумуляторымогут быть разработаны с учетом высокой мощности, а также недорогими, безопасными и надежными. Однако низкая удельная энергия, плохие характеристики при низких температурах, а также короткий календарный и циклический срок службы препятствуют их использованию. В настоящее время разрабатываются современные высокомощные свинцово-кислотные батареи, но эти батареи используются только в коммерчески доступных транспортных средствах с электрическим приводом для вспомогательных нагрузок.
Суперконденсаторы
Ультраконденсаторы хранят энергию в поляризованной жидкости между электродом и электролитом.Емкость накопления энергии увеличивается по мере увеличения площади поверхности жидкости. Ультраконденсаторы могут обеспечить транспортным средствам дополнительную мощность во время разгона и подъема на холм, а также помочь восстановить энергию торможения. Они также могут быть полезны в качестве вторичных накопителей энергии в транспортных средствах с электрическим приводом, поскольку помогают электрохимическим аккумуляторам выравнивать мощность нагрузки.
Утилизация аккумуляторов
Транспортные средства с электрическим приводом являются относительно новыми для автомобильного рынка США, поэтому лишь небольшое количество из них подошло к концу своего срока службы.В результате доступно немного бывших в употреблении аккумуляторов для электромобилей, что ограничивает масштабы инфраструктуры по переработке аккумуляторов. Поскольку электромобили становятся все более распространенными, рынок утилизации аккумуляторов может расшириться.
Широко распространенная переработка аккумуляторов предотвратит попадание опасных материалов в поток отходов как в конце срока службы аккумулятора, так и во время его производства. В настоящее время ведется работа по разработке процессов утилизации аккумуляторов, которые минимизируют влияние на жизненный цикл литий-ионных и других типов аккумуляторов в транспортных средствах.Но не все процессы переработки одинаковы:
- Плавка : В процессе плавки восстанавливаются основные элементы или соли. Эти процессы в настоящее время используются в больших масштабах и могут работать с различными типами батарей, включая литий-ионные и никель-металлгидридные. Плавка происходит при высоких температурах, и органические материалы, включая электролит и угольные аноды, сжигаются в качестве топлива или восстановителя. Ценные металлы извлекаются и отправляются на аффинаж, чтобы продукт был пригоден для любого использования.Остальные материалы, в том числе литий, содержатся в шлаке, который теперь используется в качестве добавки в бетон.
- Прямое восстановление : С другой стороны, некоторые процессы рециркуляции напрямую восстанавливают материалы, пригодные для аккумуляторных батарей. Компоненты разделяются различными физическими и химическими процессами, и все активные материалы и металлы могут быть восстановлены. Прямое восстановление — это низкотемпературный процесс с минимальными энергозатратами.
- Промежуточные процессы : Третий тип процесса находится между двумя крайностями.В таких процессах можно использовать несколько типов батарей, в отличие от прямого восстановления, но извлекать материалы дальше по производственной цепочке, чем при плавке.
Разделение различных материалов аккумуляторных батарей часто является камнем преткновения при извлечении ценных материалов. Таким образом, конструкция аккумуляторной батареи, учитывающая разборку и переработку, важна для успеха электромобилей с точки зрения устойчивости. Стандартизация батарей, материалов и конструкции элементов также упростит переработку и сделает ее более рентабельной.
См. Отчет: «Технико-экономическая целесообразность использования отработанных аккумуляторов электромобилей в стационарных установках».
Дополнительная информация
Узнайте больше о исследованиях и разработке аккумуляторов на страницах Национальной лаборатории возобновляемых источников энергии, посвященных хранению энергии, и на странице Управления автомобильных технологий Министерства энергетики США.
.